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Abstract. Stream database systems are designed to support the fast on-line pro-
cessing that characterizes many new emerging applicationssuch as sensor-based
environments, on-line business processing and network monitoring. Data stream
processing is a highly demanding environment where streamsare usually infi-
nite, bursty, and running at high arrival rates. Due to limited buffer storage or
real-time constraints, data items may be dropped out of the system and lost for
ever. In many applications, sensitive stream data needs to be secured against ma-
licious attacks. Various security mechanisms have been well studied in literature.
However, these mechanisms are not tuned to work in the lossy streaming envi-
ronment. Stream security mechanisms are required to provide security services
and to be fault-tolerant as well.
In this paper we identify the security requirements for datastream systems, fo-
cusing onNile, a prototype query processing engine for data streams developed
atPurdue University. We first propose a security architecture for data stream sys-
tems, then focus on a particular service: data integrity andconfidentiality. We
present a new mechanism, FT-RC4, that provides data integrity and confidential-
ity. We demonstrate its practicality by implementing it inside our prototype data
stream system and evaluating its performance.

1 Introduction

The Internet revolution, and more recently the wide-spreaduse of wireless and sen-
sor networks, created a paradigm shift in the way information is accessed and pro-
cessed, generating new applications such as real-time network monitoring, surveillance,
tracking, plant maintenance, telecommunications, data management and environmental
monitoring. Such applications are fundamentally different in the way they produce data
and perform queries [1]. They continuously generate large volumes of data streams
obtained from the environment they operate in. Data streamscan be obtained from
multiple sources at high-arrival (possibly unpredictable) rates. They are continuous and
unbounded. Thetransitivecharacteristic of the data makes storing and processing the
whole data infeasible. Data items may be dropped from the buffers and lost for ever if
they are not processed in a timely fashion. Queries that are applied on such data streams
are not only snapshot queries, but also continuous queries in which the same query is
incrementally evaluated each time new input arrives. Processing is performed on a slid-
ing window over the stream to limit the attention to the most recent data items and
overcome the infiniteness of the stream.
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As data stream applications process sensitive data that is often classified (military
applications) or private (financial, health applications,etc.) there is an obvious need for
providing security services not only for the applications but for the data stream systems
themselves. A comprehensive survey of security and privacyrequirements and open
issues for a particular type of stream databases that is generated by a large number of
sensors is presented in [6]. Below we present the main security services that any data
stream system that is concerned with security should consider:

– Authentication: authenticates a client when it requests access to the system.
– Access control and authorization: checks if a given client is authorized to register

data streams or perform queries on streams.
– Data confidentiality: guarantees that only intended parties can understand the con-

tent of the stream, the query, or the result.
– Data integrity: ensures that data is in the form that is intended by the originator and

is not corrupted intentionally or unintentionally.
– Data non-repudiation: ensures that a party that performed an operation can not

deny that he did it. This service is useful for audit purposes.
– Data privacy: defines what is the minimum information that should be disclosed

and provides ways of protecting personal information even after it was disclosed to
other parties.

– Data validity: ensures that data generated contains meaningful and correct (non-
misleading) information in the generated data streams.

– Survivability: provides system recovery from either an attack or a failureand en-
sures that a service is available.

– Security policy: all the above security mechanisms must be governed by a security
policy.

Most of the security requirements listed above are not necessarily specific to data
stream systems. However, most of them are more difficult to provide for data streams
where standard solutions cannot be applied directly because of the high-demand charac-
teristics of the environment. Additional research is needed to overcome the challenges
posed of the new paradigm. One challenge is reconciling application-specific require-
ments with security services in a high-demand environment.For example, many appli-
cations such as medical applications [7], require privacy of data, but also audit capabil-
ity. Solutions proposed to address this problem, provide the desired audit capabilities
and preserve privacy, but have a high associated cost that makes them prohibitive to
real-time data stream systems.

Another challenge originates from the conflict between security and real-time pro-
cessing. For example, providing fine-granularity access control and authorization can
have a negative effect on the real-time processing because of the additional processing
overhead. Another example is providing data confidentiality for data streams. Although
stream ciphers [8] seem to provide the desired performance for data streams, they fail
to operate correctly when there is a de-synchronization between the keystream and the
encrypted data. Such a de-synchronization is very likely tooccur in an environment
where data can be dropped or lost either at thecommunication levelbecause of the high
transmission rate, or at theapplication levelbecause of the limited storage capability
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and processing power. The real-time processing does not allow for trying to recover the
data via retransmissions.

Several systems were designed to cope with the demanding performance of data
streams. They include: STREAM [2], Aurora [3], and Nile [4].However, none of them
focused on providing security services.

The work presented in this paper is a first step in addressing security concerns for
data stream systems, focusing on data integrity and confidentiality. The research in this
paper is conducted in the context of the Nile [4] prototype data stream system. Our main
contributions are:

– We identify security services for data stream systems and propose a secure archi-
tecture for a prototype data stream system.

– We focus on data integrity and confidentiality and propose a mechanism appropriate
to data streams. Our scheme, FT-RC4, is able to withstand data loss and recover
from it by re-synchronizing the encrypted data with the corresponding keystream.

– We demonstrate the applicability of FT-RC4 to data streams by implementing it in
the discussed prototype data stream system and by evaluating it over realistic data
streams.

The remainder of the paper is organized as follows. We overview related work in
Section 2. We describe how security services can be accommodated in the architecture
of an existing data stream system in Section 3. Section 4 focuses on data integrity and
confidentiality and presents the design of our scheme, FT-RC4. Section 5 evaluates the
performance of the proposed mechanism. Finally, we conclude this work in Section 6.

2 Related Work

In this section, we overview the related work in several directions related to the se-
curity of data streams in particular and databases in general, These directions can be
summarized as follows:

Security for Stream Databases.To the best of our knowledge, there is very little
work that focuses on the security requirements and servicesfor data streams systems.
A significant work in this direction is the work in [6] that overviews the main research
directions and challenges in security for sensor network databases. The paper points
out, among other issues, the need for robust security mechanisms, i.e. mechanisms that
not only provide security services, but are also fault-tolerant.

Access Control for Database Systems.Significant work has been conducted in the
area of providing access control to traditional database systems [9]. Some of the work
focused on investigating how several access control modelscan be applied to databases
(for example RBAC [10]). Another topic in this area focuses on providing access con-
trol [11], protection and administration to XML data sources [12]. More recent results
analyze what are the requirements and mechanisms that need to be provided in query
processing in order to provide very fine-grained access control (at the level of individual
tuples) [13].

Data Confidentiality and Integrity. Block ciphers,e.g., DES [14] and AES [15],
has been proposed to provide data confidentiality. Althoughthey are widely used, their
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Fig. 1. Nile system architecture

performance makes them prohibitive to data streams. Another type of ciphers, stream
ciphers, (such as RC4 [16]) have performance that makes themappropriate for streams.
Several techniques have been proposed to provide data integrity. They were based on
hashing techniques to calculate authentication bits that can be viewed as a digest of the
messages. MD5 [17], SHA1 [18] and HMAC [19] are examples of these techniques.
Our work builds on existing work in providing data integrityand confidentiality.

3 A Security Architecture for Data Stream Systems

In this section, we discuss how some of the security servicespresented in Section 1, can
be achieved in data stream systems. We extend the architecture of a data stream systems
to accommodate components that are specially designed to provide security services.

Figure 1 shows the main architectural components of our prototype data stream sys-
tem. TheStream Registrationcomponent is the interface between the stream generators
and the system. Its main function is to register new streams into the system. Queries
need to be registered by theQuery Registrationcomponent in order to get access to
the streams inside the system. TheStream Managercomponent handles multiple in-
coming streams and acts as a buffer between the streams sources and theQuery Engine
where query processing takes place. TheStorage Managercomponent is responsible for
building and maintaining summaries over data streams, allowing the system to answer
queries efficiently. The above described system is extendedwith two basic components.
The first component handles authentication, encryption, integrity and non-repudiation
services. It is responsible for authenticating clients, performing key management, in-
tegrity and encryption and decryption operations. These services are end-to-end ser-
vices, thus the component is placed at the outer level of the system. The second compo-
nent handles access control policies. It is responsible formaking sure that queries are
performed by authorized clients who have access to the targeted streams. This compo-
nent is placed into the system after the query and stream registration phase to keep track
of which queries are allowed to access which streams.
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Fig. 2. The effect of lost data items on RC4 (a) original image (b) received image

4 FT-RC4 Design

A basic security service that is necessary for data streams is data confidentiality and
integrity. In this section we focus on this service.

Stream ciphers, such as RC4 [16] provide the performance required by the high-
demand environment of data streams. The main mechanism of such ciphers is to gener-
ate a keystream based on a shared secret key. The generated keystream is then XOR-ed
with the original stream to obtain the encrypted stream. Thedecryption operation is per-
formed in a similar manner as the encryption: the keystream is recreated at the receiver
side, then XOR-ed with the encrypted stream to obtain the original data. Stream ciphers,
including RC4 are vulnerable to de-synchronization between the keystream and the ci-
phertext, in case of data loss. Figure 2 shows that RC4 [16] fails to decrypt the data
after it encounters the first error due to the de-synchronization between the keystream
and the incoming data stream.

To overcome this problem, we propose FT-RC4, that builds on the design of RC4.
FT-RC4 extends RC4 to work in the lossy streaming environment, where recovering the
data through retransmissions is not an option. Figure 3 presents the design of FT-RC4.
FT-RC4 consists of three steps taken at the sender side and other corresponding three
steps at the receiver side. The sender divides the stream into cycles of fixed length. After
encrypting each cycle, the sender appends synchronizationand integrity bits immedi-
ately after each cycle. The receiver uses these extra bits tocheck the integrity of data. If
the cycle is believed to be corrupted, it is thrown away or replaced by zeros. Otherwise,
the synchronization bits are used to adjust the keystream and decrypt the cycle. For each
cycle, the following steps are performed at the sender side:

1. The input stream is XOR-ed with the keystream to obtain an encrypted stream.
2. The encrypted stream is passed through a position registrar to punctuate the stream

with the current position of the stream by appendingstream position locating bits.
(Notice that position bits may or may not be encrypted depending on whether we
are interested in hiding stream contents or contents plus position as well. This en-
cryption is done through a separate encryption step and may use a different key and
technique.)
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Fig. 3.Basic components of FT-RC4

3. The encrypted stream and position punctuation is passed through an integrity en-
forcer to hash the current cycle and obtainintegrity bitsthat are considered as the
cycle digest that verifies the stream integrity.

As mentioned above, the receiver does not have the ability torecover the lost data.
Thus, the receiver goals are to detect a loss and then resynchronize the keystream with
the incoming encrypted stream. Corrupted cycles are considered lost, while correct cy-
cles are decrypted and if data loss occurred, used to resynchronize the keystream for
further decryption.Integrity bitsare used to check the integrity for each cycle, while
stream locating bitsare used to fast forward the keystream till it is repositioned at the
correct position. Due to the bursty nature of streams, errors are usually close-by, de-
stroying one cycle and leaving others uncorrupted. At the receiver side, the following
steps are carried over:

1. The receiver slides a window of the same size as the cycle length over the received
encrypted stream. It calculates the same hash function and checks the integrity bits.
If integrity checks, the cycle is considered correct, otherwise, it is considered to be
corrupted and thrown away. (Notice that the hash function should be evaluated in-
crementally as the window slides [20] to allow the efficient computation of integrity
bits as one data item gets into the window and another one leaves it.)

2. For a correct cycle, the position locating bits are used tofast forward the stream to
the correct position and to inform the decryptor to report data loss to the client, and
perhaps add filling values instead of the corrupted ones. These filling values would
be of interest to some applications, e.g., images where image size is important.

3. The adjusted keystream is XOR-ed with the encrypted stream to obtain the original
data stream.

FT-RC4 is able to detect corrupted portions and is able to readjust the keystream in
order to regain synchronization. In Figure 4 we show the sameimage from Figure 2,
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Fig. 4. The effect of lost data items on FT-RC4: (a) 1% loss rate, (b) 5% loss rate

encrypted with FT-RC4, under two loss rates. Figure 4 shows that FT-RC4 recovers
from lost data and continues the decryption process (whereas RC4 generated garbage
after the first error it encountered). Although the image gets distorted as the loss rate
increases, it is still viewable.

5 Experiments

In this section, we evaluate the performance of FT-RC4 inside the Nile data stream
system. We implement FT-RC4 inside Nile and perform experiments using a real data
set generated from Wal*Mart1 retail stores. Each store is sending its transactions to
a centralized data stream system for online processing. Each transaction comes in the
form of <StoreID, ItemID, Price, Quantity, TimeStamp>. A sample query “Q”, shown
in Figure 5, is performed on the system side under different rates of uniform information
loss. The query calculates the total revenue by multiplyingthe price of each item by the
associated sold quantity and accumulating the sum. A windowoperator of 5 minutes
is placed to limit the attention to the most recent five minutes. The window format is
window (hour, minutes, seconds, mseconds).

SELECT SUM(R1.Price() * R1.Quantity())
FROM Retail1 R1
WINDOW 00,05,00,00;

Fig. 5. Query “Q” syntax

Figure 6 shows the result of query “Q” under different loss rates. The figure shows
that FT-RC4 is able to produce answers that are very close to the ones in a non-lossy
environment. The lower the loss rate is, the more accurate results are obtained. The
obtained result is always less than the exact one due to replacing the lost bytes with
zeros which in turn decreases the sum value. Figure 7 shows the normalized mean
square error (MSE) between the exact and obtained answers. The horizontal segments

1 Data was supplied by Wal*Mart and NCR Corporations
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Fig. 6. The effect of loss rate on the query answer

of the curves indicate that the newly-arriving tuples as well as the expiring tuples are
both correct tuples. Therefore, they do not change the MSE. The positive-slope seg-
ments indicate that the newly-arriving tuples are lost and replaced by zeros. Finally, the
negative-slope segments indicate that expiring tuples arezero-replaced tuples, and their
expiration reduces the MSE. As expected, the MSE increases with the increase of the
loss rate. Increasing the loss rate increases the magnitudeand number of positive and
negative slope segments.

Figure 8 shows the processing time for the FT-RC4 under different cycle sizes.
Notice that FT-RC4 requires more processing time than RC4 due to augmenting the
stream with synchronization bytes. The figure shows that as the cycle size increases the
processing time decreases because the number of the synchronization bytes decreases.
Figure 9 shows the effect of the cycle size in the recovery process. As the cycle size
increases, more data is lost. This is because in FT-RC4, if anerror occurs in a cycle, the
whole cycle is lost. Finer granularities of cycles offer a better chance of recovery, at an
additional processing overhead.

6 Conclusions

In this paper, we outlined the desired security services fordata streams and suggested
an architecture for data stream systems that provides such services. We discussed the
challenges encountered when designing security services for data streams, emphasizing
the interaction between fault-tolerance and security.

We exemplified why standard solutions can not directly be applied in a lossy stream
environment where data loss recovery through retransmissions is not possible, by focus-
ing on data integrity and confidentiality. We proposed a new scheme FT-RC4 designed
specifically to cope with the requirements of data streams and showed its usefulness by
implementing it and evaluating it in the context of a prototype data stream system.

This work is just the first step towards a secure data stream system. We plan to
perform further evaluations of our scheme under different application scenarios, with
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Fig. 7. The effect of loss rate on MSE
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Fig. 8. The CPU overhead for both RC4 and FT-RC4
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various requirements. In addition, there are several otherservices we just outlined in
this paper and which require further research.
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