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Abstract. Stream database systems are designed to support the fiast @ne-
cessing that characterizes many new emerging applicagimisas sensor-based
environments, on-line business processing and networktarong. Data stream
processing is a highly demanding environment where streamsisually infi-
nite, bursty, and running at high arrival rates. Due to ledibuffer storage or
real-time constraints, data items may be dropped out of et and lost for
ever. In many applications, sensitive stream data needs setured against ma-
licious attacks. Various security mechanisms have beelstuglied in literature.
However, these mechanisms are not tuned to work in the ldssgrsing envi-
ronment. Stream security mechanisms are required to @aeadurity services
and to be fault-tolerant as well.

In this paper we identify the security requirements for ddteaam systems, fo-
cusing onNile, a prototype query processing engine for data streamsajmeb|
atPurdue UniversityWe first propose a security architecture for data stream sys
tems, then focus on a particular service: data integrity @ntfidentiality. We
present a new mechanism, FT-RC4, that provides data ittegril confidential-
ity. We demonstrate its practicality by implementing itidesour prototype data
stream system and evaluating its performance.

1 Introduction

The Internet revolution, and more recently the wide-spresal of wireless and sen-
sor networks, created a paradigm shift in the way infornmattoaccessed and pro-
cessed, generating new applications such as real-timerietmonitoring, surveillance,
tracking, plant maintenance, telecommunications, dataagement and environmental
monitoring. Such applications are fundamentally difféiarthe way they produce data
and perform queries [1]. They continuously generate lagjames of data streams
obtained from the environment they operate in. Data strezansbe obtained from
multiple sources at high-arrival (possibly unpredictabd¢es. They are continuous and
unbounded. Théransitivecharacteristic of the data makes storing and processing the
whole data infeasible. Data items may be dropped from thietsuéind lost for ever if
they are not processed in a timely fashion. Queries thatapiéea on such data streams
are not only snapshot queries, but also continuous queriefich the same query is
incrementally evaluated each time new input arrives. Rsiog is performed on a slid-
ing window over the stream to limit the attention to the mastent data items and
overcome the infiniteness of the stream.
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As data stream applications process sensitive data thétis dassified (military
applications) or private (financial, health applicatiogis,) there is an obvious need for
providing security services not only for the applicationsfor the data stream systems
themselves. A comprehensive survey of security and privaquirements and open
issues for a particular type of stream databases that isa@tedey a large number of
sensors is presented in [6]. Below we present the main sgaaniivices that any data
stream system that is concerned with security should censid

— Authenticationauthenticates a client when it requests access to thensyste

— Access control and authorizatioohecks if a given client is authorized to register
data streams or perform queries on streams.

— Data confidentialityguarantees that only intended parties can understanathe c
tent of the stream, the query, or the result.

— Data integrity ensures that data is in the form that is intended by thermatgr and
is not corrupted intentionally or unintentionally.

— Data non-repudiationensures that a party that performed an operation can not
deny that he did it. This service is useful for audit purposes

— Data privacy defines what is the minimum information that should be diset
and provides ways of protecting personal information etar & was disclosed to
other parties.

— Data validity. ensures that data generated contains meaningful andct@nan-
misleading) information in the generated data streams.

— Survivability provides system recovery from either an attack or a faibure en-
sures that a service is available.

— Security policyall the above security mechanisms must be governed by aityecu

policy.

Most of the security requirements listed above are not rseciy specific to data
stream systems. However, most of them are more difficult doige for data streams
where standard solutions cannot be applied directly beoafithe high-demand charac-
teristics of the environment. Additional research is neddeovercome the challenges
posed of the new paradigm. One challenge is reconcilingegijn-specific require-
ments with security services in a high-demand environntertexample, many appli-
cations such as medical applications [7], require privd@ata, but also audit capabil-
ity. Solutions proposed to address this problem, providedibsired audit capabilities
and preserve privacy, but have a high associated cost tHetsrtaem prohibitive to
real-time data stream systems.

Another challenge originates from the conflict between sgcand real-time pro-
cessing. For example, providing fine-granularity accesdgroband authorization can
have a negative effect on the real-time processing becdubke additional processing
overhead. Another example is providing data confidenyi&it data streams. Although
stream ciphers [8] seem to provide the desired performarogsata streams, they fail
to operate correctly when there is a de-synchronizationden the keystream and the
encrypted data. Such a de-synchronization is very likelpdour in an environment
where data can be dropped or lost either atimmunication levddecause of the high
transmission rate, or at thapplication levelbecause of the limited storage capability
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and processing power. The real-time processing does @t &t trying to recover the
data via retransmissions.

Several systems were designed to cope with the demandifigypance of data
streams. They include: STREAM [2], Aurora [3], and Nile [However, none of them
focused on providing security services.

The work presented in this paper is a first step in addressiogrigy concerns for
data stream systems, focusing on data integrity and coniédign The research in this
paper is conducted in the context of the Nile [4] prototypddéream system. Our main
contributions are:

— We identify security services for data stream systems aodqse a secure archi-
tecture for a prototype data stream system.

— We focus on data integrity and confidentiality and proposeelranism appropriate
to data streams. Our scheme, FT-RC4, is able to withstaradldss and recover
from it by re-synchronizing the encrypted data with the esponding keystream.

— We demonstrate the applicability of FT-RC4 to data streayrisiplementing it in
the discussed prototype data stream system and by evauiadiver realistic data
streams.

The remainder of the paper is organized as follows. We ogervelated work in
Section 2. We describe how security services can be accoateubdh the architecture
of an existing data stream system in Section 3. Section 4s&scan data integrity and
confidentiality and presents the design of our scheme, F&-[8€ction 5 evaluates the
performance of the proposed mechanism. Finally, we coredluid work in Section 6.

2 Related Work

In this section, we overview the related work in several cioms related to the se-
curity of data streams in particular and databases in gkriérase directions can be
summarized as follows:

Security for Stream DatabasesTo the best of our knowledge, there is very little
work that focuses on the security requirements and serficetata streams systems.
A significant work in this direction is the work in [6] that oxéews the main research
directions and challenges in security for sensor netwothleses. The paper points
out, among other issues, the need for robust security mesrhani.e. mechanisms that
not only provide security services, but are also fault+enhé.

Access Control for Database Systemsignificant work has been conducted in the
area of providing access control to traditional databastesys [9]. Some of the work
focused on investigating how several access control medelde applied to databases
(for example RBAC [10]). Another topic in this area focusespooviding access con-
trol [11], protection and administration to XML data sows¢é&2]. More recent results
analyze what are the requirements and mechanisms that aéedptrovided in query
processing in order to provide very fine-grained accessaljait the level of individual
tuples) [13].

Data Confidentiality and Integrity. Block ciphers,e.g., DES [14] and AES [15],
has been proposed to provide data confidentiality. Althahgh are widely used, their
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Fig. 1. Nile system architecture

performance makes them prohibitive to data streams. Andype of ciphers, stream

ciphers, (such as RC4 [16]) have performance that makesdpenopriate for streams.

Several techniques have been proposed to provide dataiiptddhey were based on

hashing techniques to calculate authentication bits trabe viewed as a digest of the
messages. MD5 [17], SHAL [18] and HMAC [19] are examples ekthtechniques.

Our work builds on existing work in providing data integrégpd confidentiality.

3 A Security Architecture for Data Stream Systems

In this section, we discuss how some of the security sergicesented in Section 1, can
be achieved in data stream systems. We extend the arché@edta data stream systems
to accommodate components that are specially designedvalprsecurity services.

Figure 1 shows the main architectural components of ouppypé data stream sys-
tem. TheStream Registratioocomponent is the interface between the stream generators
and the system. Its main function is to register new streamusthe system. Queries
need to be registered by tliguery Registratiorcomponent in order to get access to
the streams inside the system. Thgeam Managecomponent handles multiple in-
coming streams and acts as a buffer between the streamesaunt th€uery Engine
where query processing takes place. Sherage Managetomponentis responsible for
building and maintaining summaries over data streamsyaitpthe system to answer
queries efficiently. The above described system is extewitdwo basic components.
The first component handles authentication, encryptidegiity and non-repudiation
services. It is responsible for authenticating clientsfqrening key management, in-
tegrity and encryption and decryption operations. Theseices are end-to-end ser-
vices, thus the component s placed at the outer level ofytstesn. The second compo-
nent handles access control policies. It is responsiblenking sure that queries are
performed by authorized clients who have access to theteatgtreams. This compo-
nent is placed into the system after the query and strearstratipn phase to keep track
of which queries are allowed to access which streams.
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4 FT-RC4 Design

A basic security service that is necessary for data streardata confidentiality and
integrity. In this section we focus on this service.

Stream ciphers, such as RC4 [16] provide the performanagrestiby the high-
demand environment of data streams. The main mechanisnclotiuhers is to gener-
ate a keystream based on a shared secret key. The genengtrddmm is then XOR-ed
with the original stream to obtain the encrypted stream.déweyption operation is per-
formed in a similar manner as the encryption: the keystreanmadreated at the receiver
side, then XOR-ed with the encrypted stream to obtain thggraal data. Stream ciphers,
including RC4 are vulnerable to de-synchronization betwibe keystream and the ci-
phertext, in case of data loss. Figure 2 shows that RC4 [18] tia decrypt the data
after it encounters the first error due to the de-synchrdioizdetween the keystream
and the incoming data stream.

To overcome this problem, we propose FT-RC4, that buildsherdiesign of RC4.
FT-RC4 extends RC4 to work in the lossy streaming envirorntpvamere recovering the
data through retransmissions is not an option. Figure 3pteghe design of FT-RC4.
FT-RC4 consists of three steps taken at the sender side hadagrresponding three
steps at the receiver side. The sender divides the streammyicles of fixed length. After
encrypting each cycle, the sender appends synchronizatidnntegrity bits immedi-
ately after each cycle. The receiver uses these extra litseitk the integrity of data. If
the cycle is believed to be corrupted, it is thrown away ofaegd by zeros. Otherwise,
the synchronization bits are used to adjust the keystreadacrypt the cycle. For each
cycle, the following steps are performed at the sender side:

1. The input stream is XOR-ed with the keystream to obtainramygted stream.

2. The encrypted stream is passed through a position registpunctuate the stream
with the current position of the stream by appenditrgam position locating bits
(Notice that position bits may or may not be encrypted deandn whether we
are interested in hiding stream contents or contents plsiti@o as well. This en-
cryption is done through a separate encryption step and s&a different key and
technique.)
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Fig. 3. Basic components of FT-RC4

3. The encrypted stream and position punctuation is passedgh an integrity en-
forcer to hash the current cycle and obtaitegrity bitsthat are considered as the
cycle digest that verifies the stream integrity.

As mentioned above, the receiver does not have the abilitgdover the lost data.
Thus, the receiver goals are to detect a loss and then regyrizh the keystream with
the incoming encrypted stream. Corrupted cycles are ceresidost, while correct cy-
cles are decrypted and if data loss occurred, used to resymzh the keystream for
further decryptionintegrity bitsare used to check the integrity for each cycle, while
stream locating bitsre used to fast forward the keystream till it is repositibaethe
correct position. Due to the bursty nature of streams, sraoe usually close-by, de-
stroying one cycle and leaving others uncorrupted. At tleeiver side, the following
steps are carried over:

1. The receiver slides a window of the same size as the cyuigHever the received
encrypted stream. It calculates the same hash functiontaetks the integrity bits.
If integrity checks, the cycle is considered correct, othige, it is considered to be
corrupted and thrown away. (Notice that the hash functi@ukhbe evaluated in-
crementally as the window slides [20] to allow the efficiemtputation of integrity
bits as one data item gets into the window and another onedaay

2. For a correct cycle, the position locating bits are usdddbforward the stream to
the correct position and to inform the decryptor to repotadass to the client, and
perhaps add filling values instead of the corrupted onessdfiking values would
be of interest to some applications, e.g., images whereéraag is important.

3. The adjusted keystream is XOR-ed with the encryptedrstteabtain the original
data stream.

FT-RC4 is able to detect corrupted portions and is able tdjusathe keystream in
order to regain synchronization. In Figure 4 we show the samage from Figure 2,
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Fig. 4. The effect of lost data items on FT-RC4: (a) 1% loss rate, $h)d&ss rate

encrypted with FT-RC4, under two loss rates. Figure 4 shiwas ET-RC4 recovers
from lost data and continues the decryption process (wkdR€xt generated garbage
after the first error it encountered). Although the images giistorted as the loss rate
increases, it is still viewable.

5 Experiments

In this section, we evaluate the performance of FT-RC4 engiee Nile data stream
system. We implement FT-RC4 inside Nile and perform expenits using a real data
set generated from Wal*Matt retail stores. Each store is sending its transactions to
a centralized data stream system for online processindn fansaction comes in the
form of <StorelD, ItemID, Price, Quantity, TimeStampA sample query “Q”, shown

in Figure 5, is performed on the system side under differetrof uniform information
loss. The query calculates the total revenue by multiplytiregprice of each item by the
associated sold quantity and accumulating the sum. A winojpgrator of 5 minutes

is placed to limit the attention to the most recent five misuehe window format is
window (hour, minutes, seconds, mseconds)

SELECT SUM(RL1.Price() * R1.Quantity())
FROM Retaill R1
WINDOW 00,05,00,00;

Fig. 5. Query “Q” syntax

Figure 6 shows the result of query “Q” under different logesaThe figure shows
that FT-RC4 is able to produce answers that are very clodeetones in a non-lossy
environment. The lower the loss rate is, the more accuradtseare obtained. The
obtained result is always less than the exact one due tociegléhe lost bytes with
zeros which in turn decreases the sum value. Figure 7 shavedimalized mean
square error (MSE) between the exact and obtained answeehdrizontal segments

! Data was supplied by Wal*Mart and NCR Corporations
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of the curves indicate that the newly-arriving tuples asl &slthe expiring tuples are

both correct tuples. Therefore, they do not change the M$E. positive-slope seg-

ments indicate that the newly-arriving tuples are lost apdaced by zeros. Finally, the
negative-slope segments indicate that expiring tuplegen@replaced tuples, and their
expiration reduces the MSE. As expected, the MSE increaibdlve increase of the

loss rate. Increasing the loss rate increases the magrahaiaumber of positive and

negative slope segments.

Figure 8 shows the processing time for the FT-RC4 under réiffecycle sizes.
Notice that FT-RC4 requires more processing time than RG4tdwaugmenting the
stream with synchronization bytes. The figure shows thdi@asycle size increases the
processing time decreases because the number of the syizettion bytes decreases.
Figure 9 shows the effect of the cycle size in the recoverggss. As the cycle size
increases, more data is lost. This is because in FT-RC4 dfran occurs in a cycle, the
whole cycle is lost. Finer granularities of cycles offer @dechance of recovery, at an
additional processing overhead.

6 Conclusions

In this paper, we outlined the desired security servicesléta streams and suggested
an architecture for data stream systems that provides ®reltss. We discussed the
challenges encountered when designing security senacesifa streams, emphasizing
the interaction between fault-tolerance and security.

We exemplified why standard solutions can not directly bdiag|n a lossy stream
environmentwhere data loss recovery through retransoms$s not possible, by focus-
ing on data integrity and confidentiality. We proposed a nelreme FT-RC4 designed
specifically to cope with the requirements of data streardssaowed its usefulness by
implementing it and evaluating it in the context of a profmhdata stream system.

This work is just the first step towards a secure data streatersy We plan to
perform further evaluations of our scheme under differgqpiaation scenarios, with
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various requirements. In addition, there are several atberices we just outlined in
this paper and which require further research.
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