
PHENOMENON-AWARE DATA STREAM MANAGEMENT SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mohamed H. Ali

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2007

ii

To my parents, Hassan and Afaf, my wife, Doaa, and my kids, Nour and Mariam

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to a large number of people who have con-

tributed generously to my success. These people have made a huge difference and a

noticeable impact on both my professional and personal life.

I would like to express my gratitude to my advisor Prof. Walid Aref for his advice

and guidance throughout my Ph.D. studies. I thank him deeply for the endless hours

he spent with me to get me on the right research track. Walid was not only an advisor

but he was also a friend. I remember how happy he feels and how helpful he is when

I knock his door asking for an advice. Walid taught me how to conduct high impact

research and how to build a solid systems experience. I am really happy having

Walid as my advisor.

I am really grateful to Prof. Ahmed Elmagarmid for being a basic source of

support, advice, and guidance to me. Ahmed is a person that I value his advice and

respect his extensive knowledge and unlimited experience.

My gratitude to my advisory and examining committee, especially, Prof. Sunil

Prabhakar and Prof. Dongyan Xu for their constructive suggestions and informative

comments. My appreciation to Prof. Elisa Bertino, Prof. Mohamed Mokbel, Prof.

Ibrahim Kamel, and Dr. Mourad Ouzzani for their sincere collaboration in various

research projects.

I would like to convey my sincere thanks to the Database group at Microsoft

Research. Special thanks to Jonathan Goldstein for being a wonderful mentor during

my summer intern. I would like to thank Roger Barga for the friendly atmosphere

and the productive environment that I enjoyed while working with him. Many thanks

to Paul Larson and David Lomet for being a live example for me of how a perfect

researcher would be. I deeply thank Cesar Galindo-Legaria from the Microsoft SQL

iv

Server Group for his interest in my research and for his guidance during my job

search.

Special thanks are due to my colleagues who helped me a lot during my grad-

uate life. In particular, I would like to thank Mohamed Eltabakh, Hazem Elmele-

egy, Moustafa Hammad, Mohamed Elfeky, Hicham Elmongui, and Xiaopeng Xiong.

Many thanks to everyone in the Indiana Center for Database Systems (ICDS) group

at Purdue University.

I would never forget the support and kindness of my family. I will be always

grateful to my parents for everything they made for me in life. I thank my wife for

her support and patience. I would never forget the fun my kids gave to me during the

tough periods of my study. I thank everyone and I appreciate their effort, patience,

and support.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . ix

ABSTRACT . xii

1 Introduction . 1

1.1 Phenomena and their applications . 2

1.2 Motivation . 3

1.3 Platforms . 5

1.4 Contributions . 6

1.5 Organization of the Thesis . 8

2 Phenomenon-aware DSMSs . 10

2.1 Phenomenon Definition . 10

2.1.1 Similarity Notions . 12

2.1.2 Phenomenon Representative Behavior 12

2.2 Extended SQL Syntax . 14

2.2.1 Basic SQL Syntax for Data Streaming 15

2.2.2 Extended SQL Syntax for Phenomenon Awareness 17

2.3 The Architecture . 20

2.4 Phenomenon-aware Query Processing and Optimization 22

2.5 Experimental Setup . 24

2.6 Related Work . 25

2.7 Summary . 27

3 Detection and Tracking of Discrete Phenomena 29

3.1 Background and Motivation . 29

3.2 PDT SQL-Queries . 31

3.3 PDT Query Processing . 34

vi

Page

3.3.1 Phase I: The Grouping Phase 35

3.3.2 Phase II: The Joining Phase 36

3.3.3 Phase III: The Output Phase 36

3.4 Scalability Challenges . 37

3.5 Summary . 39

4 Preference-based Load Shedding in Phenomenon-aware DSMSs 41

4.1 Background and Motivation . 41

4.2 System Architecture . 44

4.3 Stream Summarization and Load Shedding 46

4.4 Experiments . 49

4.4.1 The Persistency Preference . 49

4.4.2 The Spread Preference . 51

4.4.3 The Time-Span Preference . 53

4.5 Related Work . 54

4.6 Summary . 55

5 Phenomenon Detection and Tracking using Variable-arity Joins 57

5.1 Background and Motivation . 57

5.2 Variable-arity Join . 60

5.2.1 Data Structures . 62

5.2.2 Variable-Arity Join Algorithm 63

5.2.3 Support for Multiple Window Sizes 64

5.2.4 Variable-arity Join Versus Outer Join 65

5.3 Mathematical Analysis . 66

5.4 Experimental Analysis . 68

5.4.1 Performance Analysis Using Real Data Sets 71

5.4.2 Performance Analysis Using Synthetic Data Sets 71

5.4.3 Comparison of the Analytical and the Experimental Results . 72

5.5 Related Work . 73

vii

Page

5.6 Summary . 75

6 Adaptive Phenomenon-aware Query Optimization 76

6.1 Background and Motivation . 76

6.2 System Architecture . 79

6.3 Phenomenon Indexing . 82

6.3.1 The Phenomenon-Index Structure 83

6.3.2 Maintaining the Phenomenon Index 84

6.3.3 Searching the Phenomenon Index 86

6.3.4 Queries with no Interesting Phenomena 88

6.4 Query Indexing . 89

6.5 Extensibility . 93

6.6 Experiments . 95

6.6.1 The Output Rate . 96

6.6.2 The System Resources . 102

6.6.3 System’s Tuning Parameters 103

6.7 Related Work . 103

6.8 Summary . 105

7 Phenomenon-aware Data Acquisition in a Sensor-network Platform 106

7.1 Background and Motivation . 106

7.2 Stream Spectrum and its Properties 109

7.2.1 Sensor Network Support Layer 110

7.2.2 Sensor-network Level Summarization 110

7.2.3 Definition of a Stream Spectrum 112

7.2.4 Global Stream Spectrum . 113

7.3 The SPASS Protocol . 116

7.4 The SPASS+ Protocol: An Adaptive Version of the Protocol 119

7.5 Experiments . 121

7.5.1 Scalability and Power Consumption 123

viii

Page

7.5.2 Cluster Size . 125

7.6 Related Work . 126

7.7 Summary . 128

8 Phenomenon Detection and Tracking in a Sensor-network Platform using
Relevance Feedback . 130

8.1 Background and Motivation . 130

8.2 Distributed Processing in SNJoin . 133

8.2.1 Early, Late and Out-of-order Arrival 134

8.3 Query Processing with Relevance Feedback 136

8.4 Mathematical Analysis . 138

8.5 Experiments . 139

8.6 Summary . 142

9 Conclusions and Future Work . 143

9.1 Summary of Contributions . 143

9.2 Future Extensions . 145

9.2.1 Detection and Tracking of Non-discrete Phenomena 145

9.2.2 Statistical PDT Techniques 146

9.2.3 Phenomenon-aware Query Plan Reorganization 147

LIST OF REFERENCES . 148

VITA . 155

ix

LIST OF FIGURES

Figure Page

2.1 The Nile PhenomenaBase Architecture. 21

2.2 The Nile PhenomenaBase sensor platform. 24

2.3 Snapshot of the visualization tool for the Nile PhenomenaBase simu-
lated setup . 26

3.1 PDT query plan . 32

3.2 PDT query processing phases . 35

3.3 Number of detected phenomenon updates 39

4.1 The architecture of the stream monitor. 45

4.2 Data flow in the stream summarization and load shedding process. . . 46

4.3 The effect of the persistency preference. 50

4.4 The effect of the spread preference. 52

4.5 The effect of the time span preference. 53

5.1 The VAJoin hash table. 61

5.2 The VAJoin algorithm. 63

5.3 Cost estimates of both MJoin and VAJoin. 66

5.4 Performance under real small-scale data sets. 69

5.5 Performance under synthetic large-scale data sets. 70

5.6 The effect of dynamic network configuration. 70

5.7 Parameter and Constant Values for the Comparison. 73

5.8 Comparison of Analytical and Experimental Output Delay for outer
MJoin and VAJoin. 74

5.9 Comparison among various multi-way join techniques. 75

6.1 The Architecture of a phenomenon-aware Optimizer. 80

6.2 The phenomenon index. 84

x

Figure Page

6.3 An algorithm to accommodate changes in queries’ interest. 85

6.4 An algorithm to optimize the parameter d. 88

6.5 The query index. 90

6.6 An example update in stream locations. 90

6.7 The combined phenomenon and query index. 91

6.8 Summary of updates to leaf and non-leaf nodes of the proposed indices. 92

6.9 The performance of phenomenon-aware optimizers with respect to the
output rate. 97

6.10 The performance of phenomenon-aware optimizers with respect to the
output delay. 98

6.11 The factors of output dropping in the optimized solution. 99

6.12 The effect of increasing the number of queries on the system resources. 100

6.13 The effect of increasing the number of streams on the system resources.101

6.14 The effect of varying the value of BTP. 104

7.1 Sensor network support layer. 108

7.2 Basic components of a sensor. 111

7.3 Individual sensor spectra versus a global sensor spectrum. 113

7.4 An example circular telescopic spectrum for four sensors. 117

7.5 The SPASS protocol at each sensor node. 119

7.6 The SPASS protocol at the cluster head. 120

7.7 The effect of the allowed bandwidth. 124

7.8 The effect of the stream average interarrival time. 124

7.9 The effect of the number of sensors. 125

7.10 The effect of cluster size on the internal paremeters of SPASS. 127

7.11 The effect of cluster size on the Hist-MSE. 127

8.1 The sensor platform. 131

8.2 The distributed SNJoin algorithm. 134

8.3 Processing of relevance feedback. 138

8.4 The effect of distributed query processing. 140

xi

8.5 The effect of relevance feedback. 141

xii

ABSTRACT

Mohamed H. Ali. Ph.D., Purdue University, May, 2007. Phenomenon-aware Data
Stream Management Systems. Major Professors: Walid G. Aref.

Recent advances in large scale data streaming technologies enabled the deploy-

ment of a huge number of streaming sources in the surrounding environment, e.g.,

sensor fields. Streaming sources do not live in isolation. Instead, close-by stream-

ing sources experience similar environmental conditions. Hence, close-by streaming

sources may indulge in a correlated behavior and generate a “phenomenon”. A

phenomenon is characterized by a group of streaming sources that show “similar be-

havior” over a period of time. Examples of detectable phenomena include pollution

clouds in the air, oil spills at the ocean surface, fire zones in a building, water floods

of a river, migration of birds, and epidemic spread of diseases. This dissertation pro-

poses a framework to detect, track, and query various forms of phenomena in data

streaming environments. This framework empowers data stream management sys-

tems (DSMSs) with phenomenon-awareness capabilities. Phenomenon-aware data

stream systems use high-level knowledge about phenomena in the data streaming

environment to optimize the execution of subsequent user queries.

To approach the above goal, this dissertation proposes the principle that “phe-

nomenon detection guides query processing” and explores this principle’s implica-

tions on DSMSs. Hence, user queries have the option to view the streaming envi-

ronment at a higher level, i.e., the phenomenon level. In such a phenomenon-aware

query processing paradigm, streams are prioritized and are processed based on a

mechanism that tunes query processing towards data streams that contribute to

detected phenomena.

xiii

This dissertation provides a formal definition for a phenomenon, models the phe-

nomenon behavior, and proposes an extended syntax that enables the users to reg-

ister their interesting phenomenon patterns with the system. Also, this dissertation

adopts the concept of phenomenon-aware query processing by adding two major com-

ponents to DSMSs: the Phenomenon Detection and Tracking module (PDT-module)

and the phenomenon-aware optimizer. The PDT-module encompasses scalable tech-

niques to detect the appearance of new phenomena and to track the propagation

of already-detected phenomena. The phenomenon-aware optimizer is an adaptive

optimizer that optimizes user queries continuously based on the feedback it receives

from the PDT-module. Finally, this dissertation considers phenomenon awareness at

the distributed setup of sensor networks by providing a phenomenon-aware data ac-

quisition protocol and by extending the phenomenon detection process to the sensor-

network platform. As a vehicle for this research, the Nile-PhenomenaBase system

is prototyped as a framework for phenomenon-aware query processing inside Nile, a

data stream management system developed at Purdue University.

1

1 INTRODUCTION

A large body of research in the database systems area focuses on handling massive

amounts of data that come from data streaming sources. The main goal is to pro-

vide efficient query processing techniques for stream data. However, emerging data

streaming applications call for new capabilities that are beyond traditional online

query processing techniques. Examples of these applications include surveillance [1],

object tracking [2], and environmental monitoring [3]. Mainly, these applications go

past simple data retrieval to show their evolving interest in data analysis and field

understanding.

In this research, we focus on extending data stream management systems

(DSMSs) with phenomenon-awareness capabilities as a step towards the understand-

ing of streaming environments. A phenomenon appears in a streaming environment if

a group of data streams show “similar behavior” over a period of time. Phenomenon-

aware DSMSs (or PhenomenaBases) are databases of phenomena that develop in the

streaming environment. In particular, phenomenon-aware DSMSs have two major

functions: First, phenomenon-aware DSMSs detect and track various forms of phe-

nomena in space. Second, phenomenon-aware DSMSs utilize the knowledge about

phenomena in the space to optimize the execution of subsequent user queries. Al-

though individual stream readings can be useful by themselves, phenomenon detec-

tion and tracking (PDT) exploits various notions of correlation among data streams

and provides a global view of the underlying environment. PDT does not only detect

phenomena once they appear but also tracks the propagation of detected phenom-

ena to continuously reflect the changes in the surrounding environmental conditions.

Given the knowledge about phenomena in the surrounding space, phenomenon-aware

optimizers bridge the gap between the low-level stream readings and the high-level

understanding of phenomena to answer user queries efficiently.

2

1.1 Phenomena and their applications

As a first step towards phenomenon awareness, we propose a high-level definition

of a phenomenon. A formal definition for the phenomenon is provided in Chapter 2.

Three parameters control the phenomenon definition: the persistency (α), the spread

(β), and the time span (w). The persistency of a phenomenon indicates that a certain

behavior should occur at least α times to qualify as a phenomenon. Reading a value

less than α times is considered noise, e.g., impurities that affect the readings of a

streaming source. The spread of a phenomenon is the number of streaming sources

that participate in this phenomenon. The time span w limits how far a streaming

source can be lagging in reporting a phenomenon. w can be viewed as a time-

tolerant parameter, given the common delays in a streaming environment. In the

light of these three parameters, a phenomenon can be defined as follows:

Definition 1.1.1 A phenomenon P takes place only when a set of at least β stream-

ing sources report similar reading values at least α times within a time window w.

Several applications benefit from the detection and tracking of various phenomena

in a streaming environment. Examples of these applications include:

1. Tracing pollutants in the environment, e.g., oil spills or gas leakage.

2. Reporting the excessive purchase of an item at different branches of a retail

store in a specific sales period.

3. Detecting computer worms that strike multiple computer sub-networks over a

certain period of time.

Notice that a phenomenon may or may not have spatial properties. The phe-

nomenon in the first example has spatial properties, where an oil spill is a contiguous

portion of the ocean surface. If a phenomenon has spatial properties, it is referred

to by the term cloud. Retail store applications may not have the notion of spa-

tial attributes, where retail stores can be spread arbitrarily in space. In the third

application, the notion of spatial distance is relative to the network connectivity.

3

To generalize the concept of phenomena, a stream source may be a physical device

(e.g., sensor) that acquires readings from the environment, (e.g., temperature, light,

humidity, or substance identifiers as in the first example) or a virtual sensor like

the cashier machine that reads item identifiers as in the second example. A stream

source may even be a piece of software that detects computer worms as in the third

example.

The benefits of phenomenon awareness span other application domains as well.

For example, the spread of epidemic diseases is an example phenomenon in the med-

ical domain. Triggering an alarm once excessive heating is detected in a building

is an interesting and time-critical phenomenon to firefighters. Migration of birds is

an environmental phenomenon that is detected through sensors in the nests of dif-

ferent bird species. Water floods and excessive rain are meteorological phenomena

of interest to many applications including emergency monitoring and air traffic con-

trol. Although phenomena appear across many domains, they all share the notion

of persistent similarity in the behavior of multiple stream sources over time.

1.2 Motivation

In this section, we identify five major points through which data streaming ap-

plications benefit from phenomenon awareness. These points can be summarized as

follows:

1. High-level description of the streaming environment. With the aid

of phenomenon detection and tracking (PDT) techniques, an application may

ask “what is going on in a streaming environment?” instead of asking “what

are the individual stream readings?” PDT techniques describe the underlying

streaming environment using a higher level of knowledge (e.g., report a fire

alarm instead of a bunch of high temperature readings).

2. Phenomenon-guided data acquisition. Data acquisition can be guided by

detected phenomena in the sense that we reduce the sampling rate of non-

4

interesting streaming sources (i.e., streaming sources that do not contribute to

any phenomena). Also, we reduce the sampling rate of streaming sources that

are (and will remain) involved in a phenomenon. Such streaming sources with

persistent phenomena are temporarily turned off with the assumption that

their phenomena will not disappear instantaneously. Streaming sources that

are on the boundaries of a phenomenon tend to be more interesting and are

likely to change their values quickly. We increase the sampling rate of boundary

data streams such that we capture the possible change in their state as quickly

as possible. Reducing the sampling rate of a streaming source will result in

a general reduction in the source’s energy consumed in sampling, processing,

and communication. Also, the processing load over the DSMS is reduced.

3. Data compression. Voluminous stream data can be compressed using PDT

techniques. Instead of maintaining the readings of each individual data stream,

we maintain phenomenon pairs (R, B), where R is the region that bounds a

phenomenon with a representative behavior B.

4. Prediction. Tracking a phenomenon and predicting its future trajectory fore-

sees the next state of the streaming environment. Based on the boundary of a

phenomenon and its trajectory, we can predict the future movement of various

phenomena in space. Consequently, safety measures are prepared in advance

and necessary actions are taken on time.

5. Phenomenon-guided query processing. Given a query and given a set of

phenomena, query processing can be guided to regions with phenomena that

are likely to satisfy the query predicates. Hence, the query space is reduced.

By maintaining all phenomena in the space and by indexing their contribut-

ing streaming sources, each query can be associated only with the streaming

sources that generate values of interest to this query.

5

1.3 Platforms

In this dissertation, we consider two platforms for DSMSs. The first platform

is the centralized setup where we have a single copy of the DSMS running on a

centralized server. The centralized DSMS receives the data stream readings at its

input buffer without taking into consideration the transmission medium between the

streaming sources and the server. The DSMS neither makes any assumption on the

processing capabilities of the streaming sources nor has the capability to control their

sampling rates.

In the second platform, we consider the distributed setup of sensor networks.

Due to the large number of emerging sensor-network applications, query processing

over sensor networks has been investigated, e.g., see [2, 4–9]. Sensors are devices

(usually wireless) that are capable of sensing, processing, and transmitting readings

from the environment to a sink node. The processing capabilities of the sensors are

usually limited while the sink node is a powerful node that is running a full-fledged

DSMS. Because sensors are usually deployed in places where it is either difficult or

dangerous for human beings to reach, e.g., habitat monitoring [3], battery life and

power consumption are crucial issues in sensor-network processing. Because wireless

transmission is a power-hungry operation, most of the sensor’s power is disseminated

in communicating with other sensors or with the sink node.

To reduce the communication cost, several techniques are proposed to configure

the network topology dynamically, e.g., the HEED protocol [10]. These techniques

exchange messages among sensors to acquire knowledge about their locations and

energy levels. Based on the acquired knowledge, sensors are grouped into clusters.

Within each cluster, a specific node, usually with a higher energy level, is desig-

nated to serve as the cluster head. A cluster head receives readings from its cluster

members and forwards them to the centralized DSMS, possibly through a multi-hop

route. Cluster heads communicate with each other to achieve a distributed query

processing at the senor-network level. Cluster heads may be recursively clustered

6

into a hierarchy of clusters such that each cluster head communicates with its cluster

members and forwards the cluster members’ readings to its parent. In our platform,

we assume one level of clusters where cluster heads are capable of communicating

with each other directly.

1.4 Contributions

To leverage DSMSs with phenomenon awareness, we carry out several contribu-

tions that touch various components of a DSMS. We summarize our contributions

as follows:

1. Formal Definition: We provide a formal definition for a phenomenon, iden-

tify the parameters that control the phenomenon definition, and model the

behavior of a phenomenon.

2. Query Language: We extend the SQL language with a phenomenon defini-

tion and manipulation language.

3. Architecture: We propose an architecture for phenomenon-aware DSMSs

that emphasizes the newly-added components and highlights the changes in

the already-existing components of the system.

4. Phenomenon Detection and Tracking (PDT): We introduce a framework

for the detection and tracking of phenomena. More specifically, we present the

following techniques:

(a) PDT using Multi-way Join: We provide a phenomenon detection and

tracking algorithm using a multi-way join operation and identify the scal-

ability challenges that face the multi-way join operation.

(b) PDT using Variable-arity Join: We develop a new join operator,

the variable-arity join operator, to handle several scalability problems in

multi-way joins.

7

(c) Load Shedding: We design a phenomena-guided load shedder to drop

tuples that do not participate in desirable phenomena. Desirable phe-

nomena are identified based on a set of preferences that are given by the

user.

5. Query Optimization: We present a new paradigm for efficient query pro-

cessing through an adaptive phenomenon-aware query optimizer.

6. Phenomenon-awareness in Sensor Networks: We address phenomenon

awareness in a sensor-network setup. More specifically, we propose the follow-

ing techniques:

(a) Data Acquisition: We introduce SPASS, a phenomenon-guided data

acquisition protocol over sensor networks. SPASS is a scalable and energy-

efficient protocol that acquires sensor data with high accuracy.

(b) In-network Query Processing: We make use of the in-network pro-

cessing capabilities of sensor networks to shift the join operation from the

centralized DSMS to the sensors’ level. Moreover, we propose a relevance

feedback mechanism to enhance the performance of the distributed join

operation.

The above contributions are materialized in the context of the Nile Phenom-

enaBase prototype system [11]. Nile PhenomenaBase is a phenomenon-aware DSMS

that is based on the Nile DSMS [12] developed at Purdue University. Inside Nile, the

components that are rewritten to support phenomenon awareness include the SQL

language parser, the data acquisition controller, the load shedder, the query plan

generator, and the query executer. The variable-arity join is added to the query

plan generator as new logical operator and, consequently, its corresponding physical

implementation is added to the query executer. Two new components are intro-

duced to Nile: the PDT module and the phenomenon-aware query optimizer. Based

on a prototype implementation, we demonstrate experimentally the efficiency and

8

the scalability of Nile PhenomenaBase. We support the experimental results with

mathematical verification wherever applicable.

1.5 Organization of the Thesis

The remainder of this dissertation is organized as follows. Chapter 2 provides

a formal definition for a phenomenon, extends the SQL syntax of DSMSs with

phenomenon definition/manipulation statements, and introduces the architecture

of phenomenon-aware DSMSs. As we stated earlier in this chapter, phenomenon-

aware DSMSs have two major tasks: (1) phenomenon detection and tracking (PDT)

and (2) phenomenon-aware query processing and optimization. Chapters 3 - 5 ad-

dress phenomenon detection and tracking. Chapter 3 discusses the phases of the

phenomenon detection and tracking process. To address scalability challenges in the

PDT process, Chapter 4 proposes a load shedding mechanism to drop tuples that

do not contribute to desirable phenomena before they get into the PDT query pro-

cessing pipeline. Chapter 5 introduces a new join operator, the variable-arity join

operator, to address the same scalability challenges inside the PDT query processing

pipeline. Chapter 6 addresses phenomenon-aware query processing and optimization

in DSMSs.

While Chapters 2 - 6 focus on a centralized DSMS setup, Chapters 7 and 8 ad-

dress phenomenon awareness in a sensor-network platform. Chapter 7 proposes a

phenomenon-aware data acquisition protocol over sensor networks. Chapter 8 ex-

tends the variable-arity join operation to the sensor-network platform where it uti-

lizes in-network query processing capabilities. Chapter 9 concludes the dissertation

and provides directions for future work.

Parts of this dissertation have been published in workshops, conferences, and jour-

nals. The basic data streaming functionalities of the Nile DSMS are demonstrated in

ICDE-2004 [12]. The phenomenon detection and tracking techniques are published in

SSDBM-2005 [13] and SSDBM-2006 [14] and are demonstrated in VLDB-2005 [15].

9

The phenomenon-aware query optimizer is published in MDM-2007 [16]. The data

acquisition protocol is published in MobiDE-2005 [17]. An overview of the Nile Phe-

nomenaBase system is published in the EDBT Ph.D. Workshop [11] and is extended

in the LNCS journal [18].

10

2 PHENOMENON-AWARE DSMSS

In this chapter, we provide a formal definition for the phenomenon and explore the

parameters that control the phenomenon definition. Based on the phenomenon def-

inition, we investigate several notions of similarity among streams’ behavior and

model the phenomenon overall behavior. To deal with various types of phenomena

inside a DSMS, we extend the SQL syntax with a phenomenon definition and ma-

nipulation language. The phenomenon definition and manipulation language enables

the user to register a set of interesting phenomenon patterns in the system and to

interact with the detected phenomena later on. Then, we provide an architecture for

phenomenon-aware DSMSs that can support the proposed extended syntax. We also

highlight the basic idea behind the concept of phenomenon-aware query processing

and optimization. Finally, we discuss the Nile PhenomenaBase experimental setups

as our testbed for all the experiments that are conducted in the following chapters.

This chapter is organized as follows. Section 2.1 introduces a phenomenon def-

inition and models the phenomenon behavior. Section 2.2 presents the extended

SQL syntax. Section 2.3 discusses the proposed architecture. Section 2.4 highlights

the idea of phenomenon-aware query processing and optimization. Section 2.5 ex-

plains the experimental setups. Section 2.6 overviews related work while Section 2.7

summarizes this chapter.

2.1 Phenomenon Definition

In Section 1.1, we defined a phenomenon P as a set of at least β streaming

sources that report similar reading values at least α times within a time window

w. In this section, we provide a formal definition for the phenomenon and discuss

its parameters. Definition 2.1.1 defines a phenomenon at time instant τ to be an

11

R-B pair. R is a list of the streaming sources that contribute to the phenomenon

and B is a representative behavior for the phenomenon over a sliding window of

size ω. Notice that the phenomenon behavior is captured over a window of size

ω to avoid the noise in the stream readings and to accommodate various sources

of delay in the streaming environment. ω is defined to be the time span of the

phenomenon. Each streaming source Si contributes to the phenomenon (i.e., Si ∈ R)

if it exhibits (over the most recent time window of size ω) similarity with the other

streaming sources that contribute to the phenomenon overall behavior at least α

times (Count(V alue(Si[τ̂]) ∈ Bω) ≥ α). α is defined to be the persistency threshold

of the phenomenon because it indicates how many times the streaming source has to

persist in contributing to the phenomenon. In order for a set of streaming sources R

to qualify as a phenomenon, the number of streaming sources in this set is required

to reach a minimum threshold (||R|| ≥ β). β is defined to be the spread threshold

of the phenomenon. If the number of streaming sources is less than β, these sources

are ignored and are not reported as a phenomenon.

Definition 2.1.1 A phenomenon P at time instant τ is a binary tuple (R ,Bω),

where R is a list of the streaming sources with similar behavior and Bω is the overall

representative behavior of phenomenon P over the most recent time window of size

ω, such that ∀Si ∈ R, Count(V alue(Si[τ̂]) ∈ Bω) ≥ α, τ̂ ∈ [τ − ω + 1 · · · τ] and

||R|| ≥ β.

Based on Definition 2.1.1, notice that the detection of a phenomenon is controlled

by three parameters: α, β, and ω. α places a constraint on the frequency of the

stream readings that constitute the phenomenon while β and ω place the spatial

and the temporal constraints of the phenomenon. The phenomenon is identified by

a list of streaming sources (R) with similar behavior and a representative behavior

(Bω). The phenomenon representative behavior Bω captures the overall phenomenon

behavior and is calculated using a summarization function over all the streaming

sources in R. The remainder of this section details the proposed notions of similarity

12

among stream’s behaviors (Section 2.1.1) and gives possible representations for the

phenomenon overall behavior Bω (Section 2.1.2).

2.1.1 Similarity Notions

Various notions of similarity among the streams’ behavior control the way a

phenomenon is detected. Examples of these similarity notions can be summarized

as follows:

1. Equality, where similarity is simply reduced to equality. Two values v1 and

v2 are considered similar if v1 = v2.

2. Distance similarity, where similarity is assessed based on a distance function

“dist”. Two values v1 and v2 are considered similar if dist(v1, v2) ≤ D.

3. Summary similarity, where we extract summaries from the stream data

(e.g., histograms, count sketches, or user-defined summaries) that capture the

streams’ behavior over a window of time. Similarity is assessed based on the

distance between the summaries, i.e., dist(Fn1(v1), Fn2(v2)) ≤ D, where Fn1

and Fn2 are summarization functions.

4. Trend similarity, where the increase/decrease in one stream readings implies

the increase/decrease of another stream’s readings. Generally, the change in

the readings of one stream is related to the change in the other stream’s read-

ings by a correlation function F (i.e., v1 = F (v2)). For example, the increase

in the readings of smoke detectors is usually accompanied by an increase in

the readings of temperature sensors in case of a fire.

2.1.2 Phenomenon Representative Behavior

The phenomenon representative behavior expresses the overall phenomenon be-

havior and captures the content values of the phenomenon underlying data streams.

13

The similarity notion among the streams’ behavior (as explained in Section 2.1.1)

decides on how the phenomenon representative behavior is calculated. For example,

if we reduce the similarity notion to equality, the phenomenon representative be-

havior is simply the value that is generated by the phenomenon underlying streams

(Equation 2.1).

Bw = Si[τ̂], ∀Si ∈ R, τ̂ ∈ [τ − ω + 1 · · · τ] (2.1)

In case of distance similarity, we propose several ways to express the phenomenon

representative behavior. First, we represent a phenomenon behavior by the average

value of the streams contributing to the phenomenon. This behavior representation

is obtained using Equation 2.2. The average value of each stream is obtained over

the most recent window ω, then, the average over all streams is considered to be the

behavior representation.

Bw = Avgi(Avgτ
τ̂=τ−ω+1 Si[τ̂]), ∀Si ∈ R (2.2)

Second, a phenomenon behavior can be summarized and represented by the

k most frequent elements across its underlying data streams (i.e., top-k vector),

e.g., [19]. As in Definition 2.1.2, the top-k vector contains a subset of k elements

such that the count of all elements in the top-k vector is equal or greater than the

count of all other elements. In contrast to representing the phenomenon by a single

value, the top-k vector provides a more accurate representation of a phenomenon

behavior.

Definition 2.1.2 Given a set of elements E, the top-k vector Etopk is a subset of

elements such that Count(ei) ≥ Count(ej), where ei, ej ∈ E, ei ∈ Etopk, ej 6∈ Etopk,

and |Etopk| = k.

Third, a phenomenon behavior can be represented using a histogram of its un-

derlying values. Histograms represent the item values in a data set along with their

frequencies in a compact form with high accuracy. Histograms and top-k vectors,

14

similar to other summarization methods, are capable of capturing the intrinsic be-

havior of a phenomenon.

If the similarity notion among streams’ behaviors is chosen to be a summary

similarity, the overall phenomenon behavior can be calculated as an extra summa-

rization level or as an addition of the streams’ individual summaries. For example,

histograms and top-k vectors are additive. If we have two data streams, each one of

them is summarized using a histogram or a top-k vector, the two histograms/top-k

vectors can be added together to obtain the histogram/top-k vector that represents

the combined data of the two data streams [19].

Finally, for trend similarity, we do not only maintain a summary of the stream

values but we also keep track of the parameters of the correlation function f . Given

the reading values of a stream Si, we can get a sense of the reading values of stream

Sj if Sj[τ̂
′] = F (Si[τ̂]) (and |τ̂ − τ̂ ′| ≤ ω). For example, in case of linear correlation

among stream sources, we maintain the parameters a and b of the correlation function

Sj [τ̂
′] = a× Si[τ̂] + b.

Phenomena that are detected using the equality notion of similarity are termed

discrete phenomena. Discrete phenomena are suitable for stream readings that are

drawn from a discrete domain or that are drawn from a continuous domain but

the readings are quantized by the sensing devices into discrete intervals. Unless

mentioned otherwise, we limit the scope of this dissertation to the equality notion

of similarity and we study the effect of discrete phenomenon awareness on various

components of the DSMS.

2.2 Extended SQL Syntax

In a phenomenon-aware DSMS, an extended SQL syntax gives the user the ability

to register a phenomenon definition of interest, to list the detected phenomena,

and to pose queries against the detected phenomena. In this chapter, we overview

the basic SQL statements of a DSMS (Section 2.2.1) and describe the extended

15

syntax for phenomenon awareness (Section 2.2.2) . More specifically, we use the

Nile PhenomenaBase syntax as a vehicle to describe the semantics of the proposed

syntactic constructs.

2.2.1 Basic SQL Syntax for Data Streaming

Similar to the create-table statement in traditional database management sys-

tems, Nile has a create stream statement. Q 2.2.1 gives the general form of the

create-stream statement. The create-stream statement declares the expected schema

of the incoming stream tuples. The stream tuples can be acquired either from a text

data file or from a network port. Example 2.2.1 creates a data stream with a stream

name of “EntranceSensor”. The schema of the created stream is a pair of integer

data types: one for the temperature and one for the humidity. The stream tuples

are received at the network IP:128.10.9.155 port: 5600.

Q 2.2.1 CREATE STREAM <stream-name>

(· · · <schema> · · ·)
FROM [<file-name> | <data-port>];

Example 2.2.1 CREATE STREAM EntranceSensor

(int Temperature,

int Humidity)

FROM IP:128.10.9.155 PORT 5600;

If we have a huge number of streaming sources, it becomes a tedious process

to register each stream source individually in the DSMS. The create-stream-bundle

statement allows a bundle or an array of streams to be registered at once. The

create-stream-bundle statement has the same syntax as the create-stream statement

except that it takes the size of the expected stream array. Q 2.2.2 gives the general

form of the create-stream-bundle statement while Example 2.2.2 creates a stream

bundle for 200 temperature-humidity sensors. To refer to the stream tuples that are

16

coming from all the data streams in the bundle, we use the bundle name (e.g., SB).

We use the subscript notation (e.g., SB[i]) to refer to an individual data stream in

the bundle.

Q 2.2.2 CREATE STREAM BUNDLE <stream-bundle-name> [size]

(· · · <schema> · · ·)
FROM [<file-name> | <data-port>];

Example 2.2.2 CREATE STREAM BUNDLE SB[200]

(int Temperature,

int Humidity)

FROM IP:128.10.9.155 PORT 5600;

Queries can be posed against a data stream or against a stream bundle using

the select-from-stream and the select-from-stream-bundle statements, respectively.

Q 2.2.3 and Q 2.2.4 present the general form of the select-from-stream and the

select-from-stream-bundle statements while Example 2.2.3 and Example 2.2.4 give

the corresponding examples. Notice that the select-from-stream-bundle statement

retrieves tuples that satisfy the query predicates from the union of all individual

streams in the bundle. The SB.id attribute is a bundle-defined attribute that can

be used inside the select statement to refer to the identifier of the stream that issues

the tuple.

Q 2.2.3 SELECT · · ·
FROM STREAM · · ·
WHERE · · ·
WINDOW · · · ;

Example 2.2.3 SELECT EnteranceSensor.Temperature

FROM STREAM EnteranceSensor

WHERE EnteranceSensor.Humidity>30

WINDOW 60;

17

Q 2.2.4 SELECT · · ·
FROM STREAM BUNDLE · · ·
WHERE · · ·
WINDOW · · · ;

Example 2.2.4 SELECT SB.id, SB.Temperature

FROM STREAM BUNDLE SB

WHERE SB.Humidity>30

WINDOW 60;

2.2.2 Extended SQL Syntax for Phenomenon Awareness

The create-phenomenon statement defines a phenomenon pattern with a user-

specified name over a system-registered stream bundle. Q 2.2.5 gives the general form

of the create-phenomenon statement. The create-phenomenon statement defines a

pattern of interest. The pattern clause states how two streams in the bundle share

a similar behavior, i.e., Fn1(SB[i]) is correlated to Fn2(SB[j]) under a correlation

function REL, where Fn1 and Fn2 are user-defined functions. Also, the create-

phenomenon statement puts thresholds on the phenomenon persistency, spread, and

time span parameters. The phenomenon persistency needs to be greater than or

equal to α, the phenomenon spread needs to be greater than or equal to β, and

the phenomenon should be detected over a time span that is less than or equal to

ω. Finally, the where clause specifies a set of predicates that are applied on each

data stream in the bundle to include/exclude tuples from being considered in the

phenomenon detection process.

Q 2.2.5 CREATE PHENOMENON <phenomenon-name>

ON STREAM BUNDLE <stream-bundle-name>

PATTERN Fn1(SB[i]) REL Fn2(SB[j])

PERSISTENCY α

18

SPREAD β

TIME SPAN ω

WHERE <other conditions>;

Example 2.2.5 gives an example of a phenomenon definition that is interested in

heat zones. Heat zones are temperature zones such that the temperature readings are

greater than 90 (to be considered heat). In each zone, a stream reading should not be

more than 3 degrees apart from other stream’s readings to be considered as showing

similarity in behavior. Each data stream should participate in the heat behavior at

least 5 times to declare its persistency. A heat zone has a minimum size of 4 data

streams. The behavior of the phenomenon is tracked over the most recent time win-

dow of size one minute (60 seconds). Notice that the create-phenomenon statement

registers a phenomenon pattern in the system under which multiple phenomena are

detected. For example, multiple heat zones can be detected; each heat zone has

similarity in the behavior of its contributing data streams and, meanwhile, each heat

zone has an overall behavior that is different from other heat zones’ behaviors.

Example 2.2.5 CREATE PHENOMENON HeatZones

ON STREAM BUNDLE SB

PATTERN |SB[i].T emperature− SB[j].T emperature| ≤ 3

PERSISTENCY 5

SPREAD 4

TIME SPAN 60

WHERE SB.Temperature > 90;

Under heavy load conditions, the DSMS becomes incapable of detecting all phe-

nomena that develop in the environment. Instead of dropping tuples and, conse-

quently, dropping phenomena randomly out of the system, we extend the create-

phenomenon statement with a with-preference clause that indicates the user’s pref-

erence of which phenomena to keep in the system. Consider a phenomenon with

persistency, spread, and time span parameters of α̂, β̂, and ω̂, respectively such that

19

α̂ ≥ α, β̂ ≥ β, and ω̂ ≤ ω. The user may have preference either towards persistent

phenomena (large α̂) or towards intermittent phenomena (small α̂). The asc/desc

specifier selects the ordering in which the phenomena are prioritized inside the sys-

tem. Similarly, the user may have preference either towards stretch phenomena (large

β̂) or towards confined phenomena (small β̂). Finally, the user may have preference

either towards durable phenomena (large ω̂) or towards impulse phenomena (small

ω̂). Q 2.2.6 gives the general form of the with-preference clause.

Q 2.2.6 CREATE PHENOMENON <phenomenon-name>

ON STREAM BUNDLE <stream-bundle-name>

PATTERN Fn1(SB[i]) REL Fn2(SB[j])

PERSISTENCY α

SPREAD β

TIME SPAN ω

WHERE <other conditions>

WITH [asc | desc] PREFERENCE IN

[PERSISTENCY | SPREAD | TIME SPAN];

After the user registers a phenomenon pattern in the system, the user can issue

a list-phenomena statement to query the system about detected phenomena. The

syntax of the list-phenomena statement is given in Q 2.2.7. The system displays the

list of detected phenomena in response to the list-phenomena statement by associ-

ating a phenomenon identifier with each phenomenon. Then, the system lists each

phenomenon identifier, the streaming sources that contribute to this phenomenon,

and the phenomenon representative behavior. Moreover, the user has the option to

pose his subsequent queries against a set of phenomena through the select-within-

phenomena statement. The select-within-phenomena statement limits the execution

of the query to the streaming sources that contribute to the user-given list of phe-

nomenon identifiers (list-of-ph-ids) as shown in Q 2.2.8.

Q 2.2.7 LIST PHENOMENA;

20

Q 2.2.8 SELECT · · ·
FROM · · ·
WHERE · · ·
WITHIN PHENOMENA <list-of-ph-ids>;

The “select-within-phenomena *” query (as given in Q 2.2.9) is a variation of

the “select-within-phenomena <list-of-ph-ids>” query where the query execution is

limited to the streaming sources that contribute to any phenomenon. If the streaming

source is not contributing to any phenomenon, it is considered as noise and is not

included in the query answer. More interestingly, the “select-within-phenomena”

query gives a wide room for optimization. A smart optimizer makes use of the

knowledge about phenomena in the space to guide the query to phenomena (and

only to phenomena) that are likely to satisfy the query predicates. Phenomenon-

aware query optimizers are discussed in detailed in Chapter 6.

Q 2.2.9 SELECT · · ·
FROM · · ·
WHERE · · ·
WITHIN PHENOMENA *;

2.3 The Architecture

In this section, we examine the basic components of a DSMS and discuss the new

components that we add for phenomenon awareness. We focus on the Nile Phenom-

enaBase architecture as our prototype system for this research. Figure 2.1 shows

the architecture of Nile PhenomenaBase. Nile [12] provides the basic data streaming

functionality for Nile PhenomenaBase. In other words, Nile PhenomenaBase extends

Nile with the phenomenon-awareness capabilities.

The basic components of Nile are the stream admission controller, the query

admission controller, the stream monitor, the query plan generator, and the query

21

Stream
Manager Query Processor

Query

Stream
Monitor

Query Admission
Controller

Stream
Admission
Controller

Query Plan
Generator

Data Streams

Ph. aware
Feedback

Nile PhenomenaBase

Stream
Definition

Query Executer
Query
Result

Stream
Readings

Phenomenon
Definition

PDT
Query

PDT
Module

Phenomenon-aware

Optimizer
Stream

Manager Query Processor

Query

Stream
Monitor

Query Admission
Controller

Stream
Admission
Controller

Query Plan
Generator

Data Streams

Ph. aware
Feedback

Nile PhenomenaBase

Stream
Definition

Query Executer
Query
Result

Stream
Readings

Phenomenon
Definition

Phenomenon
Definition

PDT
Query
PDT

Query
PDT

Module
Phenomenon-aware

Optimizer

Figure 2.1. The Nile PhenomenaBase Architecture.

executer. The stream admission controller and the query admission controller decide

on the admission of new data streams and new queries, respectively, based on sys-

tem resources. The stream admission controller processes the “CREATE STREAM”

and the “CREATE STREAM BUNDLE” statements. The query admission con-

troller processes the “SELECT · · · FROM STREAM” and the “SELECT · · · FROM

STREAM BUNDLE” statements. Nile has a stream monitor component to monitor

streams as they join, leave, and change their location in the environment (in case

of mobile streaming sources). The stream monitor is also responsible for receiving

the stream data and for pushing this stream data inside the system’s input buffers.

The query plan generator generates corresponding query plans for the queries that

are admitted into the system by the query admission controller. The query exe-

cuter executes the generated query plans over the incoming data stream tuples and,

meanwhile, streams the output result back to the user.

We adopt the concept of phenomenon-aware query processing inside Nile by

adding two major components: the Phenomenon Detection and Tracking module

22

(PDT-module) and the phenomenon-aware optimizer. The PDT-module detects the

appearance of new phenomena and tracks the propagation of already-detected phe-

nomena. The PDT-module processes the “CREATE PHENOMENON” statement by

converting the create-phenomenon statement into a continuous query (called, PDT

query) that is shipped to the query executer. The PDT query detects the similarity

pattern that is defined in the create-phenomenon statement and continuously tracks

any changes in the streaming sources that contribute to this pattern. The output

of the PDT query is streamed back to the PDT module to keep track of existing

phenomena in the system.

The phenomenon-aware optimizer optimizes user queries based on the feedback

it receives from the PDT-module. The phenomenon-aware optimizer processes the

“SELECT · · · WITHIN PHENOMENON” statement by guiding query processing to

the query’s interesting phenomena. The phenomenon-aware optimizer is connected

to both the query plan generator and to the query executer. Both the query plan

generation and the query execution phases can be altered by the phenomenon-aware

optimizer. In this dissertation, we focus on the effect of the phenomenon-aware op-

timizer on the query execution phase. The query execution phase is a continuous

process that lasts as long as the continuous query is registered in the system. Hence,

the phenomenon-aware optimizer continuously guides the query to interesting phe-

nomena and adaptively adjusts itself based on the continuous feedback it gets from

the PDT-module. Various components of the Nile PhenomenaBase architecture are

detailed throughout the chapters of this dissertation.

2.4 Phenomenon-aware Query Processing and Optimization

By looking at existing phenomena within the streaming sources, the query pro-

cessor will have a fine-resolution view over all the streams. Based on this fine view,

the query optimizer decides which phenomena need to be investigated to answer a

specific query. Initially, a user expresses in the extended SQL language the definition

23

of the phenomenon patterns that the user is interested in. Consequently, the system

would detect and track all the phenomena of interest. User queries operate on the

detected phenomena as well as on the raw stream readings. Hence, user queries

have the option to view the streaming environment at a higher level, i.e., the phe-

nomenon level. In such a phenomenon-aware query processing paradigm, streams

are prioritized and are processed based on a mechanism that tunes query processing

towards data streams that contribute to detected phenomena. Data streams that do

not contribute to any phenomena are considered outliers and are not included in the

query answer.

The main idea is to let the DSMS observe the input data streams at the phe-

nomenon level. Then, each incoming user query is directed only to those phenomenon

regions that are likely to satisfy the query predicates. More specifically, each incom-

ing continuous query is directed only to the phenomenon underlying data streams

that participate in the query answer. Detected phenomena act as an indexing scheme

that direct the execution of continuous queries to only those streaming sources that

can contribute to the query answer.

The phenomenon-aware query optimizer achieves a trade-off between the number

of phenomena (and their underlying streaming sources) that participate in the query

execution and the accuracy of that query. As a result of such phenomenon-guided

query processing, the search space is optimized and is reduced to the phenomena that

are likely to participate in the query answer. For example, given the heat zones that

are detected by the phenomenon definition in Example 2.2.5, and given a user query

that filters the sensor data based on a temperature predicate, the query processor

limits its attention only to the heat zones that satisfy the query predicate.

24

Figure 2.2. The Nile PhenomenaBase sensor platform.

2.5 Experimental Setup

We base our study on two experimental setups from the Nile PhenomenaBase

system [15]. The first setup is a real small-scale sensor board1 with a grid of 5 × 5

temperature sensors (Figure 2.2). Due to hardware limitations, the number of sensors

is limited to 25. However, we overload the system by increasing the sampling rate

of each sensor. The sensor nodes stream their data to a centralized server running

Nile PhenomenaBase through a wired connection. The processing capabilities of

the sensor board are limited to controlling the sensors’ sampling rates. The sensor

board accepts control signals from the Nile PhenomenaBase and adjusts the sensors’

sampling rates accordingly. We generate phenomena by moving a heat effect back

and forth over the sensor board. Details about the hardware of the sensor board can

be found in [20].

The second setup simulates a larger scale streaming environment (up to 2000

streaming sources). Simulation gives us both the flexibility to have a large-scale

setup and the ability to control the processing capabilities of each streaming source.

The number of generated values, the distribution of the generated stream values,

1The sensor board is designed and implemented in collaboration with the Mobile and Pervasive
Computing Laboratory, University of Florida.

25

and the interarrival time between consecutive tuples can be tuned to adjust the re-

quired system load. The default parameters of the simulated setup are as follows.

Each streaming source generates a stream of 10, 000 tuples where the tuple values

follow the Zipfian distribution [21]. For each stream, the Zipfian parameter is an

integer value chosen randomly between 1 and 5. The inter-arrival time between two

consecutive tuples coming from the same source follows the exponential distribu-

tion with an average of 1 second. To generate phenomena, streaming sources are

grouped and each group is assigned the same parameter of the Zipfian distribution

but with different seeds to generate (and to persist in generating) close by values.

The persistency of a generated phenomenon is proportional to the inter-arrival time

between consecutive tuples. To model the spread of a phenomenon, the number of

streaming sources in each group is a random number that ranges from 0% to 10%

of the total number of sources. A streaming source may participate in more than

one phenomenon. The rate at which a phenomenon is formed is exponentially dis-

tributed with an average interarrival of 10% of the total experiment time to model

the appearance of a phenomenon. To model the time span of a phenomenon, the

duration of each phenomenon is another number that randomly ranges from 0% to

10% of the total experiment time. To model phenomenon movement, each time unit,

a random action is selected among shrink, grow, move, and do nothing. The direction

and the size of each action are decided such that the direction is randomly chosen

as one of the eight basic directions (E, W, N, S, NE, NW, SE, and SW) and the

increase/decrease in size is randomly chosen with a limit of 10% of the phenomenon

size. Figure 2.3 illustrates a snapshot of the visualization tool for simulated setup.

2.6 Related Work

The research focus of the data streaming area has been directed to processing con-

tinuous queries over data streams that are generated by mobile objects, e.g., [22–26]

and to track these objects as they roam the surrounding space. In our research,

26

Figure 2.3. Snapshot of the visualization tool for the Nile Phenom-
enaBase simulated setup

we provide a framework to detect and track phenomena that span a bundle of data

streams inside a DSMS instead of tracking a single object. Examples of tracking

moving objects include the Wjoin operator, a window join operator over multiple

streaming sources. [2] employs the Wjoin operator for the purpose of tracking moving

objects in a sensor field. To optimize for the object tracking process, [27] reconfigures

the tree-like communication structure of a sensor network dynamically. As sensors

get closer to the moving object, they are moved towards the root of the commu-

nication tree to reduce the number of hops between the sensor and the sink. A

prediction-based strategy is also proposed in [28] to reduce the power consumption

of the sensor network by focusing on regions where moving objects are likely to

appear.

The concept of a phenomenon has been addressed in the literature, yet, under

different terminologies, e.g., homogenous regions, isobars, and moving clusters. De-

tection of boundaries that separate homogeneous regions of sensors is investigated

in [29]. In [30], streams of sensor data that have approximately the same value are

27

grouped into continuous regions called isobars. Given a database of object trajec-

tories, [31] refers to a set of objects that move close to each other over a period of

time as a moving cluster. Our definition of a phenomenon enriches the concept of

a phenomenon by spatiotemporal constraints through the persistency, the spread,

and the time span parameters. Also, our definition of a phenomenon encompasses

several notions of similarity among the phenomenon underlying data streams.

From a system’s point of view, Nile PhenomenaBase is a phenomenon-based query

processing system. Similarly, the Complex Event Detection and Response (CEDR)

system [32] is an event-based system. The concept of event shares similarity with the

concept of phenomenon and is defined to be a sequence of stream tuples with spatial

and temporal constraints. CEDR proposes an event detection language that has a

where clause and a when clause to express the spatial and the temporal constraints

of an event, respectively. The focus of CEDR is to detect complex events, i.e., events

that are composed of other events, and to provide consistency guarantees on the out-

put. Consistency guarantees trade the stability of the output versus the output delay.

Several differences distinguish between Nile PhenomenaBase and CEDR. The CEDR

event does not have the notion of persistency in the event definition. Also, CEDR

events are stationary. Once an event is detected there is no notion of event tracking.

While CEDR focuses on consistency guarantees, Nile PhenomenaBase works on a

best-effort basis and does not provide consistency guarantees on the output. On the

other hand, the focus of Nile PhenomenaBase goes beyond phenomenon detection

to the level of phenomenon-guided query optimization.

2.7 Summary

In this chapter, we provided a formal definition for the phenomenon. Three

parameters control the phenomenon definition: the persistency α, the spread β, and

the time span ω. Also, various similarity notions among streams’ behaviors affect

the way a phenomenon is detected. Examples of these similarity notions include

28

equality, distance similarity, summary similarity, and trend similarity. In addition,

we presented several models that capture the overall phenomenon representative

behavior.

This chapter introduced the extended SQL syntax of the Nile PhenomenaBase

prototype system, its architecture, and its experimental setups. To support phe-

nomenon awareness inside Nile, various components of the system are modified, e.g.,

the parser, the load shedder, the query plan generator, and the query executer.

Moreover, a PDT-module and a phenomenon-aware optimizer are added and are

connected to existing components of the system. Nile PhenomenaBase adopts the

principle of phenomenon-aware query processing and utilizes the detected phenom-

ena to guide the execution of subsequent user queries. Nile PhenomenaBase has both

a real small-scale sensor board and a simulated large-scale data streaming setup as

its experimental testbeds.

29

3 DETECTION AND TRACKING OF DISCRETE PHENOMENA

This chapter introduces a framework for Phenomena Detection and Tracking (PDT,

for short) in DSMSs. We focus on discrete phenomena where stream readings are

drawn from a discrete set of values, e.g., item numbers or pollutant IDs. Our pro-

posed PDT framework accepts a phenomenon definition and converts that definition

to a continuous SQL query (called a PDT query). PDT queries are continuously

executed by the query executer to detect and track phenomena as they appear in

the environment. The challenge for the proposed PDT framework is to detect as

much phenomena as possible, given the large number of data streams, the overall

high arrival rates of stream data, and the limited system resources. Experimental

studies illustrate the scalability challenges that face PDT techniques and provide

room for further optimizations that will be addressed in the following chapters.

3.1 Background and Motivation

As illustrated in Figure 2.1, the PDT-module takes a phenomenon definition

from the user as its input. Then, the PDT-module takes the responsibility of pro-

cessing the phenomenon definition to detect the phenomena that satisfy the defined

phenomenon pattern. The PDT-module converts the phenomenon definition into a

continuous query (called PDT query) and dispatches this query to the query exe-

cuter. The execution of the PDT query detects phenomena in the incoming data

streams and tracks the propagation of these phenomena once the PDT query is dis-

patched to the query executer. In this chapter, we present a typical phenomenon

definition along with its corresponding PDT query. Then, we propose a framework

for the execution of the PDT query. For simplicity, we consider only the equality

30

notion of similarity among streams’ behavior that results in discrete phenomena and,

consequently, the join operation reduces to an equality join.

In general, the proposed phenomena detection and tracking (PDT) framework

has three phases: the grouping phase, the joining phase, and the output phase. The

grouping phase takes the raw data from the streaming sources as its input and groups

each stream readings based on value. The number of tuples in a group represents the

stream’s persistency (α̂) for a specific value. Persistent stream values (i.e., α̂ ≥ α) are

reported in the output of the grouping phase and are processed by the joining phase.

The joining phase takes the persistent stream readings as its input and produces

as output a set of join tuples with data stream IDs that have similar values. The

joining phase is a multi-way join operation that spans the data streams that are

monitored by the create-phenomenon statement. The output of the join operator

is tested against the desired spread to ensure that the actual number of joining

streams (β̂) is above the spread threshold (i.e., β̂ ≥ β). Join output tuples that

satisfy the desired spread are denoted as phenomenon candidates and are passed

to the output phase. Finally, the output phase constructs the overall phenomenon

from the candidate join tuples that are produced by the joining phase. To avoid

the infiniteness of incoming data streams, all the operations are based on window

operators such that the window size is equivalent to the time span threshold that is

specified in the phenomenon definition (ω).

The contributions of this chapter can be summarized as follows:

1. We express the phenomenon definition as a continuous SQL query that is ex-

ecuted by the query processor to detect phenomena and to continuously track

their propagation.

2. We propose a three-phase framework for phenomena detection and tracking

that adheres to the phenomenon definition.

3. We investigate the scalability challenges that face the proposed framework and

provide, based on a prototype implementation inside Nile PhenomenaBase, an

31

experimental study that illustrates the performance of the PDT framework

with multi-way joins.

The remainder of this chapter is organized as follows: The PDT continuous

queries that initiate the processing of the PDT framework are presented in Sec-

tion 3.2. Section 3.3 introduces the three phases of the proposed PDT framework.

Section 3.4 discusses the scalability challenges that face the proposed PDT frame-

work and illustrates these scalability challenges by an experimental evidence. Finally,

Section 3.5 summarizes the chapter.

3.2 PDT SQL-Queries

In this section, we discuss how the PDT-module converts a phenomenon definition

(as shown in Q 3.2.1) into a continuous query (i.e., a PDT query) that is responsible

for the detection and tracking of phenomena as they develop in the field. The PDT

query is given in Q 3.2.2 and its corresponding query plan is shown in Figure 3.1.

A window operator is inserted at the bottom of the query plan to limit the query

processor’s attention to the most recent time window of size ω. The window operator

promotes the concept of the positive and negative tuples [33] that is adopted by the

Nile system. The window operator passes an incoming input tuple up the query plan

as a positive tuple. After the elapse of ω time units, the window operator generates

a corresponding negative tuple and propagates it up the query plan to denote its

expiration and to undo its effect from the output. Performing the query processing

over a window of size ω limits the phenomenon actual time span to ω̂ such that

ω̂ ≤ ω.

Q 3.2.1 CREATE PHENOMENON <phenomenon-name>

ON STREAM BUNDLE <stream-bundle-name>

PATTERN SB[i] = SB[j]

PERSISTENCY α

SPREAD β

32

 o

σ

Gvalue

σ
count(*)>α

SB[1]

σ

Gvalue

σ
count(*)>α

SB[n]

σ
spread>β

Л
SB[1..n].id, SB.value

Windowω Windowω

Figure 3.1. PDT query plan

TIME SPAN ω

WHERE <other conditions>;

Q 3.2.2 SELECT SB[1..n].id, SB.value

FROM OUTER JOIN

(

SELECT SB[i].id, SB[i].value

GROUP BY (SB[i].id, SB[i].value)

HAVING COUNT(*)≥ α

) ON SB.value

WHERE Spread() ≥ β AND <other conditions>

WINDOW ω;

To enforce the persistency constraint, the PDT query groups each stream’s read-

ings using a group-by operator based on the readings’ value. The count of each

33

group members, i.e., the number of times a data stream persists to generate a value,

is recorded as the stream’s persistency for that value. Stream readings with persis-

tency that is less than α are filtered out.

The pattern clause in the phenomenon definition is transformed into an outer

multi-way window join. The join operation detects similarity in behavior among

data streams. The join operation is multi-way because there are multiple streaming

sources co-existing in the streaming environment. Also, the join operation is an outer

join because not all the streaming sources are expected to participate in the same

phenomenon. Only subsets of the data streams are expected to join. Hence, the

outer join detects similarity among the streaming sources and replaces non-joining

data streams with the NULL values. To enforce the spread constraint, the number

of non-NULL joining streams is evaluated using the Spread function and is tested

against the spread constraint in the where clause. The where clause may contain

any other constraints that appear in the phenomenon definition as well. The where

clause in the phenomenon definition is preserved in the PDT query to filter out any

stream tuples that do not satisfy the where clause predicates. Finally, the IDs of the

data streams that contribute to the same phenomenon and the phenomenon value

are reported by the select clause in the PDT query. Example 3.2.1 gives an example

phenomenon definition that is interested in heat zones while Example 3.2.2 give sits

corresponding PDT query.

Example 3.2.1 CREATE PHENOMENON HeatZones

ON STREAM BUNDLE SB

PATTERN SB[i].T emperature = SB[j].T emperature

PERSISTENCY 5

SPREAD 4

TIME SPAN 60

WHERE SB.Temperature > 90;

Example 3.2.2 SELECT SB[1..n].id, SB.value

34

FROM OUTER JOIN

(

SELECT SB[i].id, SB[i].value

GROUP BY (SB[i].id, SB[i].value)

HAVING COUNT(*)≥ 5

) ON SB.value

WHERE Spread() ≥ 4 AND SB.Temperature > 90

WINDOW 60;

3.3 PDT Query Processing

The process of phenomena detection and tracking is initiated by issuing the PDT

SQL-query as discussed in Section 3.2. PDT query processing is divided into three

phases as illustrated in Figure 3.2. The main idea of the first phase (the grouping

phase) is to feed the incoming stream tuples to a group-by operator that takes into

consideration the persistency of the desired phenomenon. Then, we join persistent

readings from various streaming sources using a multi-way join algorithm over data

streams. The join output tuples are then checked for the spread constraint. If at

least β data streams join together on the same value, an output is generated to

denote a phenomenon candidate. Based on the output of the joining operation, the

overall phenomena are constructed in the third phase and are reported to the PDT

module. The third phase (the output phase) investigates the application semantics

to form and report the phenomena to the user. The output phase is a good place

for further phenomenon analysis and for post phenomenon-detection checks. The

continuous execution of the group-by and the join operators tracks the movement

of phenomena in the space. The remainder of this section discusses the phases the

PDT query execution.

35

Grouping Phase

Streaming

Environment

Output Phase

Stream tuples

Persistent streams

Phenomenon
candidates

Phenomena

Joining Phase

Figure 3.2. PDT query processing phases

3.3.1 Phase I: The Grouping Phase

The grouping phase employs a standard group-by operator to group the readings

that are coming from the same stream based on the reading value. Therefore, the

stream input tuples are grouped by (SB[i].id, SB[i].value). Within each group, the

persistency of each reading value is measured as the count of the group members.

Persistent readings are the readings with actual persistency α̂ that is greater than

or equal to the persistency threshold (α).

The group-by operation and its corresponding having clause utilize the notion of

positive and negative tuples [33]. The group membership and the count of each group

are updated according to the arrival of tuples (positive tuples) and to the expiration

of existing tuples (negative tuples). Hence, a stream reading may alternate between

persistency and impersistency over time.

The output of the grouping phase is a stream of tuples of the form ±(SB.id,

SB.value). The output is of the form +(SB.id, SB.value) if stream number SB.id

generates the value SB.value at least α times. Also, the output is of the form−(SB.id,

36

SB.value) if the number of occurrences of SB.value from stream number SB.id drops

below α. The output of the grouping phase is pipelined into the joining phase.

3.3.2 Phase II: The Joining Phase

In the joining phase, we perform the multi-way join using an MJoin operator [34].

The main idea of MJoin is to maintain a hash table for each stream. Once a tuple

arrives from one stream, it is inserted into the stream’s corresponding hash table.

Then, the incoming tuple probes the hash tables of the other streams. The original

version of MJoin performs an inner multi-way join. Since an inner join output tuple

is reported only if it appears in ALL streams, the MJoin algorithm stops probing

hashing tables once the probed value is missing in one of the streams.

To employ MJoin inside PDT techniques, we make two modifications to the

original MJoin algorithm [34]. These modifications are summarized as follows: First,

we modify MJoin to perform an outer multi-way join. The modified MJoin algorithm

does not stop if the join value is missing in one of the streams. Instead, it assumes a

NULL value for the missing stream and continues to examine the remaining streams

to produce partial results.

Second, we modify MJoin to process both the positive and the negative tuples

that are coming from the grouping phase and to generate positive and negative

tuples accordingly in the output. A positive tuple is reported when a join occurs. A

negative tuple is reported when one of the previously-reported join tuple components

expires, i.e., becomes old enough to get outside of the most recent time-window w.

The negative tuples are important to invalidate the phenomenon, if the streaming

sources stop showing the same behavior over a time-window w.

3.3.3 Phase III: The Output Phase

The output phase receives phenomenon candidates on the form of tuples that

consist of the IDs of the joining streams and the join value. Each tuple can be positive

37

or negative to denote the appearance or the disappearance of a candidate member.

The output phase has the flexibility to apply application-dependent semantics in the

phenomenon detection process. For example, the output phase can determine the

outer contour or the convex hull of a phenomenon as a first step towards the shape

understanding of the phenomenon. Also, the application may consider the spatial

connectedness of the streaming sources. For example, multiple disconnected oil spills

may imply leakage out of more than one container. Upon receiving a positive tuple,

based on the application semantics, the output phase may start a new phenomenon,

add one streaming source to an existing phenomenon, or merge two phenomena

together if they become connected. Similarly, upon receiving a negative tuple, the

output phase may delete a phenomenon, remove a streaming source from an existing

phenomenon, or split one phenomenon into two separate phenomena if they got

disconnected from each other.

Application-dependent semantics can include the density of the phenomenon as

well. The density is measured by the ratio of the number of streaming sources

reporting the same phenomenon to the number of streaming sources not reporting

that phenomenon in a specified region. All these issues are application-dependent

and are addressed by the output phase through user-defined functions in the query’s

select clause.

3.4 Scalability Challenges

In Section 3.3, we presented the SQL PDT continuous query that semantically

tracks the required phenomenon pattern. However, the execution of the PDT query

faces several scalability challenges. PDT query processing involves a join operation

among multiple streaming sources. With the increase in the number of streaming

sources and with the increase in the sources’ streaming rate, an increase in the

joining cost is inevitable. Query optimization techniques that move the selection

and the group-by operators around the join (e.g., [35, 36]) reduce the cost of the

38

join operation. However, in this dissertation, we address the optimization of the

join operator itself taking into consideration the phenomenon properties. In the

remainder of this section, we give an experimental sense of the scalability challenges

in the processing of PDT queries. We dedicate the following two chapters to enhance

the performance of the joining phase of the PDT framework.

Throughout the chapters of this dissertation, we compare the performance of

the PDT frame using MJoin against the proposed enhancements in terms of several

performance measures. Examples of these performance measures are the output

delay, the input drop rate, and the output drop rate. The output delay is the time

difference between the arrival of a tuple and the time its effect appears in the output.

The input drop rate is the number of tuples that are dropped out of the system’s

input buffer due to the system’s limited resources that are incapable of accepting

the continuous arrival of stream data. The output drop rate is the number of missed

output tuples due to dropping some of the input tuples. In this section, we measure

the overall system performance in terms of the number of detected phenomena updates

per second. A phenomenon update is reported if a phenomenon appears, disappears,

or changes its location. The number of detected phenomena updates per second

reflects how fast the system tracks phenomena as they move in space. We base our

study on the two experimental setups of Nile PhenomenaBase that are described

in Section 2.5; a real small-scale sensor board and a simulated large-scale sensor

network. The α, β, and ω parameters are set to be 30, 3, and 10, respectively, for

the real setup while they are set to be 3, 30, and 10, respectively, for the simulated

setup.

Figure 3.3 gives the number of detected phenomenon updates as we increase the

number of sensors. Notice that the number of detected phenomenon updates gets

saturated with the increase in the number of sensors. We refer this saturation to the

increase in the number of dropped input tuples due to the incapability of the system

to cope with the increase in the input load. For example, the number of dropped

input tuples jumps from 10% of the total input tuples for 10 sensors to 30% with

39

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

(a) Small-scale sensor board (b) Simulated large-scale setup

Figure 3.3. Number of detected phenomenon updates

the increase in the number of sensors to 25 (for the real small-scale sensor board).

Further analyses, comparisons, and experimental studies for the PDT performance

are presented in the following chapters.

3.5 Summary

In this chapter, we proposed a framework for phenomena detection and tracking

(PDT, for short) in DSMSs. To detect a phenomenon, we convert the phenomenon

definition to a continuous SQL query, termed a PDT query. The framework to

execute PDT queries encompasses three phases: the grouping phase, the joining

phase, and the output phase. The grouping phase takes the raw data from the data

streams and applies a filter to enforce the persistency constraint over the time span

of the phenomenon. The joining phase employs a multi-way join algorithm that

joins the output tuples of the grouping phase and produces a set of join tuples

with similar values. Finally, the output phase is an application-specific phase where

the application semantics are enforced. An experimental study based on a prototype

implementation inside Nile PhenomenaBase shows that the proposed PDT technique

with multi-way joins is not scalable in terms of the number of streams, the stream

rates, and the number of detected phenomena. Hence, several enhancements and

40

optimizations need to be carried over to get a better performance. The following

chapters of this dissertation address these enhancements and optimizations.

41

4 PREFERENCE-BASED LOAD SHEDDING IN PHENOMENON-AWARE

DSMSS

The joining phase of the PDT query processing employs a multi-way join operation

over a large number of, possibly high-rate, data streams. Hence, we need to take

several measures to address the scalability problems that appear under periods of

heavy system loads. In this chapter, we introduce the concept of preference-based

load shedding to reduce the input load that is streamed into the DSMS. Preference-

based load shedding tunes query processing towards tuples that satisfy a specific

preference or a desired feature of a phenomenon definition. More specifically, we

focus on three preference types that are based on the phenomenon persistency, the

phenomenon spread, and the phenomenon time span. Experiments prove that the

concept of preference-based load shedding inside Nile PhenomenaBase guides the

PDT query processing towards phenomena of interest.

4.1 Background and Motivation

Some application domains favor persistent phenomena that are characterized

by a highly-frequent appearance of its participating tuples while other application

domains are interested in intermittent phenomena that feature low-frequency tu-

ples. Similarly, some application domains favor stretch phenomena that are widely

spread in the monitored environment while other application domains are interested

in confined phenomena that are localized in narrow regions of the field. Also, some

application domains favor durable phenomena that span a long period of time while

other application domains are interested in impulse phenomena that occur over few

time instants. Other preferences can be defined based on the requirements of the

application domain. In this chapter, we elaborate on the with-preference clause of

42

the phenomenon definition as presented in Q 2.2.6 in Chapter 2. The with-preference

clause in the phenomenon definition addresses the scalability problems of PDT tech-

niques that appear during periods of heavy system load. As discussed in Section 3.4,

the joining phase is based on a costly multi-way join operation among the large num-

ber of data streams in the environment. The with-preference clause acts as a prior-

itization mechanism for the incoming stream tuples. Based on the tuple’s assigned

priorities, tuples are ordered and are processed based on an ascending/descending

order of their anticipated contribution to the overall phenomenon preference. Hence,

in case of heavy-load periods, low-priority tuples are dropped from the query pro-

cessor’s buffers to reduce the overall system’s load.

In general, preference-based load shedding can be based on any user-defined

preference as long as a corresponding prioritization function is defined. However,

in this chapter, we focus on three types of preferences that are expressed by the

syntax given in Q 2.2.6. These three preference types are based on the parameters

that control the phenomenon definition: the persistency, the spread, and the time

span. Assume that α̂, β̂, and ω̂ are the phenomenon actual persistency, spread, and

time span. Based on Definition 2.1.1, the phenomenon actual persistency (α̂) has

to exceed the persistency threshold (α), the phenomenon actual spread (β̂) has to

exceed the spread threshold (β), and the phenomenon actual time span (ω̂) has to be

within the time span threshold (ω). However, with the increase in the system’s load,

we have the option to tune query processing towards highly-persistent phenomena

(with large values of α̂) or towards intermittent phenomena (with small values of

α̂). For example, an application may be interested in items that are excessively sold

in multiple branches of a retail store while another application is interested in items

that are sold in multiple stores with a quantity that is just above the persistency

threshold α. Alternatively, we have the option to tune query processing towards

stretch phenomena (with large values of β̂) or towards confined phenomena (with

small values of β̂). For example, an application may be interested in oil spills that

span large portions of the ocean surface while another application is interested in

43

small localized oil spills with a spread that is just above the spread threshold β. Also,

we have the option to tune query processing towards durable phenomena (with large

values of ω̂) or towards impulse phenomena (with small values of ω̂). For example,

an application may be interested in regions that have been on fire for a long period of

time (i.e., close to the time span threshold ω) while another application is interested

in sparks with short duration that may be a cause for future fires.

The main idea of preference-based load shedding is to maintain stream summaries

that approximate the intrinsic features of the stream’s tuples. These summaries

are maintained and are updated with the arrival of each stream tuple. Therefore,

the cost of updating the summaries is required to be small relative to the actual

query processing cost. Based on the global picture that is provided by the stream

summaries, the load shedder decides on how relevant the tuple is to the phenomenon

desired preference. The decision of the load shedder takes the form of a priority that

is attached to each tuple in the stream. Tuples are inserted in a priority queue of

limited size. The query processor proceeds with high-priority tuples from the head

of the queue. Meanwhile, low-priority tuples are deleted from the tail of the queue

in response to the insertion of high-priority tuples.

The contributions of this chapter can be summarized as follows:

1. We identify a general framework for preference-based load shedding and we em-

phasize on three preference specifiers that are of special interest to application

domains.

2. We introduce two system components; the summary manager and the load

shedder, that collaborate together to drop stream tuples not likely to match

the phenomenon preference.

3. We provide an experimental study that is based on a prototype implementation

of the summary manager and the load shedder inside Nile PhenomenaBase to

explore the impact of load shedding on phenomenon detection.

44

The remainder of this chapter is organized as follows: Section 4.2 revisits the

system architecture and focus on system components that are relevant to load shed-

ding. Section 4.3 introduces the proposed summary manager and the proposed load

shedder. Section 4.4 presents an experimental study of the proposed load shedding

technique. Section 4.5 overviews related work. Finally, Section 4.6 summarizes the

chapter.

4.2 System Architecture

As illustrated in Figure 2.1, the stream monitor receives the incoming data stream

tuples into its own buffers. Then, the stream monitor forwards the tuples to the

query executer for further processing. Also, the PDT-module receives a phenomenon

definition that possibly includes a “with-preference” clause. The stream monitor is

the perfect place to accommodate the load shedding components because it has

access to the incoming stream tuples before they are pushed into the query plan

buffers of the query executer. The PDT-module provides the stream monitor with

the phenomenon preference to request the stream monitor and its load shedding

component to favor tuples that are likely to satisfy the user’s preference.

Figure 4.1 focuses on the architecture of the stream monitor and its connection

to other system components. The stream monitor has three basic components: the

buffer manager, the summary manager, and the load shedder. The buffer manager

is the first point of contact between the DSMS and the streaming sources in the

surrounding environment. Streaming sources push their stream readings into the

input buffers of the buffer manager. The input buffers are circular queues of limited

sizes. Therefore, if the incoming tuples are not consumed in an equal (or a higher

rate) to their arrival rate, tuples are dropped out of the system’s input buffers and

are lost forever. This type of tuple dropping is called random load shedding [37–40]

because tuple dropping occurs without taking into consideration the tuple values

45

Data Streams

PDT
Module

Stream Monitor
Buffer

Manager
Summary
Manager

Load
Shedder

Priority Queue

x

(x, Priority(x))

Summary(x)

Phenomenon
Definition

Phenomenon
Preference

To Query
Executer

Figure 4.1. The architecture of the stream monitor.

and their semantics. In our work, we are interested in semantic load shedding [41–43]

where tuple dropping occurs according to the semantics of the incoming tuples.

The summary manager maintains stream summaries over the incoming stream

tuples that reflect the intrinsic properties of these tuples. With the arrival of each

incoming stream tuple, we invest a small portion of the system’s budget of time to

update the stream summaries. Then, the stream tuple is sent to the load shedder.

The load shedder takes a phenomenon preference from the PDT-module and

receives the incoming stream tuples from the buffer manager. The load shedder

investigates the summary manager for each incoming stream tuple to assign a priority

to that tuple. The tuple’s assigned priority reflects the tuple’s expected contribution

to the phenomenon preference. Tuples are then inserted in a priority queue and are

processed by the query executer in a descending order of their priorities.

46

Figure 4.2. Data flow in the stream summarization and load shedding process.

4.3 Stream Summarization and Load Shedding

Stream summaries are essential to provide a rough but quick estimation for the

expected gain of an incoming tuple. Various summarization techniques have been

proposed in the literature, e.g., [19, 44–46]. Different DSMSs employ different sum-

marization techniques. In this Section, we do not propose a new summarization

technique. Instead, we propose a general framework that utilizes existing summa-

rization techniques to help the load shedder identify and drop non-interesting tuples.

In our work, the summarization technique is considered a black box as long as it pro-

vides the following set of interface functions:

1. Summarize(x): Inserts a tuple x and adds the effect of its value to the existing

summaries.

47

2. Estimate(x): Estimates various properties of a stream tuple x from the sum-

maries. These estimations are used in the context of the query preference

function to specify how promising tuples are extracted.

3. Confidence(): Reports how much confident we are about the stream sum-

maries. This function is used as a measure of accuracy of the properties that

are estimated from the summaries.

There is a trade-off between the accuracy of the summary-estimated properties

and the cost of updating the summaries. As the accuracy of the summaries increases,

non-interesting tuples can be accurately identified and dropped out of the system.

However, an increase in the maintenance cost of summaries implies a reduction

in the time budget of the query processor. Detailed discussion on load shedding

techniques is presented extensively in the literature, e.g., [37–43]. In our framework,

we emphasize on the phenomenon semantics in the load shedding process. Therefore,

we use simple summarization techniques, e.g., histograms and countsketches, that

approximate the phenomenon actual persistency, spread, and time span.

Figure 4.2 illustrates the data flow of the proposed load shedding process. We

maintain a summarization structure per data stream that is capable of estimating

the count of a given value in the stream readings over the most-recent time window

of size ω, e.g., histograms [44] or countsketches [19]. An incoming tuple updates

the summarization structure of its own data stream. Then, the count of this tuple

value is estimated from the summarization structure to decide on the persistency of

this tuple. If the count of the tuple’s value is above α-ǫ, the tuple is declared to be

persistent. ǫ is an error factor that places a bound on the inaccuracy in estimating

the count of the tuple’s value and is returned by the Confidence function. ǫ gives

the tuple the benefit of doubt and avoids dropping persistent tuples due to summa-

rization inaccuracies. The tuple’s assigned priority of persistency is estimated as the

absolute difference between the count of the tuple’s value and the persistency thresh-

48

old (Count(value)− α). The tuple’s assigned priority is sorted either descending or

descending to favor persistent phenomena or intermittent phenomena, respectively.

If the tuple is impersistent, it is dropped out of the system. However, if the tuple

is impersistent, it is assigned a persistency priority. Moreover, for each incoming

stream value, regardless of its issuing stream, we maintain a summarization structure

that reports the number of data streams that persist to generate this value. If an

incoming stream reading causes the stream to be persistent in this value, i.e., the

number of occurrences of this value in that stream jumps from α− 1 to α, the count

of persistent streams is incremented by one. On the contrary, if a stream reading

expires and causes the stream to be impersistent in this value, i.e., the number of

occurrences of this value in that stream jumps from α to α−1, the count of persistent

streams is decremented by one. If the number of persistent streams for a specific

value exceeds β-ǫ, the spread constraint is likely to be satisfied for this value. The

tuple’s assigned priority of spread is estimated as the absolute difference between the

count of persistent streams and the spread threshold (Count(streams) − β). The

tuple’s assigned priority is sorted either descending or descending to favor stretch

phenomena or confined phenomena, respectively.

To estimate the time span of a phenomenon, we need a summarization structure

that approximates, for each value (or group of values), the time stamps of the occur-

rences of this value. For each value (or group of values), we divide the timeline for

the most recent tine window of size ω into n time zones such that each time zone is of

size ω
n

time units. Each time zone contains an on/off flag. Initially, all flags are set

to off . With the arrival of a stream reading, the corresponding on/off flag of the

reading value at the proper time zone is set to on. The timeline for the summariza-

tion structure slides every ω
n

time units to remove the summaries of expired tuples

and to build summaries for the new tuples. The earliest time zone of a specific value

with an on flag reflects the time span of this value. The tuple’s time span is sorted

either descending or descending to favor durable phenomena or impulse phenomena,

respectively.

49

4.4 Experiments

In this Section, we investigate the effect of the proposed load shedding on the

performance of the phenomenon detection and tracking process. We present the

results of three sets of experiments that explore the persistency, spread, and time

span preferences, respectively. In each set of experiments, we are interested in two

measures of performance. The first measure is the average actual persistency, spread,

and time span of the detected phenomena in response to changing the persistency,

spread, and time span preferences, respectively. The second measure of performance

is the number of detected phenomenon updates per second. A phenomenon update is

reported if a phenomenon appears, disappears, or changes its location. The number

of detected phenomenon updates per second reflects how fast the system is in tracking

phenomena as they move in space.

We compare the performance of the PDT module in three cases: (1) the case

where load shedding is turned off, (2) the case of an ascending order of the preference,

and (3) the case of a descending order of the preference. All the experiments in

this section are based on a prototype implementation of the stream monitor and its

components inside Nile PhenomenaBase. We base our study on the two experimental

setups of Nile PhenomenaBase that are described in Section 2.5: a real small-scale

sensor board and a simulated large-scale sensor network. The size of each stream’s

input buffer in the buffer manager and the size of the priority queue are set to 8

tuples. The α, β, and ω parameters are set to be 30, 3, and 10, respectively, for

the real setup while they are set to be 3, 30, and 10, respectively, for the simulated

setup. The Nile PhenomenaBase engine executes on a machine with Intel Pentium

IV, CPU 2.4GHZ and 512MB RAM running Windows XP.

4.4.1 The Persistency Preference

Figure 4.3 illustrates the effect of load shedding with an ascending preference in

persistency, without any preference in persistency, and with a descending preference

50

 30

 35

 40

 45

 50

 55

 60

 0 5 10 15 20 25

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 p

e
rs

is
te

n
c
y

Number of sensors

desc preference
w/o preference
asc preference

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(a) Real small-scale setup

 3

 3.5

 4

 4.5

 5

 5.5

 6

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 p

e
rs

is
te

n
c
y

Number of sensors

desc preference
w/o preference
asc preference

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(b) Simulated large-scale setup

Figure 4.3. The effect of the persistency preference.

in persistency under various system loads. Figure 4.3a utilizes the real small-scale

sensor board while Figure 4.3b utilizes the simulated large-scale setup. Both figures

exhibit a similar trend. For a small system load (expressed in terms of the number

of incoming data streams), almost every phenomenon is detected and, hence, the

average persistency is almost the same for all of the three depicted cases. However,

as we increase the number of data streams, tuples are dropped out of the system.

PDT with a descending persistency preference favors persistent tuples and generates

highly-persistent phenomena in the output. On the other hand, PDT with an ascend-

51

ing persistency preference favors less persistent tuples and generates less-persistent

phenomena in the output. The deviation between the three PDT instances becomes

apparent at the size of 25 sensors for the real sensor board and at the size of 2000

sensors for the simulated setup at Figure 4.3.

Notice that the number of tuples that contribute to the formation of a persistent

phenomenon is larger than the number of tuples that contribute to the formation of

an impersistent phenomenon. A persistent phenomenon update is not reported by

the system unless the persistency constraint is met by the incoming tuples. Con-

sequently, the total number of detected phenomenon updates per second decreases

under a descending persistency preference compared to its corresponding ascending

preference.

4.4.2 The Spread Preference

Figure 4.4 illustrates the effect of load shedding with an ascending preference

in spread, without any preference in spread, and with an descending preference in

spread under various system loads. Figure 4.4a utilizes the real small-scale sensor

board while Figure 4.4b utilizes the simulated large-scale setup. For a small system

load (expressed in terms of the number of incoming data streams), almost every

phenomenon is detected and, hence, the average spread is almost the same for all

of the three depicted cases. However, as we increase the number of data streams,

tuples are dropped out of the system. PDT with a descending spread preference

favors tuples that appear in multiple streams and generates stretch phenomena in the

output. On the other hand, PDT with an ascending spread preference favors tuples

that appear in fewer streams and generates confined phenomena in the output. The

average spread of a phenomenon increases in all of the three depicted curves with the

increase in the number of monitored data streams because more data streams tend to

generate similar behaviors. However, the rate of increase deviates from one curve to

another based on the specified preference as we increase the system load. Notice that

52

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20 25

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 s

p
re

a
d

Number of sensors

desc preference
w/o preference
asc preference

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(a) Real small-scale setup

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 s

p
re

a
d

Number of sensors

desc preference
w/o preference
asc preference

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(b) Simulated large-scale setup

Figure 4.4. The effect of the spread preference.

changing the spread preference does not degrade the system’s performance measured

in terms of detected phenomenon updates per second. The spread preference does not

affect the total number of detected phenomenon updates per second. However, the

system focuses on the phenomenon updates that are associated with phenomena that

have small/large spread in response to an ascending/descending spread preference.

53

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 t
im

e
 s

p
a
n

Number of sensors

desc preference
w/o preference
asc preference

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(a) Real small-scale setup

 4

 5

 6

 7

 8

 9

 10

 11

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 p

h
e
n
o
m

e
n
o
n
 t
im

e
 s

p
a
n

Number of sensors

desc preference
w/o preference
asc preference

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
o
n
 u

p
d
a
te

/s
e
c

Number of sensors

desc preference
w/o preference
asc preference

(b) Simulated large-scale setup

Figure 4.5. The effect of the time span preference.

4.4.3 The Time-Span Preference

Figure 4.5 illustrates the effect of load shedding with an ascending preference in

time span, without any preference in time span, and with an descending preference in

time span under various system loads. Figure 4.5a utilizes the real small-scale sensor

board while Figure 4.5b utilizes the simulated large-scale setup. For a small system

load (expressed in terms of the number of incoming data streams), almost every

phenomenon is detected and, hence, the average phenomenon time span is almost the

same for all of the three depicted cases. However, as we increase the number of data

54

streams, tuples are dropped out of the system. PDT with a descending time span

preference favors durable tuples that show up long time ago in the past and generates

durable phenomena in the output. On the other hand, PDT with an ascending time

span preference favors tuples with short history in the past and generates impulse

phenomena that occur over a short period of time. Again, the deviation between the

three PDT instances becomes apparent at the size of 25 sensors for the real sensor

board and at the size of 2000 sensors for the simulated setup in Figure 4.5. Notice

that changing the time span preference does not degrade the system’s performance

measured in terms of detected phenomenon updates per second. However, the system

focuses on the phenomenon updates that are associated with phenomena that have

small/large time span in response to an ascending/descending time span preference.

4.5 Related Work

In this section, we overview related work through three major lines. First, we

refer to some research directions in the context of load shedding and discuss how

load shedding is related to our work. Second, we highlight some summarization

techniques that are deployed widely to enhance query performance. Third, we give

example techniques that perform the join operation over data streams.

In data stream systems, load shedding is utilized to address memory and CPU

limitations. There are two types of load shedding: random load shedding [37–40]

and semantic load shedding [41–43]. Semantic load shedding considers the values

of incoming tuples. Tuples are processed based on how productive their values are.

In our work, we make use of semantic load shedding and the semantics of incoming

tuples are assessed relative to the query preference. In the absence of semantic

interpretation or distribution models for the tuple values, random load shedding

takes place.

With the limited CPU time and bounded memory constraints, approximate an-

swers that are obtained via summaries are accepted in place of the exact ones.

55

Sampling [47], histograms [44], and wavelets [45] can represent a stream using lower

memory requirements. Streams are also summarized using sketches [46]. Some of

the sketching techniques have the capability to maintain a stream’s most frequent

items [19]. Sketch-based processing and sketch sharing among multiple queries are

presented in [48]. The concept of multiple granularities over data streams is proposed

in [49]. The work in [50] suggests a gradual degradation of the summary resolution

as data tuples move from one granularity to the next. This gradual degradation is

referred to by the term amnesic stream approximation. Statistical models are uti-

lized in [6] to query sensors interactively. Based on outstanding queries, statistical

models provide an estimate for a sensor reading and tell how much this estimate is

accurate. Consequently, one may decide to query the sensor for a fresh reading.

The join operation over data streams has been studied extensively in literature,

e.g., [42, 51–54]. Many of these techniques are based on Symmetric Hash Join

(SHJ) [55]. SHJ takes care of the infiniteness of the data sources. XJoin [56] is

a non-blocking symmetric join that stores overflowing tuples on disk for later pro-

cessing to avoid blocking. Hash-Merge Join (HMJ) [57] is another non-blocking join

algorithm that produces early join results. Our proposed technique for load shedding

extends SHJ by tuning the join output towards query preferences.

4.6 Summary

In this chapter, we introduced the concept of preference-based load shedding for

phenomenon-aware DSMSs. Preference-based load shedding favors tuples that con-

tribute to satisfying a specific preference of a phenomenon definition. In particular,

we address three phenomenon preferences that are based on the phenomenon per-

sistency, the phenomenon spread, and the phenomenon time span. The persistency-

based preference tunes the PDT query processing towards either persistent or inter-

mittent phenomena. The spread-based preference tunes the PDT query processing

towards either stretch or confined phenomena. The time span-based preference tunes

56

the PDT query processing towards either durable or impulse phenomena. Other pref-

erences can be flexibly defined to satisfy the domain requirements. We proposed a

stream summary manager that is capable of identifying the stream tuples that con-

tribute to a specific preference. Then, we proved the applicability of the summary

manager in tuning the window join query that comes at the core of phenomenon

detection and tracking techniques. Experimental results show that the concept of

preference-based load shedding increases the effectiveness and the resource utilization

of Nile PhenomenaBase.

57

5 PHENOMENON DETECTION AND TRACKING USING

VARIABLE-ARITY JOINS

Phenomenon-aware DSMSs are equipped with Phenomenon Detection and Tracking

(PDT) techniques that continuously run at the background of the system to de-

tect and track phenomena as they propagate in the surrounding field. The process

of phenomenon detection and tracking depends mainly on a multi-way join opera-

tor that is at the core of PDT techniques to report similar stream readings. With

the increase in the number of data streams and with periods of heavy loads, the

join operator and, consequently, query processing in the DSMS face several chal-

lenges. In this chapter, we present a new join operator for phenomenon detection

and tracking techniques called variable-arity join (VAJoin) that is specially-designed

for dynamically-configured large-scale streaming environments. Experimental stud-

ies illustrate the scalability and the performance gains of the proposed join operator

inside Nile PhenomenaBase with respect to the number of detected phenomena and

the output delay.

5.1 Background and Motivation

A key component in PDT techniques is an outer multi-way join operator that

detects similarities among stream readings over a sliding window of size ω. This join

operation is “multi-way” because it detects similarities among multiple data streams

and it is an “outer” join because phenomena are usually localized. Out of the large

number of data streams in space, only subsets of data streams generate the same

values. Other data streams do not participate in the join output and are replaced

by NULLs.

58

Usually, a multi-way join over data streams can be performed using trees of

non-blocking binary joins (e.g., symmetric hash join [55], XJoin [56], or hash merge

join [57]). Binary join trees perform the multi-way join in multiple steps (i.e., tree

levels) and may incur several delays. Also, the output rate of binary-join trees is sen-

sitive to the join order. For this reason, binary-join trees are usually equipped with

a dynamic scheme for tree reorganization (e.g., [58]). To overcome the shortcomings

of binary-join trees, [34] introduces the MJoin operator, a single-step multi-way join

operator that is symmetric with respect to all input streams. MJoin produces early

output, maximizes the output rate, and avoids reorganization of the query plan at

execution time. Based on these features, we used an outer MJoin operator in the

previous design of PDT techniques as described in Chapter 3.

MJoin has satisfactory performance for moderate system load. However, with

the increase in the number of data streams, the stream sampling rates, and the

number of propagating phenomena, PDT techniques start losing many phenomenon

updates. A phenomenon update is reported if a phenomenon appears, disappears,

or changes its location. The number of detected phenomenon updates per second re-

flects how fast the system is in tracking phenomena as they move in space. To tackle

periods of heavy system load, we identify two basic challenges that the design of

PhenomenaBases with MJoin faces: (1) Scalability, where streaming sources are typ-

ically deployed in large scale with thousands of sources. (2) Dynamic-configuration –

Streaming sources can be dynamically added and removed from the streaming envi-

ronment based on the system’s conditions and the availability of additional sources.

In this chapter, we introduce a novel join operator for DSMSs, called Variable-

arity Join (or VAJoin) operator. In a nutshell, VAJoin handles the execution of

continuous multi-way window join queries over dynamically-configured large-scale

streaming environments. In contrast to MJoin, VAJoin is not an outer multi-way

join. VAJoin produces variable-size join output in response to the variable number

of data streams contributing to a phenomenon. It exploits the locality characteristics

of phenomena to reduce the number of streams that need to be joined. With the

59

notion of variable-arity output, VAJoin scales well with respect to the number of data

streams and easily adapts to the dynamic configuration of the network. This feature

makes VAJoin a perfect match for the join operation in environments where a small

number of data streams (relative to the huge number of data streams in the streaming

environment) are likely to join. Although not limited to PhenomenaBases, VAJoin

suits the process of phenomenon detection since phenomena are usually localized in

small portions of the environment. Fire, smoke, and oil spills usually span small

portions of the monitored field. Other environments where such locality is expected

call for the deployment of VAJoin over its streaming sources.

The contributions of this chapter can be summarized as follows:

1. We introduce the concept of variable-arity output and we equip PDT tech-

niques with a variable-arity join operator.

2. We compare the performance of variable-arity join against the performance of

outer multi-way join and we explore the cost models of both join techniques

mathematically.

3. We provide an experimental study that is based on a prototype implementation

of VAJoin inside Nile PhenomenaBase to prove its efficiency both in terms of

the number of detected phenomena updates and the output delay.

The remainder of this chapter is organized as follows: Section 5.2 presents the

VAJoin operator and its manipulating algorithms. Section 5.3 presents a mathemati-

cal analysis of the proposed join technique while Section 5.4 provides an experimental

study of the proposed operator and compares its performance to the mathematical

study. Section 5.5 overviews related join techniques and compares them to VAJoin.

Finally, Section 5.6 summarizes the chapter.

60

5.2 Variable-arity Join

In this section, we elaborate on the new variable-arity join that would produce

variable-size join output in response to the variable number of data streams con-

tributing to a phenomenon. We also compare it to the outer multi-way join that

was initially implemented in the phenomeon detection and tracking module. In

sliding-window multi-way join, upon the arrival of a new tuple, say t̂, from stream

Ŝ, t̂ probes other streams looking for matching tuples. t̂ joins with tuples that have

the same value from other streams provided that matching tuples are within a ω

time-window from t̂. Deriving an outer join variant of an already existing inner join

technique is straightforward. If the probing tuple is missing in one of the streams,

simply append NULL in lieu of the missing stream and proceed to the next stream.

This approach applies to binary-join trees and to MJoin. In a tree of binary joins,

we propagate partial join results up the tree even if no matching values are found at

some tree levels. In MJoin, the join probing sequence spans all streams. The join

probing sequence does not terminate if no matching values are found in any of the

streams.

From a performance point of view, deploying outer joins over a large-scale stream-

ing environment is cost prohibitive. To detect subsets of joining data streams using

outer join, every streaming source in the environment has to be probed. Given the

fact that phenomena are usually localized (e.g., an oil spill in a specific area), we

may end up probing thousands of streaming sources to find out that only tens of

streaming sources have similar behavior. To reduce the number of probes involved

in an outer multi-way join, we propose the concept of variable-arity join as given by

Definition 5.2.1.

Definition 5.2.1 Given m input streams, S1, S2, · · · , and Sm, each stream Si gen-

erates tuples of the form (ti, [Si, τi]), where ti is the tuple value generated by stream

Si at time τi. For a newly arriving tuple (t̂, [Ŝ, τ̂]), a variable-arity join over window

ω produces an output O={(t̂, [Ŝ, τ̂], [So1
, τo1

], [So2
, τo2

], · · ·), where Soi
is one of

61

Clean-sweep List

H(ti)

(Sj,
τ

j)

(ti)
Partition

Value occurrence
list

Tuple value list

Figure 5.1. The VAJoin hash table.

the joining streams, oi ∈ 1 · ·m, such that t̂=toi
and |τ̂ − τoi

| ≤ ω, Soi
6= Ŝ, Soi

6= Soj

∀i 6= j }.

We should notice that VAJoin is different from an outer join both at the concep-

tual and implementation levels. At the conceptual level, VAJoin omits streams that

do not participate in the join to produce a variable-size tuple. The variable-size tuple

contains (1) the join value t̂, (2) the source stream and the timestamp of the tuple

[Ŝ, τ̂], and (3) a variable-size list of streams that produce matching tuples along

with the timestamps of the matching tuples ([So1
, τo1

], [So2
, τo2

], · · ·). In contrast,

outer join produces a fixed-size tuple with NULL values in lieu of missing streams

(even in the presence of many of these NULL values). At the implementation level,

variable-arity join probes only streams that participate in the join. Streams with no

matching tuples do not infer any additional cost. However, outer join probes every

stream to check the existence of the join value (even in the presence of many such

streams.)

62

5.2.1 Data Structures

Usually, hash-based join techniques maintain one hash table per stream. A new

input tuple is inserted, based on a hash function, into its own stream’s hash table

and a probe is then launched to look for matches in other streams’ hash tables.

With the increase in the number of streams, managing a large number of hash tables

becomes costly. To avoid a lengthy join probing sequence, the VAJoin uses a single

global hash table where all incoming tuples are hashed and inserted regardless of

their streaming sources. Grouping tuples of the same value from various streams in

the same partition of a hash table prepares candidates for the join output in advance.

Figure 5.1 illustrates the proposed VAJoin hash table that is used by the variable

arity join. The hash table is divided into partitions based on a suitable hash function

H . The hash function is only applied over the value of the join attribute in case the

tuple has multiple attributes. In each partition, all tuple values that appear in the

current window ω are chained in a tuple-value list (TVL), one entry per value. An

entry in TVL is of the form:

1. t: the tuple’s value of the join attribute. Notice that a single entry is created

per value even if t appears multiple times, whether in a single stream or in

multiple streams.

2. V OL−ptr: a pointer to the Value-Occurrence List (or VOL). VOL stores every

occurrence of the value t. An entry in VOL contains the following:

(a) S: an identifier of the stream that produced the value t.

(b) τ : the timestamp at which t was produced.

VOL is reverse-ordered based on timestamp (i.e., τ). A newly-incoming tuple

is appended at the head of VOL.

Finally, every single occurrence of a tuple (t,[S, τ]) is chronologically chained,

i.e., based on timestamp, in a global Clean-Sweep List (or CSL)). CSL spans all

63

PROCEDURE Insert-Probe

INPUT: (1) a new input tuple (t̂,[Ŝ, τ̂]) and (2) an VAJoin hash table

OUTPUT: (1) an updated VAJoin hash table (2) the join output produced by tuple t̂

1. TVLEntry=TVL[(H(t̂)].Search(t̂)

2. VOLEntry=TVLEntry.vol-ptr.Insert(Ŝ, τ̂)

3. CSL.Append(VOLEntry)

4. temp=TVLEntry.vol-ptr.first;

while(temp6=NULL and τ̂ − temp.τ ≤ ω)

begin

if Ŝ 6= temp.S Append temp.τ to Sublisttemp.s

temp=temp.next

end

Output ← t̂, Cartesian product([Ŝ , ˆtau], Sublisti∀i = 1..k), where k is the total number of sublists

5. Traverse CSL to delete expired tuples

Figure 5.2. The VAJoin algorithm.

partitions of the hash table to link all tuples from all streams (with the oldest at the

head of the list). The purpose of CSL is to expire tuples once they get outside the

sliding window ω.

5.2.2 Variable-Arity Join Algorithm

The algorithm for the proposed VAJoin is given in Figure 5.2. This algorithm

is executed by the query processor whenever it receives a new reading from one of

the incoming data streams. In Step 1, with the arrival of a new tuple t̂ from stream

64

Ŝ at timestamp τ̂ , the hash function H is applied over t̂ to determine the partition

where the tuple should go. Then, the partition’s tuple value list (TVL) is searched

to return a handle to the tuple’s entry in TVL. If the tuple is not found, a new

entry in TVL is created. In Step 2, the stream that generated the tuple (Ŝ) and the

tuple’s timestamp (τ̂) are inserted at the head of the value occurrence list (VOL)

that is associated with TVLEntry to denote a new occurrence of t̂. Step 3 appends

the tuple’s occurrence to the clean-sweep list (CSL) that maintains all tuples based

on their arrival order for later clean-up purposes. In Step 4, we traverse the value

occurrence list (VOL(t̂)) until we reach its end (temp=NULL) or until we reach a

tuple that is far in the past by more than the window size (τ̂ − temp.τ > ω). As we

traverse V OL, we form the join output from the value occurrences in other streams

(i.e., Ŝ 6= temp.S). The join output is formed by separating the values in VOL

based on their source stream into k sublists, i.e., a sublist per stream. Then, we

compute the Cartesian product of k + 1 sublists: the k sublists plus a sublist of one

tuple, the probing tuple t̂. The Cartesian product of the sublists is equivalent to

the join output since the join condition (i.e., equality on the tuple value) has been

already fulfilled by pre-grouping tuples by value in the same VOL. Finally, in Step

5, we traverse the clean sweep list (CSL) to delete any tuple with a timestamp that

is outside the most recent sliding time-window, i.e., Current time − CSL.τ > ω.

Although we choose to perform the clean-sweep step with the arrival of every tuple,

the clean-sweep step can be performed periodically or in a lazy fashion when there

is plenty of system resources.

5.2.3 Support for Multiple Window Sizes

Up to this point, we assumed that the join operation is performed over a sliding

window ω such that ω is fixed for all data streams. However, some applications

require a different window size for each data stream (i.e., ωi is the sliding window

over stream Si). In the literature, binary join is performed over two streams such

65

that each stream has its own window size [54]. The generalization of having multiple

window sizes in the multi-way join is legitimate as well. Allowing multiple window

sizes gives the flexibility to vary the memory overhead over different regions of the

streaming environment and accommodates variable streaming rates and sensitivity

to the occurrence of various events in the environment.

In the variable-arity join, it is straightforward to support multiple window sizes;

We just need to change Step 4 of Figure 5.2 as follows:

temp=TVLEntry.vol-ptr.first;

while(temp 6=NULL and τ̂ − temp.τ ≤ ωMAX) begin

if Ŝ 6= temp.S and τ̂ − temp.τ ≤ ωtemp.S

include temp.τ in the join output of t̂

temp=temp.next

end

We make two modifications. First, we traverse the value occurrence list (V OL)

till we reach the maximum ω (i.e., τ̂ − temp.τ ≤ ωMAX). Second, for each entry in

the V OL, the timestamp of an element of stream Si is tested against its own window

size ωtemp.S instead of ω, i.e., τ̂ − temp.τ ≤ ωtemp.S.

5.2.4 Variable-arity Join Versus Outer Join

The concept of variable-arity join has three major advantages over outer join.

First, the variable-arity join avoids unnecessary long chains of probing sequences.

Other techniques, i.e., binary join trees or MJoin, need to probe large numbers of

streaming sources that may produce no output.

Second, the variable-arity join avoids partial-result processing. Binary join trees

or MJoin consume system resources in processing partial results. Consider a join

probing sequence of k tables (h1, h2, · · · , hk). The partial result up to table hi is the

result of (h11h21· · ·1hi). In binary join trees or MJoin, partial results have to be

66

maintained (and padded with NULLs if no matching tuples are found) with every

probe until the probing sequence is exhausted. The cost of a complete traversal

over the partial-result tuples to pad them with NULLs becomes significant with the

increase in the partial result size and with the increase in the number of data streams.

In the variable-arity join, we retrieve tuples (and only tuples) that contribute to the

output with a single traversal of VOL.

Third, the variable-arity join accommodates the dynamic reconfiguration of a

streaming environment at no additional cost. Since all stream readings are hashed

to the same global table, the addition and/or deletion of a streaming source affects

neither the data structure nor the algorithm of the join. In contrast, binary-join

trees require a reorganization of the join tree. Also, in response to changes in the

number of streaming sources, MJoin creates and/or removes hash tables and adjusts

the join probing sequence of incoming tuples accordingly.

5.3 Mathematical Analysis

The time required to generate the output tuples is the key factor that differenti-

ates among the performance of various join techniques. In this section, we analyze

and compare the output delays for both VAJoin and outer MJoin. The output delay

is defined as the time difference between the arrival of a tuple and the time its effect

appears in the output. We now estimate the average time required by both outer

MJoin and VAJoin to generate the output in the centralized case.

Outer MJoin VAJoin

Hash/Insert C1 C1

Probe C2(k − 1) −

Collision C3(k − 1)(distinct1
sizeH

) C3(distinct2
sizeH

)

Separation − C4Σk
i=1

σini

Form C5(
Qk−1

i=1
σini) × k C5(

Qk−1

i=1
σini) × 2kk′

Figure 5.3. Cost estimates of both MJoin and VAJoin.

67

The time required to process a tuple, say t, from an input stream is the accu-

mulated times taken to hash/insert t into its corresponding hash table, probe other

streams’ hash tables (this applies only to MJoin since there is only one hash table for

VAJoin), resolve collisions in the hash tables (only one table for VAJoin), separate

the different encountered tuples into their respective streams, this applies only to

VAJoin since the tuples for all streams are in the same hash table, and finally form

the output join tuples.

Given k input streams, Figure 5.3 provides the different formulas to compute the

time estimate for each of the above components for both outer MJoin and VAJoin.

The hashing and insertion steps for both joins are achieved in constant time, i.e., C1.

Outer MJoin probes all other hash tables than t’s table (k − 1) looking for matches

even if the tuple value is missing in one of the hash tables. As a result, the probe cost

corresponds to the product of a constant C2 by (k − 1). In contrast, since VAJoin

maintains only one hash table, all potentially joining tuples are accessible directly

for the current entry in this hash table and thus the cost of probe is null.

Both joins are subject to collisions in the hash table, the cost of these collisions

corresponds to the average number of possible distinct values in the hash table

divided by the number of buckets in this hash table (sizeH). Notice that the number

of distinct values in outer MJoin (distinct1) is different from the number of distinct

values in VAJoin (distinct2) because the VAJoin hash table receives tuples from all

streams while, in MJoin, each hash table maintains the values that are coming from

a single stream. For the outer MJoin, this cost is repeated (k − 1) times, i.e., for

probing all the hash tables except the hash table of the stream that is producing the

value.

Since VAJoin groups all tuples in one single hash table it needs to separate the

tuples coming from different streams into k lists to be able to join them afterwards.

This cost is equivalent to a single traversal of the value occurrence list (VOL). The

size of the VOL on average for a specific value equals the summation of the average

number of tuples per stream (ni) multiplied by the average selectivity of this value

68

in that stream (σi) for all k streams, which results in C4Σ
k
i=1σini. The outer Join

is not subject to this separation cost since tuples from the same stream are in the

same table.

The tuple formation cost is computed based on the size of the output that is

the product of the number of output tuples,
∏k

i=1 σini for both joins, by the tuple

size that corresponds to the number of streams k for the outer MJoin, and 2kk′ for

VAJoin. The parameter k′ < 1 is usually very small. It represents the fact that

only a small percentage of streams will join (locality of phenomena). This is what

will reduce the size of the output which will be limited to only those streams that

contribute to the join. The factor 2 in the formula is needed since the variable-arity

join requires both the tuple’s timestamp and its corresponding stream id, i.e., ([Ŝ, τ̂]),

to be reported in the output join tuple. The experimental study in Section 5.4 shows

how this analysis compares to the actual experiments.

5.4 Experimental Analysis

We now present the experimental study we conducted to explore the performance

of the proposed VAJoin operator. We base our study on the two experimental setups

of Nile PhenomenaBase that are described in Section 2.5; a real small-scale sensor

board and a simulated large-scale sensor network. In both setups, the join techniques

are triggered through a multi-way join query with a sliding window of size 10 seconds.

Two sets of experiments are performed. The first set of experiments (Section 5.4.1)

investigates the performance under the real sensor-platform setup. The second set

of experiments (Section 5.4.2) addresses the large-scale simulated sensor-network

setup and examines the dynamic reconfiguration of the network. In Sections 5.4.1

and 5.4.2, we compare the performance of the following three techniques:

1. HMJ-tree, where an outer join is performed using a binary tree of binary hash

merge join operators.

69

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

O
u
tp

u
t
d
e
la

y
 (

u
s
e
c
)

Number of sensors

HMJ-tree
MJoin

VAJoin

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

D
ro

p
 r

a
te

 (
%

)

Number of sensors

HMJ-tree
MJoin

VAJoin

(a) Output delay (b) Input drop rate

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25

O
u
tp

u
t
ra

te
 (

tu
p
le

/s
e
c
)

Number of sensors

HMJ-tree
MJoin

VAJoin

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

HMJ-tree
MJoin

VAJoin

(c) Output rate (d) Phenomena updates

Figure 5.4. Performance under real small-scale data sets.

2. MJoin, where an outer join is performed using the single-step symmetric MJoin

operator.

3. VAJoin, where a variable-arity join is performed as described in this paper.

Section 5.4.3 compares the mathematical analysis of Section 5.3 against the experi-

mental results that are obtained in this section.

The overall system performance is measured in terms of the number of detected

phenomena updates per second. Other measures of performance include the output

delay, the input drop rate, and the output rate. The output delay is the time dif-

ference between the arrival of a tuple and the time its effect appears in the output.

Due to the system’s limited CPU time and the continuous arrival of stream data,

70

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 400 600 800 1000 1200 1400 1600 1800 2000

O
u
tp

u
t
d
e
la

y
 (

u
s
e
c
)

Number of sensors

HMJ-tree
MJoin

VAJoin

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600 1800 2000

D
ro

p
 r

a
te

 (
%

)

Number of sensors

HMJ-tree
MJoin

VAJoin

(a) Output delay (b) Input drop rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200 400 600 800 1000 1200 1400 1600 1800 2000

O
u
tp

u
t
ra

te
 (

tu
p
le

/s
e
c
)

Number of sensors

HMJ-tree
MJoin

VAJoin

 10

 20

 30

 40

 50

 60

 70

 80

 90

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

HMJ-tree
MJoin

VAJoin

(c) Output rate (d) Phenomena updates

Figure 5.5. Performance under synthetic large-scale data sets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

HMJ-tree
MJoin

VAJoin

Figure 5.6. The effect of dynamic network configuration.

some input tuples are dropped randomly from the system’s buffers to accommodate

new tuples (i.e., random load shedding). In all experiments, we assume that tuple

71

dropping occurs due to limited CPU time and not to limited memory. We allocate

enough memory to accommodate all tuples in the sliding window. We measure the

number of dropped input tuples relative to the total number of input tuples as the

input drop rate. The output rate is measured in terms of the number of output

join tuples per second. All the experiments in this section are based on a proto-

type implementation of the join operators inside Nile PhenomenaBase. The Nile

PhenomenaBase engine executes on a machine with Intel Pentium IV, CPU 2.4GHZ

and 512MB RAM running Windows XP.

5.4.1 Performance Analysis Using Real Data Sets

The performance of a HMJ tree, MJoin, and VAJoin under the real sensor-

platform setup is given in Figure 5.4. As illustrated in Figure 5.4a, VAJoin reduces

the output delay by up to 36% over the HMJ tree and by up to 19% over MJoin

(in case of 20 sensors). The output delay reflects the per-tuple processing time

(i.e., from the time a tuple arrives at the operator buffer till its effect appears in

the output). Notice that operators with lower per-tuple processing time, exhibit a

lower input drop rate (Figure 5.4b), and consequently produce a higher output rate

(Figure 5.4c). From the point of view of the overall-performance, VAJoin detects up

to 75% more phenomena updates than HMJ trees and up to 43% more phenomena

updates than MJoin (Figure 5.4d).

5.4.2 Performance Analysis Using Synthetic Data Sets

Performance gains of VAJoin become more significant for large-scale sensor net-

works. In contrast to binary join trees and MJoin, VAJoin avoids unnecessary probes

to a huge number of separate tables, and therefore, reduces its per-tuple processing

time. The same experiments of Section 5.4.1 are repeated using the 2000 sensor sim-

ulated setup. Figure 5.5 illustrates the efficiency of VAJoin in terms of the output

delay, the input drop rate, and the output rate. VAJoin doubles the output rate

72

of a HMJ tree and increases the output rate by up to 60% over MJoin. Moreover,

VAJoin detects up to 180% more phenomena updates than HMJ trees and up to

85% more phenomena updates than MJoin.

Figure 5.6 gives the behavior of the join techniques with respect to the dynamic

configuration of the network. Every minute, a group of sensors (randomly chosen

between 1 and 100 sensors) is either added or removed from the sensor set. Com-

paring Figure 5.5d and Figure 5.6, notice that the dynamic behavior of the network

reduces the number of detected phenomena updates by up to 80% in case of a HMJ

tree and by up to 50% in case of MJoin. However, the performance of VAJoin is

reduced by only 20% (at 2000 sensors).

5.4.3 Comparison of the Analytical and the Experimental Results

In this section, we compare the output delay obtained from the analytical study

presented earlier with the output delay obtained through experiments. The values of

different constants that appear in the analytical analysis are summarized in Table 5.7.

In this setup, we vary the number of sensors (k) from 5 through 25. We consider

1000 readings from each sensor (Averagen) such that the domain from which these

readings are drawn is of size 100 (Distinct1). We set the number of buckets in all

hash tables to 13 (Size of hash table). All the constants (C1 · · ·C5) along with the

selectivity among sensor data are assessed experimentally based on the generated

values. Notice that the selectivity varies for each value of k (the number of sensors).

Similarly, the parameter Distinct2, which represents the total number of distinct

elements in the global hash table of VAJoin, has a different value for each value of

k. If each sensor has a 100 distinct value in its own hash table, the global hash table

is supposed to contain less than k × 100 distinct values due to the overlap of these

values among the k sensor readings. Finally, the average number of joining streams

(k′) is obtained experimentally (from the real sensor board experimental setup) and

is found to be 40%.

73

Figure 5.8 gives the result of the comparison. The analytical and experimental

output delays exhibit the same trend for both VAJoin and outer MJoin. We notice

that VAJoin performs better than the outer MJoin even with a relatively large value

for k′, 40% in this case. The more the phenomena are localized, the smaller the k′

is and the better performnace of VAJoin is.

Parameter Value Computed/Assumed

k [5, 10, 15, 20, 25] Assumed

Averagen 1000 Assumed

Distinct1 100 Assumed

Size of hash table 13 Assumed

C1 26.25 Obtained experimentally

C2 06.93 Obtained experimentally

C3 0.24 Obtained experimentally

C4 2.72 Obtained experimentally

C5 5.7 Obtained experimentally

Selectivity [0.00130, 0.00129, 0.00122, 0.00116, 0.00112] Obtained experimentally for each value of k

Distinct2 [210, 372, 455, 485, 494] Obtained experimentally for each value of k

k′ 40% Obtained experimentally

Figure 5.7. Parameter and Constant Values for the Comparison.

5.5 Related Work

A large body of research in the data streaming area focuses on the join oper-

ation, e.g., [2, 51–53]. To highlight the reasons that make VAJoin applicable in

phenomenon-aware DSMSs, we overview related multi-way join techniques and com-

pare them to VAJoin. Multi-way join can be achieved through a tree of binary joins

(either symmetric hash join [55], XJoin [56], or hash merge join [57]), a single MJoin

operator [34], or a single VAJoin operator. Based on the experiments in Section 5.4,

Figure 5.9 provides a comparison among various multi-way join techniques based on

a key set of distinguishing features.

74

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 5 10 15 20 25

T
o
ta

l
ti
m

e

Number of sensors

MJoin(Analytically)
MJoin(Experimentally)

VAJoin(Analytically)
VAJoin(Experimentally)

Figure 5.8. Comparison of Analytical and Experimental Output De-
lay for outer MJoin and VAJoin.

Trees of binary joins are not scalable due to their multi-step non-symmetric pro-

cessing. For the same reason, trees of binary joins do not allow the dynamic config-

uration of streaming environments (unless query plan reorganization is performed).

On the other hand, MJoin and VAJoin are symmetric, scalable, and dynamically

configurable. Also, the output delay in binary join trees increases with the increase

in the number of tree levels. The single-step processing of MJoin and VAJoin re-

sults in a lower output delay. Moreover, VAJoin is specially designed for large-scale

dynamically-configured sensor networks. Trees of binary joins are sensitive to vari-

able input rates and require reorganization of the query plan operators (e.g., see [58])

to increase the output rate. All techniques handle outer joins by traversing the

join probing sequence completely. On the other hand, VAJoin supports, by design,

variable-arity joins to avoid long chains of probing sequences.

75

Binary join MJoin VAJoin

Trees

Scalability × √ √√

Dynamic configuration × √ √√

Symmetric Join × √ √

Reduction in output delay × √ √

Sensitivity to variable i/p rates
√ × ×

Query plan reorganization
√ × ×

variable-arity join support × × √

(×: feature not supported,
√

: feature supported,
√√

: feature supported and enhanced)

Figure 5.9. Comparison among various multi-way join techniques.

5.6 Summary

In this chapter, we presented the VAJoin operator, a variable-arity join operator

for phenomenon detection and tracking techniques inside phenomenon-aware DSMSs.

To meet the demands of streaming environments, VAJoin is designed to scale with

respect to the number of streaing sources in the monitored environment without

sacrificing the join output rate. Analytical and experimental studies that are based

on a prototype implementation of the join operators inside Nile PhenomenaBase

show the scalability of VAJoin. VAJoin increases the output rate over binary join

trees and MJoin. Once VAJoin is adopted by Nile PhenomenaBase, the number of

detected phenomena updates is increased while the output delay is reduced.

76

6 ADAPTIVE PHENOMENON-AWARE QUERY OPTIMIZATION

Data streams that are generated from close-by regions experience similar environ-

mental conditions that result in distinct phenomena. Previous chapters of this dis-

sertation are dedicated to detect and track various phenomena inside a data stream

management system (DSMS). In this Chapter, we use the detected phenomena and

their spatial properties to reduce the demand on the DSMS resources when executing

large numbers of concurrent continuous queries. The main idea is to let the DSMS

observe the input data streams at the phenomenon level. Then, each incoming con-

tinuous query is directed only to those phenomenon regions that are likely to satisfy

the query predicates. More specifically, each incoming continuous query is directed

only to those input streams that participate in the query answer. Two levels of in-

dexing are employed, a phenomena index and a query index. The phenomena index

provides a fine resolution view of all the input streams that participate in a partic-

ular phenomenon. An input stream that does not participate in any phenomenon

is considered an outlier and is not involved in the query answer. The query index

utilizes the phenomena index to maintain a query deployment map in which each

input stream is aware of the set of continuous queries that the stream contributes to

their answers. Experimental results show the efficiency of our approach with respect

to the accuracy of the query result and the resource utilization of the DSMS.

6.1 Background and Motivation

Huge amounts of data are streamed out from large numbers of streaming sources

that are widely and densely deployed in the surrounding environment. Having such

large numbers of streaming sources poses new challenges to the query processor in

data stream management systems. The highly-dynamic nature of the streaming

77

environments makes indexing the sources an infeasible solution. With the absence of

efficient indexing schemes and the absence of any prior knowledge about the nature

of streaming sources, queries may need to scan all the streaming sources to obtain

an accurate answer. However, two main issues hinder the practicality of a sequential

scan over input streaming sources: (1) The limited resources (e.g., computation and

power resources) at the input streaming sources do not allow the participation of

each streaming source in each outstanding continuous query. (2) Due to the real-

time requirements of spatio-temporal queries and the large numbers of potential

streaming sources, a database server cannot scale to process each single reading

from each single source.

Recent research in exploiting the properties of spatio-temporal streams concluded

that streaming sources that are spatially co-located tend to experience similar phe-

nomenon conditions and provide similar readings over a certain period of time (e.g.,

see [11, 13, 15, 29–31]). Typically, in an environment with large numbers of stream-

ing sources, there always exist a large number of various overlapped phenomena of

different sizes and shapes. Due to the highly-dynamic nature of streaming sources,

phenomena continuously change their sizes and locations over time.

In this chapter, we propose an adaptive stream query optimization paradigm,

termed phenomenon-aware query optimizer. The main idea is to make use of the

efficient techniques for phenomenon detection and tracking to optimize subsequent

queries. In this chapter, we focus on one type of queries, namely the selection queries.

Detected phenomena act as an indexing scheme that direct the execution of selection

queries to only those streaming sources that can contribute to the query answer. By

looking at the existing phenomena within the streaming sources, the query processor

will have a fine resolution view over all the streams. Based on this fine view, the

query optimizer decides which phenomena need to be investigated more to answer

the selection predicate of a specific query. The phenomenon-aware query optimizer

achieves a trade-off between the number of streaming sources participating in query

execution and the accuracy of that query. One of the main attractive features of the

78

proposed phenomenon-aware query processor is that it is inherently equipped with

an outlier-detection that makes it sustainable to the noisy environment of streaming

sources. Outlier or isolated streaming sources that do not contribute to any phe-

nomena do not appear in the finer resolution view. Thus, they do not contribute to

the query answer.

To efficiently realize the phenomenon-aware query processor, we employ two in-

dexing schemes, the phenomenon index and the query index. The phenomenon in-

dex keeps track of currently detected phenomena within the stream resources. The

main assumption behind this indexing is that the change in the phenomena pa-

rameters (e.g., shape and location) is much less frequent than the change in the

spatio-temporal streaming sources. Thus, while it is almost infeasible to index the

spatio-temporal streaming sources, we can provide an efficient indexing scheme for

the list of phenomena over the streaming sources. On top of both the phenomenon

index and the query index, a query deployment map is maintained. The query deploy-

ment map allows each streaming source to subscribe only to a list of queries that the

streaming source contributes to their answer. Moreover, the proposed phenomenon-

aware optimizer handles both stationary streaming sources as well as mobile stream-

ing sources. Mobile streaming sources are streaming sources that are attached to

moving objects. Mobile streaming sources generate streams of readings as the mov-

ing objects move in space. Examples of mobile streaming sources include RFIDs

that are attached to moving vehicles or temperature sensors that are attached to

firefighters. Mobile sensors are of special interest to phenomenon-aware optimizers

because mobile objects experience different phenomena as they move from one region

to another. Consequently, the phenomenon-aware optimizer is required to reorga-

nize its query deployment map dynamically. To address the mobility of streaming

sources, we modify the phenomenon definition to include the spatial properties of

the phenomenon as described in Section 6.3. Once a streaming source moves from

a phenomenon region (R1) to another phenomenon region (R2), the query deploy-

ment map is reorganized to associate the queries that are interested in R2 with the

79

streaming source. In summary, the contributions of this chapter are summarized as

follows:

1. We introduce the concept of phenomenon-aware query processing and empower

data stream management systems with an adaptive phenomenon-aware opti-

mizer.

2. We propose two levels of indices at the core of the phenomenon-aware opti-

mizer; a phenomenon index and a query index.

3. Given the phenomenon and the query indices, we generate an efficient query

deployment map where each query is deployed over a small subset of data

streams (e.g., 5.5% of the total number of sensors).

4. We provide an experimental evidence that phenomenon-aware query processing

increases the output rate of continuous queries that are registered at the system

(by up to 300%).

The rest of this chapter is organized as follows. Section 6.2 describes the ar-

chitecture of the phenomenon-aware optimizer. Sections 6.3 and 6.4 describe the

phenomenon index and the query index, respectively. Section 6.5 gives the imple-

mentation details while Section 6.6 provides an experimental study of the proposed

indices inside Nile PhenomenaBase. An overview of the related work is given in

Section 6.7. Finally, Section 6.8 summarizes the chapter.

6.2 System Architecture

Figure 6.1 gives the architecture of the proposed phenomenon-aware query op-

timizer. The phenomenon-aware optimizer has three main components: the phe-

nomenon monitor, the query plan analyzer, and the query dispatcher. The phe-

nomenon monitor keeps track of existing phenomena as they move in space through

the phenomenon index. The phenomenon index indexes phenomena by their value

80

Query Dispatcher

Query Plan Analyzer

Phenomenon Monitor

Index
Phenomenon

Query
Index

Query Deployment Map

Stream of Location UpdatesStream of Phenomenon Updates

Query Plans

Stream Monitor

Spatio−temporal Data Streams

Phenomenon Detector

Phenomenon−aware Optimizer

Figure 6.1. The Architecture of a phenomenon-aware Optimizer.

contents. The query plan analyzer traverses the phenomenon index for each query

plan to decide which phenomenon regions are likely to satisfy the query predicates.

Then, the query index is built to index queries spatially based on their regions of

interesting phenomena. The query dispatcher updates the query deployment map

according to the new locations of streaming sources. Then, the query dispatcher

executes each query only over its regions of interest.

Inputs to the phenomenon-aware optimizer are of three types: a stream of phe-

nomenon updates, a stream of location updates, and a set of query plans. The stream

of phenomenon updates provides the optimizer with the necessary knowledge about

phenomena in the space. A phenomenon update tuple has one of the following two

forms: (Phenomenon-id, Behavior-Update, B) or (Phenomenon-id, Region-Update,

R) to indicate a behavior or a region update, respectively. A phenomenon-behavior

update implies a change in the readings of the phenomenon underlying streams, e.g.,

81

an increase in the temperature readings of a fire. A phenomenon-region update im-

plies a displacement of the streaming sources contributing in the phenomenon, e.g.,

the movement of a fire in accordance with the direction of the wind. The stream of

location updates provides the optimizer with the current locations of the streaming

sources and it has the form (StreamSource-id,x,y), where x and y are the location

coordinates. The set of query plans is processed by the optimizer based on the knowl-

edge of phenomena in the space. Recall from Chapter 2 that the phenomenon-aware

optimization is triggered through select-within-phenomena queries.

The phenomenon-aware optimizer generates a query deployment map as its out-

put. The query deployment map is represented as a sequence of commands with the

form (StreamSource-id SUBSCRIBES TO Query-id) to indicate the streaming

sources that are of interest to a particular query.

As described in Chapter 2, the basic components of Nile are the stream admis-

sion controller, the query admission controller, the stream monitor, the query plan

generator, and the query executer. The PDT-module is added to Nile to detect

the appearance of new phenomena and to track the propagation of already-detected

phenomena. The phenomenon-aware optimizer, which is the focus of this chap-

ter, optimizes user queries based on the feedback it receives from the PDT-module.

Figure 2.1 illustrates how the phenomenon-aware optimizer is connected to other

components of the system. The optimizer receives a stream of phenomenon updates

from the PDT-module. Also, the stream monitor generates a stream of location

updates and passes it to the PDT-module, which in turn forwards these location

updates to the phenomenon-aware optimizer. Also, the optimizer receives a set of

query plans from the query plan generator. Then, the optimizer generates efficient

query plans and efficient query deployment maps (QDMs) that are sent over to the

query executer.

82

6.3 Phenomenon Indexing

This section exploits the spatial properties of the phenomenon definition given

in Section 2.1 and provides a description of the phenomenon index and its manip-

ulating algorithms. Definition 2.1.1 defines a phenomenon at time instant τ to be

an R-B pair, where R is a list of streaming sources with similar behavior and B is

a representative behavior for the phenomenon over a sliding window of size ω. In

this chapter, we utilize the spatial attributes of the streaming sources in R. We

refer to R as the bounding box of all streaming sources that contribute to the phe-

nomenon. Definition 6.3.1 extends the phenomenon definition of Chapter 2 with the

phenomenon spatial attributes.

Definition 6.3.1 A phenomenon P at time instant τ is a binary tuple (R ,Bω),

where R is the bounding box of the streaming sources contributing to P and Bω is

the representative behavior of phenomenon P over the most recent time window of

size ω, such that ∀Si ∈ R, Count(V alue(Si[τ̂]) ∈ Bω) ≥ α, τ̂ ∈ [τ − ω + 1 · · · τ] and

||R|| ≥ β.

Based on Definition 6.3.1, a phenomenon has to be associated with a time in-

stant τ , changes its location R and behavior Bω with time, and is captured over

a time window of time ω to ensure its persistency. Streaming sources that fall in

the phenomenon region report values similar to the phenomenon behavior with high

probability. As described in Section 2.1.2, Bω captures the intrinsic features of the

underlying phenomenon, e.g., values, frequencies, and trends of tuples contributing

to the phenomenon. The exact choice of the parameters represented within Bω is

orthogonal to the phenomenon indexing. The only requirements from Bω is to satisfy

the following two properties: (1) Fast online processing. The phenomenon behavior

should be captured and updated quickly to fit in the online data-streaming envi-

ronment, (2) Adherence to the postulates of a metric space. The distance among

the behavior of different phenomena should be positive, symmetric, and satisfy the

83

triangular inequality. Based on the phenomenon behavior properties, we identify the

following two interface functions:

1. P2P-Dist(P1,P2): A phenomenon-to-phenomenon distance function to com-

pute the distance between the behaviors of two phenomena. The P2P-Dist

function is used to maintain the phenomenon index upon insertion and dele-

tion of phenomena.

2. Q2P-Dist(Q,P): A query-to-phenomenon distance function to compute the

distance between a given query Q and the behavior of a phenomenon P . The

Q2P-Dist function is used by outstanding queries to search the index for inter-

esting phenomena.

All the manipulation algorithms for both the phenomenon index and the query

index are presented in terms of these two behavior interface functions.

6.3.1 The Phenomenon-Index Structure

Figure 6.2 illustrates the phenomenon index. The phenomenon index has two

types of nodes: leaf nodes and non-leaf nodes. One leaf node is constructed per phe-

nomenon to store the following information: (1) Ph-id, the phenomenon identifier,

(2) R, the current phenomenon region, and (3) LSQ, a list of satisfied queries, i.e.,

queries with predicates that are satisfied by values of the phenomenon. Non-leaf

nodes direct the search operation to leaf nodes by recursively grouping nodes with

similar behavior together. Each non-leaf node maintains a list of <child-ptr, B>

pairs where child-ptr is a pointer to the child whose behavior is B. As we go up the

tree, the behavior field B in the non-leaf node is set to be a representative for the

behavior of all the phenomena in the child subtree.

84

Nodes
Leaf

Nodes
Non−leaf

P1

P2

Pn

P3

P4
P5

Phenomenon Updates

Streams of

B(1,3) B(2,5) B(4,n)

B(1) B(3) B(2) B(4) B(n)

R2

Ph−id:4

R3 R4LSQ3LSQ2 LSQ4LSQ1R1 Rn LSQnR5

B(5)

Phenomenon Monitor

LSQ5

Ph−id:1 Ph−id:2 Ph−id:3 Ph−id:5 Ph−id:n

Figure 6.2. The phenomenon index.

6.3.2 Maintaining the Phenomenon Index

Figure 6.3 gives the algorithm of maintaining the phenomenon index when re-

ceiving a change in the phenomenon behavior. The inputs to the algorithm are the

phenomenon identifier (Ph-id) and the new behavior (Bnew). To avoid updating the

phenomenon index for marginal phenomena changes, we compare the input behav-

ior to the base phenomena behavior, i.e., the one used on building the phenomena

index. Then, we process the incoming phenomena update only if it is more different

than the base one by the behavior tolerance parameter (BTP) (Steps 1 and 2 in Fig-

ure 6.3). Examples of marginal phenomena update that we want to avoid processing

include the temperature readings inside a fire region where temperature fluctuates

up and down by small amounts. Updating the index with every behavior update may

overload the system. Once the distance between the current and the base behaviors

85

PROCEDURE Update-Phenomenon-Behavior (Ph-id,Bnew)

1. CurrentBehvior(Ph-id)=Bnew

2. if P2P-Dist(CurrentBehvior,BaseBehvior)≤BTP

exit

3. BaseBehvior(Ph-id)=Bnew

4. Propagate (Ph-id,Bnew) update to upper levels of the index

5. FOR (i=1 TO sizeof(Ph-id.LSQ))

if Q2P-Dist(Ph-id.LSQ[i],Ph-id)> d

delete(Ph-id.LSQ[i])

6. Node-Ptr=LeafNode(Ph-id)

Do

(a) Node-Ptr=ParentNode(Node-Ptr)

(b) Changed=FALSE

(c) FOR EVERY leaf nodes LN in Node-Ptr subtree S.T. LN is not visited before

FOR (i=1 TO sizeof(LN.LSQ))

if Q2P-Dist(LN-Ptr.LSQ[i],Ph-id)≤d

add LN-Ptr.LSQ[i] TO LeafNode(Ph-id)

Changed=TRUE;

WHILE (Changed)

Figure 6.3. An algorithm to accommodate changes in queries’ interest.

goes above BTP, the value of the current behavior is copied into the base behavior

(Step 3 in Figure 6.3). Then, the base behavior is propagated up the phenomenon

index causing updates in the non-leaf index nodes (Step 4 in Figure 6.3). For all

86

the queries that were interested in the phenomena (LSQ), we check whether they

are still interested in the new value of the phenomena. This is performed by go-

ing through all the queries in LSQ and computing the distance between each query

and the phenomenon’s new behavior. If the distance becomes over d, the query is

removed from the LSQ of this phenomenon region (Step 5 in Figure 6.3).

To discover the new queries that become interested in the new behavior of phe-

nomenon Ph-id, we make use of the similarity in behavior among neighboring regions

in the phenomenon index (Step 6 in Figure 6.3). The main idea is to backtrack the

path from the leaf node of phenomenon Ph-id in the phenomenon index to the root

node. Initially, let Node-Ptr point to the parent of the leaf node that contain the

phenomenon with new behavior (i.e., phenomenon Ph-id). We identify the queries

that are in the subtree of Node-Ptr and, are not in the phenomenon query list (i.e.,

LSQ of Ph-id). These identified queries are candidates to be added to the LSQ of

the phenomenon Ph-id if they show interest in the phenomenon’s new behavior. We

measure the distance between every query in the Node-Ptr subtree and the new be-

havior of phenomenon Ph-id. If a query is within distance d from the phenomenon’s

new behavior, the query is added to the LSQ of the phenomenon Ph-id. We go

up the phenomenon index one more level (Node-Ptr=ParentNode(Node-Ptr)) and

repeat the same process. As we go up the phenomenon index, the similarity between

the queries and the phenomenon’s new behavior decreases. We stop ascending he

index once we reach a level where no more queries are added to the LSQ of Ph-id

leaf node.

6.3.3 Searching the Phenomenon Index

A query is executed over a phenomenon region if the phenomenon behavior is

within distance d from the query (based on the Q2P-Dist function). For each query, a

range selection (with the query in the center and with a radius of d) is executed over

the phenomenon index. With the increase in d, the query is deployed over a larger

87

number of phenomenon regions. Consequently, more output tuples are produced at

the expense of consuming more system resources. On the other hand, decreasing d

conserves the system resources and produces less output tuples. Choosing the value

of d depends on two factors: (1) The availability of resources (which are assigned to

queries based on their priorities) and (2) The quality of the output. Varying d both

over time and from query to query gives the flexibility to tune every query based on

the quality of its output.

Figure 6.4 gives the algorithm that measures the quality of a query output in

terms of the average number of output tuples per second per stream compared to

other queries. This measure reflects the relative (i.e., to other queries) output gain

(i.e., output tuples per second) per unit cost (i.e., deploying the query over one

stream). The input to the algorithm is an initialization vector for the values of

d, one entry per query. Initially, the value of d for each query Qi is set to its

corresponding initial value dinitial[i] (Step 1a in Figure 6.4). In addition, we initialize

a safety vector to the corresponding dinitial multiplied by a safety factor (Step 1b in

Figure 6.4). The safety vector is used to prefetch a larger number of regions than

required when searching the phenomenon index, i.e., a superset of the result returned

by vector d (Step 1c and 1d in Figure 6.4). The main idea is to avoid searching the

index multiple times if the values in vector d increase over time.

For every existing query, we evaluate its quality measure (Step 2a in Figure 6.4).

Then, we find the average value for the quality measure over all queries (Step 2b in

Figure 6.4). For each query, the value of d is tuned based on the relative performance

of each query µ·QMi

AvgQM
where µ is a weight factor between 0 and 1 that indicates how

fast we propagate updates to the values of d. If the new value of d exceeds the

precomputed safe value dsafe, dsafe values have to be updated and phenomenon

index has to be searched gain. Finally, the query is dispatched to the new set of

phenomenon regions and the algorithm goes into a sleep period before it is executed

again (Step 2d in Figure 6.4). The safety factor, µ, and the length of the sleep period

are all system tuning parameters.

88

PROCEDURE Tune-d (dinitial[1 · · No-of-Queries])

1. FOR (i=1 TO No-of-Queries)

(a) d[i]=dinitial [i]

(b) dsafe[i]=dinitial[i] × SafetyFactor

(c) PhenomenonIndex.Search(Qi,dsafe[i])

(d) Dispatch(Qi,d[i])

2. WHILE (TRUE)

(a) FOR (i = 1 TO No-of-Queries)

QMi=
Output−tuples−per−secondi

No−of−Streamsi

(b) AvgQM=
P

QMi

No−of−Queries

(c) FOR (i = 1 TO No-of-Queries)

i. d[i] = d[i] × µ·QMi

AvgQM

ii. if d[i] > dsafe[i]

A. dsafe[i] = d[i]× SafetyFactor

B. PhenomenonIndex.Search(Qi,dsafe[i])

iii. Dispatch(Qi,d[i])

(d) wait a number of seconds

Figure 6.4. An algorithm to optimize the parameter d.

6.3.4 Queries with no Interesting Phenomena

Queries with no interesting phenomena do not have any phenomenon behavior

within a distance d. Such queries are not likely to produce results. To handle such

queries, we block their execution for a specific amount of time. After the blocking

period elapses, we reinvestigate the phenomenon index. The process is repeated until

the query gains interest in one of the phenomenon regions. The blocking time is a

89

system-tuning parameter that takes into account how tolerable we are in losing some

of the initial query results. This phenomenon-based processing may lose some of the

query output tuples if they are not part of a phenomenon. However, it saves the

system resources by drawing the query’s attention only to regions with a satisfactory

behavior. Alternatively, we can increase the parameter d by a specific factor and

repeat this process until the query shows interest in some phenomenon regions.

6.4 Query Indexing

This section describes building and maintaining the query index over the outcome

of the phenomenon index. The query index is used to index queries by their regions

of interest to generate efficient query deployment maps (QDMs). A QDM maps and

executes each query on a set of data streams. An efficient QDM deploys queries over

regions that are likely to satisfy the query predicates. As an alternative to QDM,

we define the stream’s query working set (QWS) to capture the same information as

QDM. A stream’s QWS (as in Definition 6.4.2) is the set of queries that are executed

on that stream. QDMs can be driven from the streams’ QWSs and vice versa, and

therefore, QDMs and QWSs are used interchangeably.

Definition 6.4.1 A query deployment map (QDM) gives for each query Q a set of

streams S such that ∀ si ∈ S, Q is executed on si.

Definition 6.4.2 A stream’s query working set (QWS) gives for each stream s a set

of queries Q such that ∀ Qi ∈ Q, Qi is executed on s.

Figure 6.5 illustrates the query index. Leaf nodes store the phenomenon iden-

tifiers, their regions R, and their corresponding lists of satisfied queries (LSQ), one

node per phenomenon. Non-leaf nodes are constructed to spatially index the bound-

ing boxes (bb) of phenomenon regions. The phenomenon index is a typical spatial

index (e.g., an R-tree or one of its variants) for phenomenon regions. However,

the selected spatial index structure needs to remain robust under heavy updates,

90

Nodes
Leaf

Nodes
Non−leaf

bb(R2,Rn)

R2

Ph−id:4

R3 R4LSQ3LSQ2 LSQ4LSQ1R1 Rn LSQnR5 LSQ5

Ph−id:1 Ph−id:2 Ph−id:3 Ph−id:5 Ph−id:n

bb(R1) bb(R4) bb(R2) bb(Rn) bb(R3) bb(R5)

bb(R1,R4) bb(R3,R5)

Figure 6.5. The query index.

R2:(Q2,Q5,Q7) R2:(Q2,Q5,Q7)R2:(Q2,Q5,Q7)

R4:(Q3,Q5,Q6)

loc (T−4)
s

loc (T−3)
s

s
loc (T−2)

loc (T)
s

sloc (T−1)
R1:(Q1,Q2,Q5)

R2:(Q2,Q5,Q7)

R3:(Q3,Q4,Q5,Q6)

Figure 6.6. An example update in stream locations.

i.e., insertions and deletions. These updates correspond to the movements of the

phenomenon regions in space over time.

The query index is constructed by the query plan analyzer and is searched by

the query dispatcher (refer to Figure 6.1). The query plan analyzer propagates all

updates in the region and the LSQ fields of the phenomenon-index leaf nodes to

the query-index leaf nodes. If a phenomenon region is updated, this phenomenon

region is deleted and is reinserted in the query index to adjust the index spatial

properties. Updates to the LSQ fields are kept in the query-index leaf nodes and

does not affect the index non-leaf nodes. For every stream, the query dispatcher

searches the query index to retrieve all phenomenon regions that overlap with the

stream’s location. The stream’s query working set (QWS) is the union of all LSQs

91

R2

Ph−id:4

R3 R4LSQ3LSQ2 LSQ4LSQ1R1 Rn LSQnR5 LSQ5

Ph−id:1 Ph−id:2 Ph−id:3 Ph−id:5 Ph−id:n

Phenomenon Updates

Query IndexPhenomenon Index

Query Plans Location Updates

Figure 6.7. The combined phenomenon and query index.

that are associated with regions overlapping with the stream’s location. The QWS

of stream sj is obtained as follows:

QWS(sj) =
⋃

LSQi such that sj.location ∈ Ri (6.1)

Equation 6.1 implies that each stream subscribes to all queries that are interested

in regions overlapping with the stream’s location. Queries that have no interest in

these regions are not executed on that stream. Therefore, no system resources are

wasted to process queries that are not likely to be satisfied by the stream readings.

The query dispatcher monitors changes in the streams’ locations to update their

QWSs dynamically. Figure 6.6 gives an example of a moving stream over the last

five time instants. At timestamp τ − 4 the stream falls in regions R3 and R4.

The stream’s QWS is set to be the union of all queries that are interested in these

two regions, i.e., (Q3, Q4, Q5, Q6)
⋂

(Q3, Q5, Q6) = (Q3, Q4, Q5, Q6). At timestamp

τ − 3 the stream is in region R4 only and Q4 is no longer interested in the stream’s

readings. As the stream moves to region R2 and R1, the QWS becomes (Q2,Q5,Q7)

and (Q1,Q2,Q5), respectively.

The leaf nodes in the phenomenon index have the same structure as the leaf nodes

in the query index. Hence, the leaf nodes are shared by the two indices as illustrated

92

Non-leaf nodes Leaf nodes

Phenomenon Index Query Index

Phenomenon behavior update
√ × √

Phenomenon region update × √ √

Query plan update × × √

Location update × × ×

Figure 6.8. Summary of updates to leaf and non-leaf nodes of the
proposed indices.

in Figure 6.7. Upon receiving a phenomenon update, the update is propagated up the

phenomenon index to reflect the phenomenon new behavior. Query plans search the

phenomenon index starting from the root downwards and update the LSQ fields of

the leaf nodes accordingly. Upon updating the leaf nodes, the query index has to be

updated from the bottom up to accommodate any changes in the region fields of leaf

nodes. Finally, the query index is searched from the top down with every update in

the network configuration to associate each stream with a set of phenomenon regions.

Figure 6.8 summarizes the effect of various types of updates on the leaf and the

non-leaf nodes of the phenomenon and the query indices. A behavior update affects

the non-leaf nodes of the behavior-based phenomenon index. Also, with a change

in the behavior of a phenomenon, queries change their interest in this phenomenon

region and the LSQs fields of the leaf nodes are updated. Therefore, a behavior

update affects both the leaf nodes and the non-leaf nodes of the phenomenon index.

A region update affects the non-leaf nodes of the region-based query index and the

region fields of the leaf nodes. The phenomenon index is searched using query plans

to annotate the leaf nodes with LSQs. Hence, a change in the query plans affects the

leaf nodes without affecting the non-leaf nodes. Also, the query index is searched

using the locations of streams to find the streams’ query working sets. An update in

93

the location of a stream implies a new search on the query index without any index

updates.

6.5 Extensibility

The Nile system can be extended to support various representations of a phe-

nomenon behavior. Section 2.1.2 describes three possible representations of a phe-

nomenon behavior in a metric space. In this section, we investigate how the

phenomenon-aware optimizer handles these behavior representations. More specif-

ically, we give possible implementations of the P2P-dist and the Q2P-dist func-

tions that accommodate various behavior representations. First, we represent a phe-

nomenon behavior by the average value of streams contributing to the phenomenon.

This behavior representation is obtained using Equation 2.2. The average value of

each stream is obtained over the most recent window ω, then, the average over all

streams is considered to be the behavior representation. The distance between two

behaviors (P2P-dist) is the difference between the two behavior representative aver-

age values. The distance between a query and a phenomenon behavior (Q2P-dist) is

the distance between a representative of the query and the behavior representative

value. A point query, i.e., queries that ask for a single value point (e.g., select *

where temperature=100◦C), is represented by its point. A range query, i.e., queries

that ask for a range of values (e.g., select * where temperature in [50 · · 100]◦C), is

represented by the center of its range. Although the average-value representation is

suitable for point queries, it does not fit well into range queries. This representation

lacks information about the range size of the query and the range of values covered

by a phenomenon.

Second, a phenomenon behavior can be summarized and represented by the its

k most frequent elements (or top-k vector), e.g., [19]. As in Definition 2.1.2, the

top-k vector contains a subset of k elements such that the count of all elements

in the top-k vector is equal or greater than the count of all other elements. In

94

contrast to representing the phenomenon by a single value, the top-k vector provides

a more accurate representation of a phenomenon behavior. The distance between two

phenomenon behaviors (P2P-dist) is measured as the distance between their top-k

vectors. The work in [59] proposes several metric functions to measure the distance

among top-k vectors. The distance between a query and a phenomenon (Q2P-dist)

is the number of elements in the top-k vector that satisfy the query predicates.

Third, a phenomenon behavior can be represented by a histogram of its un-

derlying values. The P2P-dist function is the L2 distance between the normalized

histogram buckets. Equation 6.2 gives the distance between the equi-width his-

tograms of two phenomena: P1 and P2. Each histogram contains n buckets of equal

width. Phenomena P1 and P2 contain a total of N1 and N2 reading values coming

from their underlying streams over the most-recent window ω, respectively. The

number of values in each histogram bucket (h1i and h2i) is normalized by the total

number of values (N1 and N2) because two phenomena may have similar behaviors

but with a different number of underlying stream readings. Then, we measure the

distance between corresponding histogram buckets. The Q2P-dist function (Equa-

tion 6.3) measures the selectivity of the query over the histogram buckets. Then, we

divide the selectivity by the total number of streams in the phenomenon to assess

the number of expected output tuples relative to the query deployment cost.

P2P-distH(P1, P2) =

√

√

√

√

n
∑

i=1

(
h1i

N1
− h2i

N2
)2 (6.2)

Q2P-distH(Q, P) =

∑n
i=1 SelectivityQ(hi)

No-of-Streams
(6.3)

Having a function that measures the distance among phenomenon behaviors in a

metric space enables the indexing of phenomena by their behaviors. We propose to

build the phenomenon index using an M-tree [60]. The M-tree is an efficient structure

that indexes large data sets represented in a generic metric space. To implement the

query index, we need a spatial index to maintain the bounding boxes of the queries’

95

interesting regions. The query index is required to accommodate frequent updates

in the indexed regions. We implement the query index as an R-tree with update

memo [61]. The R-tree with update memo is an R-tree variant that accommodates

frequent updates by using an update-memo approach. This approach buffers updates

in an update-memo structure and propagates these updates up the R-tree index from

time to time.

6.6 Experiments

In this section, we explore the performance of the proposed phenomenon-aware

optimizer experimentally. All the experiments in this section are based on a pro-

totype implementation of the proposed optimizer inside Nile PhenomenaBase. We

use the Nile PhenomenaBase simulated sensor platform (as described in Section 2.5).

The Nile PhenomenaBase engine executes on a machine with Intel Pentium IV, CPU

2.4GHZ and 512MB RAM runningWindows XP. As described in Section 6.5, the phe-

nomenon index is implemented as an M-tree while the query index is implemented as

an R-tree with update memo. The behavior of phenomena is represented using a his-

togram of the phenomenon underlying values. The distance functions P2P-distH and

Q2P-distH are used to measure the distance between the two phenomenon behaviors

and between a query and a phenomenon behavior, respectively. Unless mentioned

otherwise, we deploy 100 range queries over a set of 1000 data streams randomly

distributed in space. The average radius of the query range is 10% of the space.

We conduct three sets of experiments. The first set of experiments measures

the increase in the output rate in response to the proposed phenomenon-aware op-

timization (Section 6.6.1). The second set of experiments measures the reduction

in the system’s resource consumption (Section 6.6.2). The third set of experiments

evaluates the best values for the system’s tuning parameters (Section 6.6.3). We

measure the output rate and the system resources with respect to a variable number

96

of queries and a variable number of data streams. We also investigate the effect of

varying the radius of a range query on the system’s performance.

6.6.1 The Output Rate

In this section, we investigate the average output rate per query under three

different implementations:

1. Optimal query execution, where the query result is computed as if we have

infinite resources. The stream rates are slowed down such that no tuples are

dropped out of the input buffers.

2. Naive query execution, where all queries are executed over all streams in

the system.

3. Optimized query execution, where a phenomenon-aware optimizer is im-

plemented as described in this chapter.

Figure 6.9a illustrates the output rate per query of the three implementations

with respect to a variable number of queries. In the optimal implementation, each

query gets enough resources to process all tuples, and therefore, the output rate is

not affected by the number of queries. In the naive implementation, the system

resources are divided among all queries leading to a decrease in the output rate

with the increase in the number of queries. In the optimized solution, each stream

subscribes only to a small subset of queries (the stream’s query working set) leading

to a reduced processing load. Hence, the system resources are utilized efficiently to

increase the output rate of each query.

Figure 6.9b illustrates the output rate per query with respect to a variable number

of streams. The optimal output rate increases linearly with the increase in the

number of streams because each additional stream contributes to the query result.

However, the output rate of both the naive and the optimized versions saturate with

the increase in the number of streams, yet, with different rates.

97

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160 180 200

A
v
g
 O

/P
 r

a
te

 p
e
r

q
u
e
ry

Number of queries

Optimal
Naive

Optimized

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g
 O

/P
 r

a
te

 p
e
r

q
u
e
ry

Number of streams

Optimal
Naive

Optimized

(b)

Figure 6.9. The performance of phenomenon-aware optimizers with
respect to the output rate.

Figure 6.10a and Figure 6.10b illustrate the output delay (for the naive and

the optimized cases) versus a variable number of streams and a variable number of

queries, respectively. The output delay is defined to be the difference between the

tuple’s timestamp and the time the tuple’s effect is apparent in the output. Because

the optimized approach has an overhead that is associated with the phenomenon

detection and tracking, the output delay of the optimized approach is higher than

the output delay of the naive approach. For example, in the case of 100 queries that

execute over 1000 streams, the average output delay of the optimized approach is

12% higher than the average output delay of the naive approach.

98

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180 200

A
v
g
 O

/P
 d

e
la

y
 (

u
s
e
c
)

Number of queries

Naive
Optimized

(a)

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 560

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g
 O

/P
 d

e
la

y
 (

u
s
e
c
)

Number of streams

Naive
Optimized

(b)

Figure 6.10. The performance of phenomenon-aware optimizers with
respect to the output delay.

We investigate the output rate of the optimized solution further and identify

the factors that result in a reduction in the output rate compared to the optimal

output rate. Consider the case of 100 queries and 1000 streams, the optimized

solution triples the output rate of the naive implementation, and meanwhile, the

optimized output rate is 30% less than the output rate of the optimal solution.

There are three factors that cause a loss in the output of the optimized version:

(1) Latency in the phenomenon detection, (2) non-phenomenon or outlier tuples,

and (3) random tuple dropping due to buffer overflow. The latency in phenomenon

detection is attributed to the time a streaming source takes to persist in contributing

99

Latency in
phenomenon

detection
33%

Buffer overflow
54%

Non-phenomenon
or outlier tuples

13%

Figure 6.11. The factors of output dropping in the optimized solution.

to a phenomenon taking into consideration the time the system takes to pay attention

to a newly-developing phenomenon. Let the latency be the time between the first

time a streaming source generates a tuple that contributes to a phenomenon and the

time the streaming source is considered to be part of that phenomenon. The latency

is experimentally found out to be 7.15 seconds on the average. During this warm-

up period, the phenomenon-aware optimizer does not view the streaming source

as part of the phenomenon and, therefore, the streaming source is not included in

the query answer. Non-phenomenon or outlier tuples are tuples that satisfy the

query predicates but do not participate in a phenomenon. Hence, these tuples are

considered outliers and are not included in the query answer by the phenomenon-

aware optimizer. Random tuple dropping occurs because the system is not able to

catch up with the arrival rate of the input streams. Hence, tuples overflow out of

the system’s buffers and their corresponding output is lost. Figure 6.11 illustrates

the effect of each factor as a percentage of the total number of dropped tuples in the

output (in the case of 100 queries and 1000 streams). The latency in phenomenon

detection, the non-phenomenon/outlier tuples, and the tuple dropping due to buffer

overflow are responsible for 33%, 13%, and 54%, respectively, of the total number of

dropped tuples in the output.

100

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140 160 180 200

A
v
g
 n

o
 o

f
s
tr

e
a
m

s
 p

e
r

q
u
e
ry

Number of queries

Raduis=5%
Raduis=10%
Raduis=15%

(a)

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120 140 160 180 200

A
v
g
 n

o
 o

f
q
u
e
ri
e
s
 p

e
r

s
tr

e
a
m

Number of queries

Radius=5%
Radius=10%
Radius=15%

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140 160 180 200

P
e
rc

e
n
ta

g
e
 o

f
id

le
 s

tr
e
a
m

s

Number of queries

Radius=5%
Radius=10%
Radius=15%

(c)

Figure 6.12. The effect of increasing the number of queries on the
system resources.

101

 0

 50

 100

 150

 200

 250

 300

 350

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g
 n

o
 o

f
s
tr

e
a
m

s
 p

e
r

q
u
e
ry

Number of streams

Raduis=5%
Raduis=10%
Raduis=15%

(a)

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g
 n

o
 o

f
q
u
e
ri
e
s
 p

e
r

s
tr

e
a
m

Number of streams

Radius=5%
Radius=10%
Radius=15%

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
e
rc

e
n
ta

g
e
 o

f
id

le
 s

tr
e
a
m

s

Number of streams

Radius=5%
Radius=10%
Radius=15%

(c)

Figure 6.13. The effect of increasing the number of streams on the
system resources.

102

6.6.2 The System Resources

In the absence of a phenomenon-aware optimizer, every query is deployed over

every stream in the system. In this section, we evaluate the amount of savings in

system resources that are achieved by a phenomenon-aware optimizer. We measure

the average number of streams that subscribe to the same query and, alternatively,

the number of queries that are executed on the same stream. We also measure the

percentage of idle streams, i.e., streams that subscribe to no queries. Idle streams

can be sampled at a lower rate or can be safely turned off for some time. We repeat

the experiment for the same data set after we vary the average radius of the search

range.

Figure 6.12 measures the effect of increasing the number of queries on the sys-

tem resources. With the increase in the number of queries, the average number of

streams subscribed to the same query is not affected because each query is executed

only on streams of interest (Figure 6.12a). However, the average number of queries

that are executed on the same stream increases to accommodate the added queries

(Figure 6.12b). As we increase the number of queries, queries are spread over various

locations of the space and decreases the number of idle streams (Figure 6.12c).

Figure 6.13 measures the effect of increasing the number of streams on the system

resources. With the increase in the number of streams, the average number of streams

subscribed to a query increases in response to having more streams satisfying the

query predicates (Figure 6.13a). However, the average number of queries executed on

a stream remains fixed because each stream subscribes only to a subset of interested

queries (Figure 6.13b). Consequently, the number of idle streams is not affected

(Figure 6.13c). Notice that the increase in the radius of the range query increases

the utilization of system resources quadratically.

To quantify the amount of savings in system resources, consider the case of having

100 queries (radius=10% of the space) running on 1000 streams. Each query is

executed on 55 data streams out of the 1000 outstanding streams (i.e., 5.5% of the

103

total number of streams). Also, 44% of the data streams are not fed to the query

processor because they have no associated queries.

6.6.3 System’s Tuning Parameters

In Section 6.3, we presented several tuning parameters for the phenomenon index,

e.g., the behavior tolerance parameter (BTP), the safety factor, µ, and the length

of the sleep period. Each parameter controls the propagation of updates to the

phenomenon index. The best values of these parameters are obtained experimentally

by varying the value of one parameter while fixing the others. This tuning process

is conducted repeatedly till we converge to the best values of the parameters. Also,

the tuning process may be repeated upon changing the domain of underlying data

streams.

Figure 6.14 investigates the average output rate per query versus multiple val-

ues of BTP. As we increase BTP, the index is updated less frequently, the update

overhead is reduced, and the output rate increases till the optimal output rate is

obtained at BTP = 0.8. As we continue to increase BTP, the index becomes too

lazy to propagate updates in a timely fashion. Hence, the index does not reflect the

underlying phenomenon behavior leading to a reduction in the output rate. Other

tuning parameters have the same effect on the index performance. As a tuning pa-

rameter is varied, the output rate increases till an optimal point is reached where

the performance starts to deteriorate afterwards. Based on the experiments, the

typical values of safety factor, µ, and the length of the sleep period are 1.6, 0.7, and

6 seconds, respectively.

6.7 Related Work

The research focus of spatio-temporal data streams has been directed to process

continuous queries over data streams that are generated by mobile objects, e.g., [22–

26]. Moreover, some attention has been given to provide further analysis of data

104

 0

 1

 2

 3

 4

 5

 6

 7

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
g
 O

/P
 r

a
te

 p
e
r

q
u
e
ry

BTP

Figure 6.14. The effect of varying the value of BTP.

streams and to detect phenomena as they move in space, e.g., [29–31]. However,

there are no DSMSs that employ a phenomenon-aware query optimizer that makes

use of detected phenomena to optimize the execution of subsequent user queries.

In this chapter, we index phenomena as they move in space to optimize subse-

quent user queries. We use one of the recent moving object index structures, the

R-tree with update memo [61]. However, indexing moving objects has been exten-

sively studied in the literature, e.g., [62, 63] index historical trajectories of moving

objects. Other index structures, e.g., [64–67], keep track of the current position of

an object as it moves in space. The TPR*-tree [68] predicts the future trajectories

of moving objects.

Mobility is an important issue in spatio-temporal data streams. Objects as well

as queries can be mobile. A large body of literature addresses the execution of mobile

queries over mobile objects, e.g., [69–72]. In the context of this chapter, an object

generating a data stream can be stationary or, most probably, mobile. We have also

mobile phenomena that appear and move in the surrounding environment. Queries

are stationary and are deployed over the entire set of registered data streams in

the system. However, we artificially move queries over regions of their interesting

phenomena in response to changes in the monitored environmental conditions.

105

6.8 Summary

In this chapter, we explored the impact of phenomenon detection and tracking

techniques on query optimization inside data stream management systems. Guided

by the detected phenomena, we build a phenomenon index to track phenomena as

they roam the surrounding space. By traversing the phenomenon index, another

index is constructed, i.e., the query index, to index queries by the regions of their

interesting phenomena. To optimize for system resources, we limit each stream to

subscribe to a subset of queries (the stream’s query working set). By investigating

the query index, a query is added to a stream’s query working set if the stream falls

in one of the query’s interesting phenomenon regions. A stream’s query working

set is updated dynamically as phenomena move in space or as the spatio-temporal

properties of the data stream change. Experimental studies that are based on a

prototype implementation of the proposed phenomenon-aware query optimizer show

that we can achieve up to 70% of the optimal output rate while executing a query

on 5.5% of the total number of streams in the system. The performance gains in the

output rate are at the expense of a 12% increase in the output delay compared to

the non-optimized query processing (in the case of 100 queries executing over 1000

data streams).

106

7 PHENOMENON-AWARE DATA ACQUISITION IN A SENSOR-NETWORK

PLATFORM

In this chapter, we extend our discussion of phenomenon-aware DSMSs to include

sensor-network databases. More specifically, we investigate the effect of phenomenon

awareness on the acquisition of sensor data. Scalability and energy management is-

sues are crucial for sensor networks. In this chapter, we introduce the Sharing

and PArtitioning of Stream Spectrum (SPASS) protocol as a phenomenon-driven ap-

proach to provide scalability with respect to the number of sensors and to manage the

power consumption efficiently. The spectrum of a sensor is the range/distribution of

values read by that sensor. Close-by sensors are likely to indulge in the same phenom-

ena. Hence, close-by sensors tend to give similar readings and, consequently, exhibit

similar spectra. We propose to combine similar spectra into one global spectrum

that is shared by all contributing sensors. Then, the global spectrum is partitioned

among the sensors such that each sensor carries out the responsibility of managing

a partition of the spectrum. Spectrum sharing and partitioning require continuous

coordination to balance the load over the sensors. Experimental results show that

the SPASS protocol relieves a sensor database system from the burden of data acqui-

sition in large-scale sensor networks and reduces the per-sensor power consumption.

7.1 Background and Motivation

The recent advances in large-scale sensor-network technologies enable the deploy-

ment of a massive number of sensors in the surrounding environment. Each sensor

consists of a small node with sensing, computing, and communication capabilities.

Due to the limited processing capabilities of sensor nodes, the sensor readings are

minimally processed at the sensor-network level. Then, the sensor data is trans-

107

mitted through a multi-hop communication route to a centralized DSMS for further

processing. As sensor networks get larger, DSMSs are burdened with the massive

amount of data that is streamed out of the sensors. Recent research focuses on

sampling [6, 8, 73–75], communication [76–78], and query processing [4, 5, 7, 9, 79]

techniques for sensor data. Scalability with respect to the size of the sensor network

has been a major challenge in these techniques.

Sensors give the ability to monitor environments where the existence of a human

being is either tough or dangerous, e.g., habitat monitoring [3]. Due to the nature

of the environment, it is expected to perform the maintenance of the sensors only

over large periods of time, e.g., on a yearly basis. The lifetime of the battery is

crucial from the cost-effectiveness point of view. Hence, energy is one of the main

resources that needs careful management. In this chapter, we address the effect of

phenomenon awareness on the scalability and the energy management challenges in

sensor networks.

Sensors are deployed densely in space to increase the reliability of monitoring the

surrounding environment. The dense distribution of sensors achieves reliability via

redundancy to decrease the likelihood of losing sensor readings. However, much re-

dundancy results in overhearing the environmental measurements and, consequently,

overloading the data stream management system. Things get worse if sensors indulge

in a correlated transmission pattern where sensors transmit the same readings suc-

cessfully while other readings are not delivered by any sensor. As a result, the system

receives duplicates of the same value while losing other values totally.

A crisp observation of the sensor data reveals similarities in the distribution of the

sensor readings that are coming from close-by sensors. This fact is understandable

because close-by sensors are exposed to the same environmental conditions and are

involved in the same phenomena. We refer to the distribution of readings from a

sensor as the sensor’s spectrum (A formal definition of the sensor’s spectrum is given

in Section 7.2). The similarities in the sensors’ spectra bear redundant information

allowing a wide room for optimizations.

108

Sensor database

DSMS

Sensor
Network
Support

Sensor Network

G1

G2

G4

G3

Streams
Sensor

Readings

Feedback
Control
signals

Figure 7.1. Sensor network support layer.

Motivated by similarities in the spectra of sensors, we propose to cluster close-by

sensors into groups as illustrated in Figure 7.1. The spectra of sensors in the same

group are merged to form one global spectrum. The global spectrum is partitioned

among the sensors in the group to assign each sensor the responsibility of trans-

mitting a partition of the spectrum to the sensor database. A sensor gives its own

partition the highest priority and processes other partitions based on the availability

of resources.

To detect similarities in the sensors’ spectra, we push some of the data stream

management system functionalities to the sensor network level. In particular, we

move the summary manager in part from the data stream management system to

the sensor network level to provide early summarization of the sensor data and to dis-

cover the associated sensor spectrum. In general, summaries at the core of the data

stream management system reduce the processing cost by providing approximate an-

swers in lieu of the exact ones. We propose to shift some of the summarization tasks

to the sensor network level to provide an early approximation of the sensor data and

to reduce the transmission cost as well as the processing cost. The proposed pro-

tocol (SPASS) saves energy by reducing the number of transmitted readings across

the network. Also, the reduction in the number of transmitted readings has the

advantage of reducing the load over the sensor database and achieves scalability.

109

The contributions of this chapter can be summarized as follows:

1. We extend the phenomenon-awareness capabilities to include sensor-network

databases.

2. We propose a phenomenon-based data acquisition protocol, the Sharing and

PArtitioning of Stream Spectrum (SPASS) protocol, that acquires a faithful

representation of sensor data and handles energy management and scalability

challenges.

3. We implement the proposed SPASS protocol inside Nile PhenomenaBase.

4. We provide experimental evidence that the SPASS protocol acquires sensor

data faithfully and enhances the performance of sensor databases in terms of

scalability and power consumption.

The rest of this chapter is organized as follows: Section 7.2 gives the defini-

tion of the stream spectrum and its properties. Section 7.3 introduces the proposed

SPASS protocol while Section 7.4 presents a variation of the SPASS protocol that

is optimized for adaptivity. Experimental results that are based on a prototype

implementation of the proposed SPASS protocol inside Nile are presented in Sec-

tion 7.5. Section 7.6 highlights related work. Finally, this chapter is summarized in

Section 7.7.

7.2 Stream Spectrum and its Properties

The term spectrum refers to the distribution of a physical characteristic. The

spectrum of a certain characteristic is the value ranges over which this characteristic

is distributed. For example, the spectrum of the visible light is the continuous

frequency ranges of its components. In the context of data streams, we define broadly

the stream spectrum as the value ranges from which the stream tuples are drawn.

Before we proceed to a formal definition of the stream spectrum, we discuss the

underlying structure of sensor databases (Section 7.2.1) and how the stream sum-

110

maries can be partially pushed to the sensor-network level to help derive the stream

spectrum of each sensor (Section 7.2.2). We give a formal definition of the stream

spectrum and how it can be derived from various summarization techniques in Sec-

tion 7.2.3. By the end of this section, we highlight the benefits of merging the

individual spectra of close-by sensors to form one global shared spectrum. Then,

we provide mathematical bounds on the amount of savings that can be obtained by

sharing the global stream spectrum (Section 7.2.4).

7.2.1 Sensor Network Support Layer

A data stream management system (DSMS) comes at the core of a sensor

database system (Figure 7.1). The DSMS provides a pipelined query execution

of continuous queries over the data streams that are generated by the sensors. We

extend DSMSs with an additional layer, namely the Sensor Network Support Layer

(SNSL), to support the functionalities of sensor networks. The main purpose of the

Sensor Network Support Layer (SNSL) is (1) to reduce the processing load at the

system’s side for the sake of scalability, and (2) to reduce the power consumption at

the sensors’ side.

The SNSL accepts feedback from the DSMS about the sensor data and sends con-

trol signals to the sensors to control their behavior. The SNSL instructs the sensors

on how to sample, aggregate, and transmit their readings. As one of the proposed

SNSL components, the Sharing and PArtitioning of Stream Spectrum (SPASS) proto-

col provides scalable and energy-efficient acquisition of sensor readings that faithfully

represent the sensor-network data.

7.2.2 Sensor-network Level Summarization

We propose two levels of summarization: sensor-network level summarization and

system level summarization. Sensor-network level summarization guides the sensors

to the tuples that are worth transmission while system level summarization guides

111

Receiver

Sampler Processor Transmitter

 Summary
pool

to next hop

SNSL control signals

Figure 7.2. Basic components of a sensor.

query processing. In our work, sensor-network summarization is conducted at each

sensor to capture the sensor spectrum. Guided by the sensor spectrum, we prioritize

the stream tuples for transmission.

Each sensor has four basic components, as illustrated in Figure 7.2. The func-

tionalities of these components can be summarized as follows:

1. The sampler has the capability of sensing the surrounding environment.

2. The receiver receives control signals from the sensor network support layer

(SNSL) and forwards these signals to the processing unit.

3. The processor performs various tasks based on the SNSL signals. For example,

the processor instructs the sampler on how to control its sampling rate. Data

aggregation and filtration are performed at the processor to reduce data size.

In addition, the processor performs the following SPASS functions: (a) build

summaries over the incoming stream of tuples, (b) generate the stream spec-

trum from the summaries, (c) share the spectrum among other sensors, and

(d) prepare tuples to be sent by the transmitter.

4. The transmitter is responsible for the physical transmission of (a) sensor data,

(b) sensor spectrum, and (c) information about the sensor’s transmission rate.

The information about the transmission rate helps the SNSL coordinate the

partitioning of the sensors’ shared spectrum based on the load of each sensor.

112

7.2.3 Definition of a Stream Spectrum

In this section, we provide a formal definition of the stream spectrum and give

examples of how the stream spectrum can be derived from stream summaries. The

stream spectrum can be defined as follows:

Definition 7.2.1 For a data stream S that consists of an infinite tuple sequence

{x1, x2, x3, · · · } that arrive at time instants {t1, t2, t3, · · · }, respectively, a

stream spectrum SS, at time instant τ , is a finite set of stream representatives

R = {r1, r2, · · · , rL} such that R is obtained using a summarization function

φ(xτ−w+1, xτ−w+2, · · · , xτ) → R, where w is a sliding time-window. For any stream

tuple x, ∃ r ∈ R such that M(x) → r, where M is a mapping function that maps a

stream tuple to one of the stream representatives.

The stream spectrum is generated using a summarization function φ that captures

the stream behavior over the most recent time-window w and produces a finite

set of stream representatives. Notice that the stream spectrum is associated with

a time instant τ because the stream spectrum may change with the slide of the

summarization function window. A newly incoming tuple in the stream updates the

stream summaries and is mapped to one of the stream representatives. All tuples

that map to the same representative are processed and transmitted in the same way.

A stream representative provides a unified processing and transmission interface for

all tuples that map to that representative.

To give an example of how the stream spectrum can be extracted from stream

summaries, we first consider histograms as our summarization technique. In his-

tograms, the stream representatives are the histogram buckets. The summarization

function φ updates the bucket frequencies based on the incoming tuples over the last

w time-window. The tuple is mapped by the mapping function M to the bucket

it falls in (M(x) → bucket(x)). All the tuples in the same bucket are treated, i.e.,

processed and transmitted, uniformly.

113

Li

S0 S1 S2 Sn−1

li

LG

S0 S1 S2 Sn−1

(a) (b)

Figure 7.3. Individual sensor spectra versus a global sensor spectrum.

Maintaining the top-k list of a stream is another summarization technique. In the

top-k approach, the stream is summarized using its k most-frequent elements. The

summarization function φ updates the top-k list based on the tuple count over the last

w time-window. The stream representatives (R) are the most frequent k elements

themselves plus the NULL value. The mapping function M maps an element to itself

(M(x)→ x) if x is frequent or ignores it otherwise (M(x)→ NULL).

Similarly, the stream spectrum can be extracted from other forms of stream sum-

maries by defining their corresponding φ and M functions. The proposed SPASS

protocol is general and can accommodate various summarization techniques. How-

ever, the mathematical analysis and the experimental evaluation assume that the

sensor data follows the Zipfian distribution and is summarized using the top-k list

approach as presented in [19].

7.2.4 Global Stream Spectrum

In real life, close-by sensors are exposed to similar environmental conditions.

Hence, close-by sensors produce readings that share similar distributions over almost

identical value ranges. The closer a sensor to its neighbors, the more correlated its

114

spectrum to the neighbors’ spectra. The correlation coefficient, say ρij , assesses how

much the readings of a sensor (Si) vary in response to the variation in the readings

of another sensor (Sj). Equation 7.1 gives the correlation coefficient between the

readings of two sensors, Si and Sj , where µ and σ are the mean and the standard

deviation of the stream tuples, respectively.

ρij =
E[(Xi − µi)(Xj − µj)]

σiσj

(7.1)

A correlation matrix is a two-dimensional matrix that records the correlation

coefficient between every two sensors, Si and Sj . By observing the correlation matrix

of real sensor data, we find out that the correlation matrix contains ones along

the diagonal because a sensor is fully correlated with itself. Also, the correlation

coefficient between two sensors gets higher as they get closer to each other. The

high correlation among a group of close-by sensors over time is our target area of

optimization.

Figure 7.3a illustrates the spectra of a group of n sensors. Each sensor has a

spectrum of length Li. A gray box represents a value that appears in the spectra of

all sensors. Figure 7.3b suggests to maintain only one global spectrum of length LG

that is shared by all sensors. The global spectrum accommodates all the items that

appear in all sensors. Each sensor sees a spectrum of length li that accommodates

its private non-shared spectrum elements plus the shared global spectrum.

Combining the common parts of the spectra of various sensors into one global

spectrum reduces the overhead of processing the same value at different sites. The

stream compression ratio (SCR) is the amount of savings achieved by merging the

sensors’ common spectra into one global spectrum. The (SCR) is given by Equa-

tion 7.2. Equation 7.2 calculates the ratio of the global spectrum size plus the sizes

of private spectra to the summation of the sizes of the individual non-shared spectra,

then subtracts this value from 1 to yield the compression ratio.

SCR = 1−
∑n

i=1 li + LG
∑n

i=1 Li

(7.2)

115

The stream compression ratio (SCR) is of great significance because it denotes

the amount of processing overhead that can be distributed and balanced among

sensors. In the remainder of this section, we give a mathematical bound on the

SCR that can be achieved for sensor data that follows the Zipfian distribution. We

derive the sensors’ spectra from summaries that are based on the most frequent item

list (the top-k list) as discussed in [19]. In this case, the shared spectrum will contain

the k most-frequent elements that are common to all sensors (Equation 7.3).

LG = k (7.3)

For simplicity, assume that (1) sensors are close enough to each other such that

they have a common k most-frequent item list, and that (2) sensors maintain spectra

that are of the same length (i.e., Li = Lj ∀i, j, and consequently, li = lj because

li = Li − LG). The SCR in Equation 7.2 reduces to Equation 7.4.

SCR = 1− nl + LG

nL
(7.4)

The technique in [19] captures the k most-frequent items using a list of length L

such that the most-frequent item that is not captured in the list (element number

L + 1) occurs with a frequency that is less than (1 − ǫ) of the frequency of the k

most-frequent element (Equation 7.5).

fL+1 < (1− ǫ)fk (7.5)

To capture the k most-frequent elements, we have to maintain a list of length L =

O(k). In particular, L is given by Equation 7.6, where z is the Zipfian distribution

parameter.

L =
k

(1− ǫ
1

z)
(7.6)

116

The non-shared part of the stream spectrum at each sensor, l, is given by subtract-

ing the shared spectrum length from the original spectrum length as in Equation 7.7.

l = L− LG =
k

(1− ǫ
1

z)
− k (7.7)

Substitute for both L (Equation 7.6) and l (Equation 7.7) in Equation 7.4, we

obtain Equation 7.8 that expresses the stream compression ratio in terms of the

number of sensors (n), the summarization technique parameter (ǫ), and the Zipfian

distribution parameter (z).

SCR =
n− 1

n
(1− ǫ)

1

z (7.8)

Notice that the SCR that is obtained in practice can be less than the value of

Equation 7.8 because sensors may not share all the top-k elements during the life

time of the experiment.

7.3 The SPASS Protocol

The SPASS protocol coordinates the sharing and the partitioning of the global

spectrum among a cluster of close-by sensors. Sensors may be clustered by the nature

of the problem. For example, sensors that read the temperature of the same room are

exposed to similar conditions and are considered one cluster. Otherwise, clustering

techniques that aim at minimizing the power consumption due to packet routing

among sensors are deployed to cluster the sensors, e.g., [80,81]. In our work, we are

interested in sharing the spectrum of sensors that fall within the same cluster. This

makes the clustering problem orthogonal to our work. Any clustering technique can

be applied as a preprocessing phase to our protocol. For the sake of implementation,

we use the HEED clustering technique as presented in [10].

Clustering techniques select a dedicated sensor among the sensors that fall in

the same cluster to be the cluster head. All communication messages that go out

of a sensor are forwarded to the cluster head as their next hop. The cluster head is

117

S0 S1 S2 S3

0

0

3

2

1 3

2

1

Circular telescopic
Spectrum

4 4 4 4

SNo

MaxPriority=4

unique list

Prio=(SNo+PNo) mod NoOfPartitionsPNo

0

1

2

3 0

3

2

1 3

2

1

0

Figure 7.4. An example circular telescopic spectrum for four sensors.

responsible for the coordination among the sensors in its cluster as well as routing

their messages to the centralized sensor database.

The goal of the SPASS protocol is to maintain a global spectrum over each cluster

of sensors as shown in Figure 7.4. Each sensor maintains a small list of its unique

items that are not shared among other cluster members. This portion of the spectrum

is given the highest priority, MaxPriority, because no other sensors are expected to

transmit these items. The shared spectrum is divided into n partitions of equal sizes

(i.e., shares) where n is the number of sensors in the cluster. Each sensor takes the

responsibility of transmitting one share. The sensor gives its own share the next

highest priority, MaxPriority-1, and reduces the priority of other sensors’ shares by

one in a circular fashion. The priority of partition PNo at sensor SNo is given by

Equation 7.9.

P = (SNo + PNo) mod n (7.9)

118

We refer to the global spectrum as presented in Figure 7.4 by the term circular

telescopic spectrum because each sensor processes its own share and extends the

processing telescopically to other partitions based on the availability of time. The

scope of a sensor is the average depth of items being transmitted by that sensor. The

depth of an item is the difference between the item’s index in the shared spectrum

vector and the index of the beginning of the sensor’s share, given the circular direction

of movement. The scope parameter of a sensor provides information about how much

of the global spectrum is covered by that sensor.

The SPASS protocol is divided into two major components: (1) the summarize

and transmit procedure that is placed at all sensor nodes to build their individual

spectrum and to control the transmission of their sensor readings, and (2) the share

and partition procedure that is placed at the cluster head to form the shared global

spectrum of the cluster and to coordinate the partitioning of the global spectrum

among sensors.

Figure 7.5 summarizes the processing at each sensor node. A sensor either (1)

generates a sensor reading or (2) receives a global spectrum from the cluster head.

Upon receiving a new reading, the sensor uses this reading to update the summaries

(Step 1) and update the local individual spectrum based on the change in the sum-

maries (Step 2). If the distance between the new spectrum and the spectrum at the

cluster head exceeds α, a fresh copy of the spectrum needs to be transmitted to the

cluster head (Step 3). The sensor probes the spectrum to find the partition where

the sensor reading falls and, consequently, retrieves its transmission priority (Step

4). The sensor places the reading in the transmission priority queue to compete for

the transmission bandwidth based on the priority (Step 5). Upon receiving a new

version of the global spectrum, the sensor updates the transmission priorities based

on the notion of the circular telescopic spectrum.

Figure 7.6 describes the role of the cluster head in sharing and partitioning the

global spectrum. The cluster head receives from each sensor either (1) a sensor

reading or (2) a sensor’s local spectrum. When the cluster head receives a sensor

119

procedure Summarize and Transmit

Input: (1) a stream of sensor readings x1, x2, x3, · · · and (2) A global spectrum (GS)

Output: continuously maintain (1) the sensor individual spectrum and (2) the priority transmission queue.

Description:

Upon receiving a sensor reading xi

1. UpdateSummaries(xi).

2. UpdateSpectrum().

3. if |NewSpectrum− OldSpectrum| > α then

transmit the spectrum to the cluster head.

4. P=GetPrio(xi)

5. Transmit(xi,P)

Upon receiving the global spectrum

update the circular teslescopic spectrum

Figure 7.5. The SPASS protocol at each sensor node.

reading, it forwards the reading to the next hop on its way to the sensor database.

When the cluster head receives a sensor’s spectrum, it merges this spectrum with

the spectra of other sensors in the cluster to compute the global spectrum (GS)

(Step 1). Merging the spectrum is simply to find the common items in all sensors’

spectra. Then, the common items are partitioned into n partitions of equal sizes

(Step 2). Finally, the cluster head updates each sensor with a copy of the shared

item list (Step 3).

7.4 The SPASS+ Protocol: An Adaptive Version of the Protocol

The SPASS+ protocol promotes adaptivity by balancing the load among sensors

in the same cluster based on their relative loads. In this section, we define the sensor

load and develop an adaptive technique to partition the global spectrum dynamically

120

procedure Share and Partition

Input: Given a cluster of n sensors S0, S2, · · · , Sn−1. Each sensor generates: (1) a stream of readings and (2)

an individual sensor spectrum SSi.

Output: (1) the global spectrum of the cluster and (2) the share of each individual sensor.

Description:

Upon receiving a sensor reading

forward the sensor reading to next hop

Upon receiving a sensor spectrum SSi

1. MergeSpectrum(GS, SSi)

2. PartitionSpectrum(GS)

3. for i=0 to n − 1 SendtoSensor(Si, GS)

Figure 7.6. The SPASS protocol at the cluster head.

among sensors. Each sensor is assigned a share of the spectrum that is inversely

proportional to the load over that sensor. We define the sensor load as follows:

Definition 7.4.1 The sensor load is defined to be the total time required to transmit

all items that are queued in the sensor’s buffer.

Two major parameters formulate the sensor load: (1) the throughput, which

refers to the achieved transmission rate in terms of the number of transmitted mes-

sages per second and (2) the queue length, which specifies how many items are still

queuing in the buffer waiting for transmission. The sensor load is computed as

follows:

Load =
Queuelength

throughput
(7.10)

Let Ldi be the load at sensor Si. The share of sensor Si in the global spectrum is

calculated at the cluster head using Equation 7.11. Notice that the more the sensor is

loaded, the smaller the share it gets. To achieve this adaptive behavior, each sensor

is required to report its load periodically to the cluster head. The cluster head keeps

121

track of the load over each sensor in its cluster and continuously repartitions the

spectrum among sensors to balance the load within the cluster.

Sharei =
1

Ldi
∑n−1

j=0
1

Ldj

× SpectrumLength (7.11)

SPASS+ requires two major modifications over the SPASS protocol. In the

Summarize and Transmit procedure (Figure 7.5), each sensor transmits information

about its current load periodically to the cluster head. In the Share and Partition

procedure (Figure 7.6), the Partition Spectrum function (Step 2) is modified to di-

vide the spectrum into non-equal partitions. The length of each partition is given

by Equation 7.11.

7.5 Experiments

In this section, we perform an experimental study to explore the performance of

the proposed SPASS protocol. Two sets of experiments are conducted. The first set

of experiments (Section 7.5.1) addresses the performance of the SPASS protocol in

terms of scalability and power consumption. The second set of experiments (Sec-

tion 7.5.2) is concerned with the internal parameters of SPASS, e.g., the correlation

and the spectrum compression ratio, with respect to different cluster sizes. We study

three protocols:

1. SIMPLE, where each sensor simply transmits, based on the allowed bandwidth,

a uniform sample of its own readings to the sensor database.

2. SPASS, where the SPASS protocol is deployed to manage the transmission of

data, as described in Section 7.3.

3. SPASS+, where the SPASS protocol is optimized for adaptivity, as described

in Section 7.4.

Our major measure of performance is Hist-MSE (Equation 7.12) that represents

the mean square error between the global histogram of all the generated sensor data

122

(at the sensor side) and the global histogram of the transmitted sensor data (at

the system side) after they are normalized by the data set size. A global histogram

includes the streams coming from all sensors to give a global view of the whole sensor

network. We do not care about the individual histogram of each sensor. Instead,

we care about the collaboration of sensors to transmit a faithful view of the entire

sensor field being investigated.

Let H1 be the histogram of the original data and let H2 be the histogram of

the transmitted data. Each histogram is an equi-width histogram of n intervals

(n is set to 100). H1 is divided into H11, H12, · · · , H1n and H2 is divided into

H21, H22, · · · , H2n. Let N1 be the size of the original data set and let N2 be the

size of the transmitted data set (N1 ≥ N2). Hist-MSE is defined as follows:

Hist-MSE =

∑n

i=1 (h1i

N1
− h2i

N2
)2

n
(7.12)

In this experimental study, we use the Nile PhenomenaBase simulated sensor

platform (as described in Section 2.5). In contrast to the hardware limitations of the

Nile PhenomenaBase real-sensor platform, the simulated platform gives the flexibility

of pushing some processing functionality at the sensor level. Unless mentioned other-

wise, the parameters of the simulated setup are as follows. We maintain 1000 sensors

uniformly distributed in the space. Each sensor generates a stream of 10,000 tuples

where the tuple values follow the Zipfian distribution. The sensors are grouped into

clusters, where each cluster is of size 5. The interarrival time of sensor data follows

an exponential distribution with an average of one second. To model the scarcity of

resources, the sensor database is capable of processing a bandwidth that is up to 200

tuples per second. The bandwidth is shared fairly among the 1000 sensors, which

means that each sensor is granted to transmit a bandwidth that is up to 0.2 samples

every second (i.e., the allowed bandwidth carries around 20% of the sensor readings).

In other words, instead of reading a value per sensor every second, we read a value

per cluster. All the experiments in this section are based on a real implementation

of the SPASS protocol inside Nile PhenomenaBase. The Nile PhenomenaBase en-

123

gine executes on a machine with Intel Pentium IV, CPU 2.4GHZ with 512MB RAM

running Windows XP.

7.5.1 Scalability and Power Consumption

In this section, we study the performance of the proposed SPASS protocol with

respect to the Hist-MSE measure of performance under various conditions of the

sensor network. We provide an experimental evidence that the SPASS protocol: (1)

reduces the power consumption of the sensors, (2) is scalable in terms of the stream

rates, and (3) is scalable in terms of the size of the sensor network.

The sensor’s bandwidth denotes the maximum number of transmitted messages

per unit time. The energy consumption of a sensor decreases with the decrease in

its utilized bandwidth. In Figure 7.7, we vary the total system bandwidth (which

is shared among the 1000 sensors) from 100 to 1000 tuples per second and compare

the performance of the SPASS protocol, its SPASS+ variation, and the SIMPLE

protocol. For the same bandwidth, the SPASS protocol gives a better representation

of the sensors’ readings as indicated by the Hist-MSE measure of performance. The

optimized SPASS+ protocol gives a better Hist-MSE over the SPASS protocol be-

cause of its capability to balance the load among sensors dynamically. The SPASS+

protocol reduces the Hist-MSE by up to 70% over the SIMPLE protocol and by up

to 55% over the SPASS protocol (at 100 samples per second bandwidth). Notice that

as we increase the bandwidth to 1000 samples per second, each sensor transmits its

readings completely to the sensor database and Hist-MSE drops to zero.

In Figure 7.8, we control the stream rate by varying its average tuple interar-

rival time and measure Hist-MSE of various protocols. As we increase the average

interarrival time, the system load decreases and Hist-MSE drops till it reaches zero.

Increasing the stream’s average interarrival time has a similar effect to increasing

the bandwidth because an increased bandwidth implies more system resources while

increasing the interarrival time implies less system load.

124

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000
H

is
t-

M
S

E
Bandwidth

SIMPLE
SPASS

SPASS+

Figure 7.7. The effect of the allowed bandwidth.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H
is

t-
M

S
E

average inter-arrival time

SIMPLE
SPASS

SPASS+

Figure 7.8. The effect of the stream average interarrival time.

Figure 7.9 illustrates the performance of the SPASS protocol under various sensor-

network sizes. The size of the sensor network is expressed in terms of the number of

sensors in the sensor network. We vary the number of sensors in the sensor network

from 200 to 2000 sensors. In terms of Hist-MSE, the SPASS protocol gives a better

performance over the SIMPLE protocol while its SPASS+ variation is still capable

of providing further reduction in the Hist-MSE. As the number of sensors increases,

the performance gain of the SPASS protocol and its SPASS+ variation becomes

more significant. The SPASS+ protocol reduces the Hist-MSE by up to 65% over

125

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000
H

is
t-

M
S

E
number of sensors

SIMPLE
SPASS

SPASS+

Figure 7.9. The effect of the number of sensors.

the SIMPLE protocol and by up to 35% over the SPASS protocol (for a network of

size 2000 sensors).

7.5.2 Cluster Size

In this section, we study the effect of the cluster size on two internal parameters

of the protocol, the average correlation coefficient between sensor pairs (ρ) and the

spectrum compression ratio (SCR). The correlation coefficient assesses the similari-

ties in the sensors’ spectra while the spectrum compression ratio estimates how much

saving can be obtained by combining their spectra into one global spectrum. We

vary the cluster size from 1, which means no clustering is in effect, to 10 sensors per

cluster. The correlation coefficient (ρ) and the spectrum compression ratio (SCR)

are calculated offline based on the average of (ρ) and (SCR) in a one-minute sliding

window over the sensor data.

Figure 7.10 gives the effect of the cluster size on the correlation coefficient and

the spectrum compression ratio parameters. The maximum value of the correlation

coefficient is one, which corresponds to full correlation among sensors. A cluster

of size one is fully correlated because one sensor is 100% correlated with itself. As

126

we increase the cluster size, fewer items tend to be shared among all streams and,

consequently, the correlation coefficient decreases.

The spectrum compression ratio (SCR) represents the ratio of the reduction in

size of the global sensor spectrum relative to the summation of the sizes of individual

spectra. With the increase in the cluster size, the global spectrum benefits from the

shared items among individual spectra. The size of the global spectrum gets reduced

relative to the summation of the sizes of individual spectra. The size reduction in the

global spectrum affects SCR positively. However, as we keep increasing the cluster

size, the number of shared items decreases, the size of the global spectrum increases,

and SCR is affected negatively by the increase in the global spectrum size. The best

SCR equals to 0.645 and is achieved for a cluster of size 5 (Figure 7.10).

Hist-MSE is measured for various cluster sizes in Figure 7.11. The SPASS proto-

col and its SPASS+ variation give the same Hist-MSE as the SIMPLE protocol for a

cluster of size 1 (no clustering). Hist-MSE decreases till we reach a cluster of size 5,

then increases again with the increase in the cluster size. This behavior is accounted

for by the behavior of SCR. For large cluster sizes, the benefit of sharing the sensors’

spectrum is ruined by the overhead of maintaining a large global spectrum. A good

tuning of the cluster size is the one that has the best SCR.

7.6 Related Work

Sensors are battery-equipped devices that are capable of sampling, processing,

and transmitting readings from the surrounding environment.Various techniques

have been proposed to save the sensor battery life at the sampling, processing, and

transmission phases. In the remainder of this section, we give a brief overview of

these techniques.

Research has been conducted to reduce the sampling rate, i.e., the sampling

power, of the sensors. Statistical models have been utilized recently in [6] to provide

estimates of the sensors’ readings and to assess the uncertainty of these estimates.

127

Cluster size ρ SCR

1 1 0

2 0.851 0.285

3 0.68 0.42

4 0.58 0.54

5 0.483 (0.645)

6 0.382 0.62

7 0.325 0.546

8 0.275 0.428

9 0.24 0.24

10 0.218 0.078

Figure 7.10. The effect of cluster size on the internal paremeters of SPASS.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

H
is

t-
M

S
E

cluster size

SIMPLE
SPASS

SPASS+

Figure 7.11. The effect of cluster size on the Hist-MSE.

A fresh sample is acquired from the sensors that exhibit high levels of uncertainty to

refine their estimates. The SPASS protocol addresses a similar problem but without

the requirement of a statistical model.

A framework to support an acquisitional query language is proposed in [8]. The

proposed acquisitional query processor decides which sensors to query and how often

128

to sample from each sensor. The work in [74] suggests the use of quality-aware sam-

plers to regulate the data rate at various levels of the system. Some work, e.g., [47],

extends the traditional reservoir sampling [82] to fit in the streaming environment.

In-network processing is carried over at the sensor nodes to reduce the size of

the data transmitted to the sensor database [9]. Data aggregation, e.g., max, min,

and average, collapses a set of readings to one representative. Notice that our work

aims at transmitting the actual sensor readings without performing any data aggre-

gation. The work in [5] proposes approximate in-network aggregation using sketches.

Sensors are clustered into groups and one member of the group, the cluster head, is

responsible for collecting and managing the data of its cluster members. The cluster

head is elected based on energy requirements as in [10].

The transmission energy is conserved by techniques that configure the network

topology dynamically [83, 84]. In these techniques, sensor nodes exchange mes-

sages among each other to acquire knowledge about their locations. Nodes are

self-organized based on the acquired location information to reduce the communica-

tion cost. The routing decisions among nodes optimize power consumption [76–78].

7.7 Summary

In this chapter, we addressed the scalability and energy management issues in

sensor networks. We introduced the Sharing and PArtitioning of Stream Spectrum

(SPASS) protocol as a part of the Sensor Network Support Layer (SNSL). The SNSL

extends the functionalities of data stream management systems to support sensor

networks.

We defined the spectrum of a sensor to be the distribution of values that are read

by that sensor. Close-by sensors generate similar spectra because they are exposed

to the same phenomena. In SPASS, we proposed to group close-by sensors and to

combine their spectra into one global spectrum that is shared among all sensors in

the group. The global spectrum is partitioned among sensors such that each sensor

129

transmits the data of its partition with a higher priority. Spectrum partitioning is

continuously coordinated to balance the load over the sensor network in the SPASS+

adaptive version of the protocol. According to the Histogram Mean Square Error

(Hist-MSE) measure of performance, SPASS+ achieves up to 70% improvement over

the SIMPLE protocol for the same level of power consumption.

130

8 PHENOMENON DETECTION AND TRACKING IN A

SENSOR-NETWORK PLATFORM USING RELEVANCE FEEDBACK

To increase the in-network processing capabilities of phenomenon-aware DSMS over

sensor networks, we push further functionalities from the centralized DSMS to the

sensor-network level. In this chapter, we address the joining phase of the PDT-

module and introduce the SNJoin operator. SNJoin allows the join operation to

be performed at the sensor level. SNJoin integrates query processing with a rele-

vance feedback mechanism to prune the sensors to be probed to only those that are

relevant to the join output. Experimental studies illustrate the scalability and the

performance gains of the proposed join operator in PhenomenaBases with respect to

the number of detected phenomena and the output delay.

8.1 Background and Motivation

In Chapter 5, we address the demands of the join operation in large-scale

dynamically-configured streaming environments through the notion of variable-arity

join (VAJoin). However, in a sensor-network setup, if the join operation requires

all sensors to transmit their readings to a centralized sink node, the sink node will

be a bottleneck, especially with the increase in the network size. Scalable query

processing requires the en-route processing of sensor readings, i.e., while they are

being transmitted to the sink node. Examples of such in-network query processing

include [5,9,85]. In this chapter, we present SNJoin, a distributed variant of the VA-

Join operator that shifts the join operation from the sink node to the sensor-network

level.

In this chapter, we consider the sensor network setup of Nile PhenomenaBase.

As illustrated in Figure 8.1, the sensor platform of Nile PhenomenaBase is an ad-

131

CH1

Sink node Client

CH2

CHD

CHi

C1

C2

Ci

CD

Sensor Network

Relevance
feedback

Figure 8.1. The sensor platform.

hoc network with resource-constrained sensor nodes. Each sensor generates a stream

of tuples such that stream tuples are timestamped at the source nodes before they

are transmitted over the network to a sink node. Hence, tuples may arrive late or

out-of-order due to network conditions.

Several techniques can be used to dynamically configure the network topology,

e.g., [10,80,81]. These techniques involve message exchange among sensors to acquire

knowledge about their locations and energy levels. Based on the acquired knowledge,

sensors are grouped into clusters. Within each cluster, a specific node, usually one

with a high-energy level, is designated to serve as the cluster head (the CH ′
is in

Figure 8.1). Cluster heads communicate with each other to achieve a distributed

execution of various queries over the sensor network. A cluster head receives partial

results from sensors in its cluster or from other cluster heads. Then, the cluster head

performs additional query processing and forwards the result to another cluster head

or to the sink node, possibly through a multi-hop route. The sink node is assumed

to be a node with high processing capabilities. The sink node analyzes the query

result, assesses its relevance to the query, and returns relevance feedback to cluster

heads seeking further optimizations.

132

The basic steps of the algorithm that implements the proposed SNJoin algorithm

are as follows:

Step1. Each sensor forwards its readings to its corresponding cluster head.

Step2. At each cluster head, a variable-arity join is performed among the read-

ings of its cluster members to generate join tuples of variable sizes (as described

in Chapter 5) where the size of the join output depends on the number of joining

sensors.

Step3. A distributed processing phase is initiated by cluster heads (Section 8.2).

Each cluster head decides on a probing sequence to probe other cluster heads looking

for matching tuples among members in their respective clusters. At the end of the

probing sequence, the join result is shipped to the sink node.

Step4. The sink node measures the weight or contribution of each cluster in the

output and returns a relevance feedback note to the cluster head that initiated the

probing sequence. Based on the feedback, the cluster head adjusts future probing

sequences by assigning high probability of being included to clusters with similar

values (Section 8.3).

The contributions of this chapter can be summarized as follows:

1. We enhance phenomenon detection and tracking techniques with the dis-

tributed processing capabilities of SNJoin that performs the join operation

at the sensor-network level.

2. We extend SNJoin with the ability to accept and process relevance feedback

notes.

3. We provide an analytical study and an experimental study that is based on a

prototype implementation of SNJoin inside Nile PhenomenaBase to prove its

efficiency both in terms of the number of detected phenomena updates and the

output delay.

The remainder of this chapter is organized as follows: Section 8.2 presents SNJoin

and its distributed processing capabilities. Section 8.3 describes the relevance feed-

133

back mechanism of SNJoin. Section 8.4 gives a mathematical analysis of various join

techniques while Section 8.5 provides an experimental study of these techniques’ per-

formance. Finally, Section 8.6 summarizes the chapter.

8.2 Distributed Processing in SNJoin

As illustrated in Figure 8.1, we model the sensor network as an ad-hoc network of

sensor nodes grouped into clusters based on their energy level and spatial locations.

SNJoin decomposes the entire join operation into multiple smaller join operations

that are performed separately over each cluster at the cluster head. Then, each

cluster head chooses a cluster-head probing sequence to probe other cluster heads

looking for matches. The probing sequence will then end by shipping the join result

to the sink node.

Figure 8.2 gives the distributed SNJoin algorithm. A cluster head receives either

an input tuple from one of its cluster members or a probing request from another

cluster head. Upon receiving a new input tuple, SNJoin probes the cluster head’s

local hash table to retrieve a local join result (r) (Step 1). The cluster head (CHo1
)

decides on a probing sequence (either arbitrarily or based on relevance feedback as

we will show in the next section) that spans some or all of the other cluster heads,

(CHo2
, CHo3

, · · · , CHoD
) such that 1≤oi≤D where D is the total number of clusters

(Step 2). The cluster head sets a sequence number to one (SeqNo = 1) since the

cluster head is the initiator of the join operation (Step 3). Finally, the cluster head

ships the probing request to the next hop (i.e., Cluster head number SeqNo + 1)

(Step 4). A probing request consists of a sequence number that indicates the last

cluster head that processed the request, the probing tuple t̂, the tuple’s timestamp

τ , a sequence of cluster heads, and the partial join result r computed from Step 1.

Upon receiving a probing request, the cluster head probes its own hash table (Step

1). Then, the cluster head increases the probing sequence number (Step2). Finally,

134

PROCEDURE Distributed-Insert-Probe

Upon receiving a new input tuple:

INPUT: a new input tuple (t̂,[Ŝ, τ̂]).

OUTPUT: the join output produced by tuple t̂ plus a cluster-head probing sequence.

1. r=insert-probe(t̂,[Ŝ, τ̂])

2. Choose a cluster-head probing sequence (CHo2
, CHo3

, · · · , CHoD
)

3. SeqNo = 1

4. Ship (SeqNo, [t̂, τ̂], [CHo1
, CHo2

, · · · , CHoD
], r) To CHoSeqNo+1

Upon receiving a probe request:

INPUT: a probe request PR:(SeqNo, [t̂, τ̂], [CHo1
, CHo2

, · · · , CHoD
], R).

OUTPUT: the join output produced by PR and a an updated PR.

1. r=probe(t̂, τ̂)

2. SeqNo = SeqNo + 1

3. Ship (SeqNo, [t̂, τ̂], [CHo1
, CHo2

, · · · , CHoD
], R + r) To CHoSeqNo+1

Figure 8.2. The distributed SNJoin algorithm.

the cluster head accumulates its local result r to the partial result R computed so

far and forwards the probing request to the next hop.

8.2.1 Early, Late and Out-of-order Arrival

Tuples are timestamped at their generating sources and are transmitted to the

sink node over the network. Due to network delays and un-synchronized clocks in

the different cluster heads, three issues need to be addressed: late and early arrivals,

out-of-order arrivals, and generation of duplicates in the output. Late tuple arrivals

135

may occur when a tuple arrives at a cluster head’s buffer past the cluster head’s

local clock timestamp. Early tuple arrivals may occur when a tuple arrives at a

cluster head’s buffer before the cluster head’s local clock timestamp. In the case of

out-of-order arrivals, not only tuples are late but their order has been also altered.

Finally, duplicates may occur when the same tuple is reported twice in the output

due to two different cluster heads starting two different probing sequences for the

same value simultaneously.

To handle late, early, and out-of-order tuple arrivals, we buffer all tuples and

probing requests for some time (i.e., safety factor) before they get processed by

SNJoin. Let ǫ be the maximum delay in tuple arrival from a given sensor and Delay

is the maximum delay of a probing sequence to go from one cluster head to another.

Whenever a tuple arrives to the processing node, i.e., cluster head or sink node, it

is added to a buffer based on its timestamp (i.e., reordered relative to other tuples).

The tuple is then sent to its usual processing step by SNJoin (i.e., inserted in the

hash table) as soon as its timestamp goes beyond ǫ with respect to the current time

in the processing node. Similarly, a probing request is buffered for ǫ time units to

give a chance for all late tuples to be inserted in the hash table before the actual

probing takes place. Thus, the probing tuple or probing sequence is delayed by ǫ

until all late tuples are inserted, hence, processed in order with respect to other

incoming tuples. In addition, tuples in V OL are expired only if they fall outside

a window of size (w + max(ǫ, Delay)). The idea is to avoid expiring tuples that

may eventually join with delayed tuples (delayed by ǫ time units) or delayed probing

requests (delayed by Delay time units). By increasing the window size, we ensure

that the delayed probe will find all the tuples that are supposed to be retrieved and

joined.

To avoid duplicates from appearing in the join output, we restrict the process-

ing of a probing request to only the tuples that has a timestamp before τ , where

τ is the timestamp of the tuple that initiated the probing request. When a cluster

head receives a probing request with a timestamp of τ , the cluster head probes its

136

internal hash table starting from timestamp τ backward, i.e., retrieve all tuples with

timestamps (τ ′) that are less than τ . This precaution places an ordering on the

timestamps of the join output components and avoids generating the same output

tuple twice, i.e., once in each cluster head. For example, if cluster head CH1 gener-

ates value v at timestamp τ1 while cluster head CH2 generates the same value later

on at timestamp τ2 (τ1 < τ2). Regardless of the time at which their associated prob-

ing requests traveled in the network, the output join tuple is supposed to reported by

CH1. When the probing request comes from CH2 to CH1, CH1 will scan its value

occurrence list starting from τ2 backward and will join the value v at timestamp τ1.

For equal time stamps, ties are broken using the cluster head id. For example, the

cluster head with a smaller id is responsible for generating the join output.

8.3 Query Processing with Relevance Feedback

A major challenge in multi-way join queries over sensor networks is that usually

only a small fraction of the thousands of sensors in the network join with each other.

This challenge is exacerbated in a distributed environment where a probe between

two cluster heads requires a significant communication cost. Ideally, the cluster-

head probing sequence spans all cluster heads in the network to produce as much

output results as possible. However, due to the large size of the network and its

associated communication cost, it is more efficient to probe only clusters where it

is more likely to find matches. The possibility of missing few matches from clusters

with low contributing probabilities should not have a major impact on the process

of detecting and tracking phenomena. The objective of the proposed mechanism for

query processing with relevance feedback is to guide the join operation to process

only relevant cluster heads, i.e., clusters that are more likely to generate the same

values. This selective probing reduces both the processing and communication costs

at the price of losing some streams that could have participated in the join if they

were included in the probing sequence.

137

With the arrival of a new tuple t̂ at a cluster head, a join probing sequence has to

be determined. In this case, the probing sequence will be (CHo1
, CHo2

, · · · , CHok
)

such that k≤D, where D is the number of clusters. Each cluster head along the

probing sequence performs the join operation over its data, then ships the result to

the next cluster head in the probing sequence until the join result is received at the

sink node. Based on the join result, the sink node decides on the contribution of

each sensor to the output, i.e., how much each sensor along the probing sequence

is effectively relevant to the output. The sink node forms a feedback array [w1,

w2, · · · , wk] (where k is the arity of the join result) to represent the contribution

weight of each sensor in the output and sends the array to the cluster head that

initiated the probing sequence (i.e., CHo1
). For simplicity, let us assume that wi is

the percentage of the output tuples in which cluster head CHi appears. Each cluster

head maintains a Relevance Feedback Matrix (RFBM) to record the relevance of all

other cluster heads to its own input tuples. The RFBM is used to guide future

probing sequences. The RFBM is defined as follows:

Definition 8.3.1 Given a hash function H(t̂) → [h1, h2, · · · , hn] and D cluster

heads CH1, CH2, · · · , CHD, a Relevance Feedback Matrix (RFBM) is a two-

dimensional matrix (n × D) such that RFBM [H(t̂), CHi] represents the relevance

of cluster head CHi to the join probing sequence of tuple t̂.

Using RFBM, the join probing sequence (Step 2 in Figure 8.2) for an input tuple

t̂ is formed such that the probability of including a cluster head in the probing

sequence is proportional to its relevance to t̂. The relevance probing sequence is

defined as follows:

Definition 8.3.2 Given D cluster heads CH1, CH2, · · · , CHD and an input

tuple t̂, the Relevance Probing Sequence (RPS) of t̂ is a sequence of cluster

heads CHo1
, CHo2

, · · · , CHok
such that k ≤ D and the probability Pr{CHi ∈

RPS}= RFBM [H(t̂),CHi]
PD

i=1
RFBM [H(t̂),CHi]

.

138

Upon receiving a relevance feedback note:

INPUT: a relevance feedback note:(t̂, [(Cs1
,ws1

), (Cs2
,ws2

), · · · , (Csk
,wsk

)]).

OUTPUT: an updated relevance feedback matrix.

for i=1 to k

RFBM[H(t̂), si]=RFBM[H(t̂), si] -
Pk

j=1
wsj

k
+ wsi

Figure 8.3. Processing of relevance feedback.

The RFBM entries are initially set to a base value (e.g., 50% to denote that each

cluster head has an equal probability of being included/excluded from the prob-

ing sequence). Then, the entries in RFBM change dynamically with the arrival of

relevance feedback notes based on the following equation:

RFBM [H(t̂), CHi] = RFBM [H(t̂), CHi]−
∑k

j=1 wj

k
+ wi (8.1)

The RFBM entries are affected by the cluster head weight in the output (wi)

relative to the average weights of all cluster heads in the output (
Pk

j=1
wj

k
). The

algorithm of processing relevance feedback notes that are received from the sink node

is given in Figure 8.3. Notice that as cluster heads contribute to the output, they

gradually get a higher probability to be included in the probing sequence. Similarly,

if cluster heads do not participate in the join output they gradually lose their good

reputation and are excluded from the probing sequence.

8.4 Mathematical Analysis

In the distributed case, SNJoin performs the join over D clusters of input streams.

The output delay is dominated by the communication cost incurred by the probing

sequence that needs to travel throughout all cluster heads or a subset of them if we

are using the relevance feedback. This communication cost is proportional to the

139

size of the probing sequence. Thus, to evaluate the output delay for the distributed

case, we compute the size of the probing sequence. For each cluster head, the partial

join result that is generated locally, and added to the probing sequence, is calculated

using the same formula as in the tuple formation phase in the centralized case of

the VAJoin (as described in Chapter 5). Assume that the number of sensors in a

cluster j is kj and the percentage of joining streams is k′
j. Then, from the VAJoin

analysis in Chapter 5, the size of the local output tuples is 2kjk
′
j

∏kj

i=1 σini, where

2kjk
′
j is the average number of columns and

∏kj

i=1 σini is the average number of rows

in the partial join output at cluster j. Subsequently for D clusters, the size of the

output tuples corresponds to accumulating the output of each cluster all the way

along the probing sequence till we reach the last cluster (i.e., cluster number D).

Accumulating the output means concatenating the columns of the partial results

and computing the cartesian product of the partial result rows. The total output

size is estimated to be (ΣD
j=12kjk

′
j) × (

∏D

j=1

∏kj

i=1 σini). This cost is calculated by

adding the number of columns and multiplying the number of rows in each cluster

head probe along the D cluster sequence.

Again, the reduction in size is mainly due to the parameter k′
j that reflects the

locality characteristic of phenomena where only very few streams contribute to the

join. This is in contrast to the outer MJoin where we need to carry tuples about all

streams throughout all cluster heads even if those streams do not contribute to the

join. In addition, SNJoin can achieve better performance through relevance feedback

that will reduce the number of clusters that need to be visited, hence reducing the

parameter D in the formula that computes the size of the probing sequence.

8.5 Experiments

In this Section, we study the distributed execution of SNJoin over clusters of

uniformly-distributed sensors in space. We use the Nile PhenomenaBase simulated

sensor platform (as described in Section 2.5). Clusters of sensors are obtained using

140

 0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

Distributed MJoin
Distributed SNJoin w/o R.FB.
Distributed SNJoin with R.FB.

Figure 8.4. The effect of distributed query processing.

a simulation of the HEED clustering technique [10] with the cluster range being set

to 10% of the total sensor space (the number of clusters is decided by the algorithm

based on the cluster range). We construct a one-level clustering hierarchy where

cluster heads communicate through a multi-hop communication link. The number

of hops between two communicating cluster heads is determined by the routing proto-

col [86]. Cluster heads receive the sensor readings of their cluster members, perform

the join operation, and communicate with other cluster heads to perform remote

probes. Figure 8.4 gives a comparison between the performance of a distributed

variant of MJoin and the performance of two distributed variants of SNJoin: one

with relevance feedback and the other without relevance feedback. The distributed

variant of MJoin is obtained by performing the MJoin operation among members of

the same cluster at the cluster head. Then, each cluster head probes other clusters

in a descending order of the average selectivity of their members. From Figure 8.4,

notice that SNJoin increases the number of detected phenomena changes by up to

30% over MJoin. Moreover, query processing with relevance feedback enhances the

performance of SNJoin by up to 90% (for 2000 sensors).

141

Percentage reduction in

No of no of output drop O/P tuple comm.

sensors probes delay rate rate width cost

200 0 0 0 0 0 0

400 29.1 23.6 3.5 2.2 3.4 25.3

600 41.2 30.4 5.1 4.7 6.8 38.6

800 50.3 37.7 6.2 6.0 7.2 46.3

1000 60.8 47.5 7.4 6.9 7.9 57.3

1200 65.2 54.1 14.0 12.0 8.1 62.3

1400 69.6 58.8 33.6 29.1 8.6 64.9

1600 74.4 65.4 43.7 42.6 9.3 72.2

1800 77.4 67.6 51.0 47.3 9.9 73.8

2000 79.4 70.1 52.3 50.3 11.5 75.5

Figure 8.5. The effect of relevance feedback.

The relevance feedback allows the join operation to focus on sensors with similar

behavior, and hence, reduces the number of probed streams. Consequently, the per-

tuple processing time is reduced. As a negative effect of relevance feedback, not all

cluster heads are probed and, consequently, the output join tuple may miss some

streams that could otherwise participate in the join. Hence, the arity of the output

join tuple is reduced. Experimentally, this reduction in the arity of the tuple does

not exceed 12% (at 2000 sensors). Figure 8.5 illustrates the effect of the relevance

feedback on the performance of SNJoin with respect to the reduction in the number

of probed streams, the output delay, the input drop rate, the tuple width, and the

communication cost (measured in terms of the number of bytes transmitted per

second). In general, if we compare the full fledged SNJoin operator (i.e., SNJoin

with relevance feedback) to its predecessor inside Nile-PDT (i.e., MJoin), we find

out that SNJoin reduces the output delay by 70% and increases the number of

detected phenomena updates by 150%.

142

8.6 Summary

In this chapter, we presented the SNJoin (or Sensor-Network Join) operator, a

variable-arity join operator for sensor-network PhenomenaBases. To meet the de-

mands of sensor networks, SNJoin is designed to scale with respect to the number

of sensors in the network without sacrificing the output rate. We introduced the no-

tion of query processing with relevance feedback to adjust the join probing sequence

based on the selectivity between sensor pairs. SNJoin supports the distributed ex-

ecution of the join operation with the capability to accept and process relevance

feedback. Experimental studies that are based on a prototype implementation of

the join operators inside Nile PhenomenaBase show the scalability of SNJoin. Once

SNJoin is adopted by PhenomenaBases, the number of detected phenomena updates

is increased while the output delay is reduced.

143

9 CONCLUSIONS AND FUTURE WORK

In this dissertation, we empowered DSMSs with phenomenon-awareness capabilities.

Phenomenon awareness bridges the gap between user-defined queries and the data

patterns that appear in the underlying streaming sources. A phenomenon is a group

of streams that persist to exhibit similar behavior over time. Phenomenon-aware

DSMS (or PhenomenaBases) are databases of the phenomena that develop in the

streaming environment. Phenomenon-aware DSMS are tuned for large-scale stream-

ing environments where it is challenging to discover interesting patterns among a

huge number of, possibly high-rate, data streams. In a phenomenon-aware DSMS,

the knowledge about detected phenomena in the surrounding environment guides

the query processing to regions of interest in the streaming environment. In this re-

search, we considered phenomenon awareness over two different setups. In the first

setup, we are concerned with a centralized platform, where all stream readings are

transmitted to a single sink node that is running a phenomenon-aware DSMS. In

the second setup, we address phenomenon awareness in a sensor-network platform,

where we shift some of the processing functionalities from the centralized DSMS to

the sensor-network level. Throughout the chapters of this dissertation, we explore

the effect of phenomenon-awareness on various components of DSMSs. For example,

we study the effect of phenomenon-awareness on the parser and its extended SQL

syntax, the stream monitor and its load shedder subcomponent, the query executer,

the query optimizer, and the data acquisition controller.

9.1 Summary of Contributions

To achieve a flexible and efficient framework for phenomenon-awareness, this dis-

sertation introduces several contributions. First, we provide a concrete definition

144

for the phenomenon and explore various notions of similarity among streams’ be-

havior. Moreover, we formalize several parameters in the phenomenon definition.

These parameters include the persistency, the spread, and the time span of the phe-

nomenon. Based on the phenomenon definition, we extend the SQL language with

the ability to register various types of phenomena in the system and to interact with

detected phenomena. Consequently, we extend the architecture of DSMSs with ad-

ditional components to handle phenomenon awareness. Meanwhile, we leverage the

functionality of already existing components to cope with the concept of phenomena.

The second contribution of this dissertation is the scalable techniques for phe-

nomenon detection and tracking. To be scalable with respect to the number of input

data streams, to the stream rates, and to the number of detectable phenomena, we

introduce a preference-based load shedder. This preference-based load shedder drops

portions of the input streams that are less likely to participate in desirable phenom-

ena, as specified in the user’s preference. Moreover, we present a variable-arity join

operator that detects similarity among streaming sources and, at the same time,

conserves system resources during the costly join operation. The basic idea is to

include in the join operation a variable number of streaming sources, i.e., only the

streaming sources that are likely to join.

We introduce the adaptive phenomenon-aware optimizer as our third major con-

tribution in this dissertation. The phenomenon-aware optimizer optimizes the exe-

cution of user-defined queries dynamically based on the knowledge of phenomena in

space. The phenomenon-aware optimizer justifies the cost of running phenomenon

detection and tracking modules continuously at the background of the system by

guiding the execution of a query to phenomenon regions that are expected to satisfy

the query predicates.

Finally, we consider phenomenon detection and tracking in a sensor-network plat-

form that features in-network query processing. Sensor readings are transmitted to a

sink node through a multi-hop route where sensor readings undergo en-route process-

ing before they reach their final destination. In particular, we address phenomenon-

145

guided sensor data acquisition and sensor network join with relevance feedback. In

phenomenon-guided data acquisition, sensor nodes that are within the same phe-

nomenon collaborate in transmitting the sensor data to the sink node such that

the overall transmission cost is reduced. In sensor network join, relevance feedback

is computed based on the join output to tune future multi-hop join probing se-

quences. Relevance feedback includes sensors that generate similar data readings in

the same probing sequence with high probability. To demonstrate the capabilities

of phenomenon-aware DSMSs, we built the Nile PhenomenaBase prototype system,

where we provided an experimental evidence for the performance gains of the pro-

posed framework supported by mathematical verification wherever applicable.

9.2 Future Extensions

This dissertation triggers several directions for future research. This section

highlights three directions and shows how these directions fit under the umbrella of

phenomenon detection and tracking framework.

9.2.1 Detection and Tracking of Non-discrete Phenomena

In this dissertation, we focused on discrete phenomena where the notion of simi-

larity among streams’ readings reduces to equality. Then, we investigated the effect

of discrete phenomenon awareness on various components of a DSMS. However, non-

discrete phenomena that are based on general notions of similarity are apparent in

many applications. For example, humidity, temperature, and light intensity readings

are usually drawn from a continuous domain. Approximating non-discrete phenom-

ena with discrete ones limits the similarity notions to equality and reduces the output

accuracy.

To address non-discrete phenomena, phenomenon-aware DSMSs need to be re-

visited from three angles: (1) non-discrete phenomenon registration, (2) non-discrete

phenomenon detection and tracking, and (3) query optimization based on non-

146

discrete phenomena. In Chapter 2, we introduced an extended SQL syntax that

is capable of registering both discrete and non-discrete phenomenon in the system.

Throughout the phenomenon detection and tracking process, we make use of an

equality join operator that is followed by a group-by operator to detect equality

among stream readings. To extend the similarity notion beyond equality, the equal-

ity join needs to be replaced by the more general similarity join operator [87, 88].

Also, the group-by operator should have the ability to tolerate the similarity (i.e.,

non-equality) in the join values.

On the query optimizer side, discrete phenomena guide the query execution to

streaming sources that are likely to satisfy the query predicates. When streaming

source Si satisfies the predicates of a query and, meanwhile, streaming source Si is

in the same phenomenon as streaming source Sj , then streaming source Sj is likely

to satisfy the query predicates as well. In the general paradigm of non-discrete phe-

nomena, streaming source Si is similar in behavior to streaming source Sj according

to a similarity function F (i.e., Si = F (Sj)). Given the value of Si, the optimizer

can get a sense of what the expected values of streaming source Sj would be (i.e.,

Sj = F−1(Si)) and, hence, decide whether streaming source Sj is of interest to the

standing query or not. We expect that combining both discrete and non-discrete phe-

nomena in the same system strengthens the phenomenon awareness and enhances

the practicality of the model.

9.2.2 Statistical PDT Techniques

Statistical models have been utilized inside DSMSs to efficiently guide the data ac-

quisition and to process several types of queries efficiently (e.g., aggregation queries).

Examples of research efforts that address statistical models over data streams in-

clude [89–91]. A statistical model can be initially given as input to the system based

on the knowledge about the surrounding environment. Then, the model is enhanced

over time as the system processes portions of the incoming data streams.

147

In this dissertation, we use a simple self-trained statistical model, i.e., the rel-

evance feedback matrix (RFBM), to guide the join probing sequence to relevant

cluster heads. The RFBM is updated based on the past join output tuples and is

used to optimize future join probes. Replacing the simple RFBM with a full-fledged

statistical model would capture similarities in the stream distributions efficiently and

would lead to better phenomenon detection results.

9.2.3 Phenomenon-aware Query Plan Reorganization

Query optimization inside a DSMS is a continuous process that dynamically

adjusts the execution of user queries at run time to adapt to changes in the nature

of the incoming data streams. Several optimization approaches reorganize the query

plan at run time to obtain the query plan that best fits to the data stream distribution

at a certain point of time. Then, the query plan is reorganized in response to changes

in the data streams’ underlying distributions. Examples of current approaches in

query plan reorganization over data streams include [58, 92–94].

In this dissertation, the proposed phenomenon-aware query optimizer continu-

ously updates the query deployment map and associates each query with a set of

interesting phenomena at run time. However, each query is represented by a single

query plan that is generated at compilation time. Combining phenomenon-aware

query deployment with run-time query plan reorganization would result in a full-

fledged stream query optimizer.

LIST OF REFERENCES

148

LIST OF REFERENCES

[1] Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong, and Janice Mc-
Nair. Airborne traffic surveillance systems: video surveillance of highway traffic.
In the ACM international workshop on Video surveillance & sensor networks,
2004.

[2] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Stream
window join: Tracking moving objects in sensor-network databases. In SSDBM,
pages 75–84, 2003.

[3] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan M.
Mainwaring, and Deborah Estrin. Habitat monitoring with sensor networks.
Commun. ACM, 47(6):34–40, 2004.

[4] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor
database systems. In Mobile Data Management, pages 3–14, 2001.

[5] Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers. Approximate
aggregation techniques for sensor databases. In ICDE, pages 449–460, 2004.

[6] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and
Wei Hong. Model-driven data acquisition in sensor networks. In VLDB, pages
588–599, 2004.

[7] Samuel Madden and Michael J. Franklin. Fjording the stream: An architecture
for queries over streaming sensor data. In ICDE, pages 555–566, 2002.

[8] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
The design of an acquisitional query processor for sensor networks. In SIGMOD
Conference, pages 491–502, 2003.

[9] Yong Yao and Johannes Gehrke. Query processing in sensor networks. In CIDR,
2003.

[10] Ossama Younis and Sonia Fahmy. Heed: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput.,
3(4):366–379, 2004.

[11] Mohamed H. Ali. Phenomenon-aware sensor database systems. In EDBT Ph.D.
Workshop, 2006.

[12] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref,
Ann Christine Catlin, Ahmed K. Elmagarmid, M. Eltabakh, Mohamed G.
Elfeky, Thanaa M. Ghanem, R. Gwadera, Ihab F. Ilyas, Mirette S. Marzouk,
and Xiaopeng Xiong. Nile: A query processing engine for data streams. In
ICDE, page 851, 2004.

149

[13] Mohamed H. Ali, Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel.
Detection and tracking of discrete phenomena in sensor-network databases. In
SSDBM, pages 163–172, 2005.

[14] Mohamed H. Ali, Walid G. Aref, and Ibrahim Kamel. Scalability management
in sensor-network phenomenabases. In SSDBM, 2006.

[15] Mohamed H. Ali, Walid G. Aref, Raja Bose, Ahmed K. Elmagarmid, Abdel-
salam Helal, Ibrahim Kamel, and Mohamed F. Mokbel. Nile-pdt: A phe-
nomenon detection and tracking framework for data stream management sys-
tems. In VLDB, pages 1295–1298, 2005.

[16] Mohamed H. Ali, Mohamed F. Mokbel, and Walid G. Aref. Phenomenon-aware
stream query processing. In Mobile Data Management, 2007.

[17] Mohamed H. Ali, Walid G. Aref, and Cristina Nita-Rotaru. Spass: scalable and
energy-efficient data acquisition in sensor databases. In MobiDE, pages 81–88,
2005.

[18] Mohamed H. Ali. Phenomenon-aware sensor database systems. Current Trends
in Database Technology - EDBT 2006 Workshops - Revised Selected Papers,
Lecture Notes in Computer Science, 4254:1–11, 2006.

[19] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In ICALP, pages 693–703, 2002.

[20] Sumi Helal, William C. Mann, Hicham El-Zabadani, Jeffrey King, Youssef Kad-
doura, and Erwin Jansen. The gator tech smart house: A programmable per-
vasive space. IEEE Computer, 38(3):50–60, 2005.

[21] George Kingsley Zipf. Human behavior and principle of least effort: An in-
troduction to human ecology. Addison-Wesley Publishing Co., Reading, MA,
1949.

[22] Xuegang Huang and Christian S. Jensen. Towards a streams-based framework
for defining location-based queries. In STDBM, pages 73–80, 2004.

[23] Mohamed F. Mokbel and Walid G. Aref. Sole: Scalable online execution of
continuous queries on spatio-temporal data streams. Technical Report CSD-05-
016, Purdue University, Department of Computer Science, 2005.

[24] Rimma V. Nehme and Elke A. Rundensteiner. Scuba: Scalable cluster-based
algorithm for evaluating continuous spatio-temporal queries on moving objects.
In EDBT, pages 1001–1019, 2006.

[25] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias.
Spatio-temporal aggregation using sketches. In ICDE, pages 214–226, 2004.

[26] Donghui Zhang, Dimitrios Gunopulos, Vassilis J. Tsotras, and Bernhard Seeger.
Temporal and spatio-temporal aggregations over data streams using multiple
time granularities. Inf. Syst., 28(1-2):61–84, 2003.

[27] Wensheng Zhang and Guohong Cao. Optimizing tree reconfiguration for mobile
target tracking in sensor networks. In INFOCOM, 2004.

150

[28] Yingqi Xu, Julian Winter, and Wang-Chien Lee. Prediction-based strategies for
energy saving in object tracking sensor networks. In Mobile Data Management,
pages 346–357, 2004.

[29] Robert Nowak and Urbashi Mitra. Boundary estimation in sensor networks:
Theory and methods. In IPSN, pages 80–95, 2003.

[30] Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek. Beyond
average: Toward sophisticated sensing with queries. In IPSN, pages 63–79,
2003.

[31] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving
clusters in spatio-temporal data. In SSTD, pages 364–381, 2005.

[32] Roger S. Barga, Jonathan Goldstein, Mohamed h. Ali, and Mingsheng Hong.
Consistent streaming through time: A vision for event stream processing. In
CIDR, 2007.

[33] Moustafa A. Hammad, Thanaa M. Ghanem, Walid G. Aref, Ahmed K. Elma-
garmid, and Mohamed F. Mokbel. Efficient execution of sliding-window queries
over data streams. Technical Report CSD-03-035, Department of Computer
Science, Purdue University, 2004.

[34] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output
rate of multi-way join queries over streaming information sources. In VLDB,
pages 285–296, 2003.

[35] César A. Galindo-Legaria and Milind Joshi. Orthogonal optimization of sub-
queries and aggregation. In SIGMOD Conference, pages 571–581, 2001.

[36] Weipeng P. Yan and Per-Åke Larson. Eager aggregation and lazy aggregation.
In VLDB, pages 345–357, 1995.

[37] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. Join synopses for approximate query answering. In SIGMOD Con-
ference, pages 275–286, 1999.

[38] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive
queries with sliding windows over infinite streams. In SIGMOD Conference,
pages 419–430, 2004.

[39] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggre-
gation queries over data streams. In ICDE, pages 350–361, 2004.

[40] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On random
sampling over joins. In SIGMOD Conference, pages 263–274, 1999.

[41] Ahmed Ayad, Jeffrey F. Naughton, Stephen Wright, and Utkarsh Srivastava.
Approximating streamingwindow joins under cpu limitations. In ICDE, page
142, 2006.

[42] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Semantic approx-
imation of data stream joins. IEEE Trans. Knowl. Data Eng., 17(1):44–59,
2005.

151

[43] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Load shedding in a data stream manager. In VLDB,
pages 309–320, 2003.

[44] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms.
In STOC, pages 471–475, 2001.

[45] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok
Shim. Approximate query processing using wavelets. In VLDB, pages 111–
122, 2000.

[46] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-
imating the frequency moments. In STOC, pages 20–29, 1996.

[47] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving
window over streaming data. In SODA, pages 633–634, 2002.

[48] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Sketch-based multi-query processing over data streams. In EDBT, pages 551–
568, 2004.

[49] Donghui Zhang, Dimitrios Gunopulos, Vassilis J. Tsotras, and Bernhard Seeger.
Temporal aggregation over data streams using multiple granularities. In EDBT,
pages 646–663, 2002.

[50] Themistoklis Palpanas, Michail Vlachos, Eamonn J. Keogh, Dimitrios Gunop-
ulos, and Wagner Truppel. Online amnesic approximation of streaming time
series. In ICDE, pages 338–349, 2004.

[51] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in
continuous queries over data streams. In VLDB, pages 500–511, 2003.

[52] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K.
Elmagarmid. Scheduling for shared window joins over data streams. In VLDB,
pages 297–308, 2003.

[53] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating window joins
over unbounded streams. In ICDE, pages 341–352, 2003.

[54] Utkarsh Srivastava and Jennifer Widom. Memory-limited execution of win-
dowed stream joins. In VLDB, pages 324–335, 2004.

[55] Annita N. Wilschut and Peter M. G. Apers. Pipelining in query execution. In
Proceedings of the International Conference on Databases, Parallel Architectures
and their Applications, PARBASE, 1990.

[56] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled pipelined
join operator. IEEE Data Eng. Bull., 23(2):27–33, 2000.

[57] Mohamed F. Mokbel, Ming Lu, and Walid G. Aref. Hash-merge join: A non-
blocking join algorithm for producing fast and early join results. In ICDE, pages
251–263, 2004.

[58] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD Conference, pages 261–272, 2000.

152

[59] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. SIAM
J. Discrete Math., 17(1):134–160, 2003.

[60] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, pages 426–435, 1997.

[61] Xiaopeng Xiong and Walid G. Aref. R-trees with update memos. In ICDE,
page 22, 2006.

[62] V. Prasad Chakka, Adam Everspaugh, and Jignesh M. Patel. Indexing large
trajectory data sets with seti. In CIDR, 2003.

[63] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel approaches
in query processing for moving object trajectories. In VLDB, pages 395–406,
2000.

[64] Reynold Cheng, Yuni Xia, Sunil Prabhakar, and Rahul Shah. Change tolerant
indexing for constantly evolving data. In ICDE, pages 391–402, 2005.

[65] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. On indexing
mobile objects. In PODS, pages 261–272, 1999.

[66] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref, and Su-
sanne E. Hambrusch. Query indexing and velocity constrained indexing: Scal-
able techniques for continuous queries on moving objects. IEEE Trans. Com-
puters, 51(10):1124–1140, 2002.

[67] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.
Lopez. Indexing the positions of continuously moving objects. In SIGMOD
Conference, pages 331–342, 2000.

[68] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An optimized
spatio-temporal access method for predictive queries. In VLDB, 2003.

[69] Sangeeta Bhattacharya, Octav Chipara, Brandon Harris, Chenyang Lu, Guo-
liang Xing, and Chien-Liang Fok. Mobiquery: a spatiotemporal data service for
sensor networks. In SenSys, page 320, 2004.

[70] Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of continuously
moving queries on moving objects in a mobile system. In EDBT, pages 67–87,
2004.

[71] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scalable
incremental processing of continuous queries in spatio-temporal databases. In
SIGMOD Conference, pages 623–634, 2004.

[72] Mohamed F. Mokbel and Walid G. Aref. Gpac: generic and progressive pro-
cessing of mobile queries over mobile data. In Mobile Data Management, pages
155–163, 2005.

[73] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang, and Deborah Estrin. Cop-
ing with irregular spatio-temporal sampling in sensor networks. Computer Com-
munication Review, 34(1):125–130, 2004.

153

[74] Iosif Lazaridis, Qi Han, Xingbo Yu, Sharad Mehrotra, Nalini Venkatasubrama-
nian, Dmitri V. Kalashnikov, and Weiwen Yang. Quasar: quality aware sensing
architecture. SIGMOD Record, 33(1):26–31, 2004.

[75] Jia-Yu Pan, Srinivasan Seshan, and Christos Faloutsos. Fastcars: Fast,
correlation-aware sampling for network data mining. In GLOBECOM, pages
2167–2171, 2002.

[76] Jae-Hwan Chang and Leandros Tassiulas. Energy conserving routing in wireless
ad-hoc networks. In INFOCOM, pages 22–31, 2000.

[77] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed
diffusion: a scalable and robust communication paradigm for sensor networks.
In MOBICOM, pages 56–67, 2000.

[78] Joanna Kulik, Wendi Rabiner Heinzelman, and Hari Balakrishnan. Negotiation-
based protocols for disseminating information in wireless sensor networks. Wire-
less Networks, 8(2-3):169–185, 2002.

[79] Amol Deshpande, Suman Kumar Nath, Phillip B. Gibbons, and Srinivasan Se-
shan. Cache-and-query for wide area sensor databases. In SIGMOD Conference,
pages 503–514, 2003.

[80] Alan D. Amis, Ravi Prakash, Dung Huynh, and Thai Vuong. Max-min d-cluster
formation in wireless ad hoc networks. In INFOCOM, pages 32–41, 2000.

[81] Stefano Basagni. Distributed clustering for ad hoc networks. In ISPAN, pages
310–315, 1999.

[82] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, 1985.

[83] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive self-configuring sensor
networks topologies.. In INFOCOM, 2002.

[84] Ya Xu, John S. Heidemann, and Deborah Estrin. Geography-informed energy
conservation for ad hoc routing. In MOBICOM, pages 70–84, 2001.

[85] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator place-
ment for in-network stream query processing. In PODS, pages 250–258, 2005.

[86] Alec Woo, Terence Tong, and David E. Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In SenSys, pages 14–27, 2003.

[87] Christian Böhm and Hans-Peter Kriegel. A cost model and index architecture
for the similarity join. In ICDE, pages 411–420, 2001.

[88] Gı́sli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for
spatial databases. In SIGMOD Conference, pages 237–248, 1998.

[89] Amol Deshpande, Carlos Guestrin, Wei Hong, and Samuel Madden. Exploiting
correlated attributes in acquisitional query processing. In ICDE, pages 143–154,
2005.

154

[90] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and
Wei Hong. Model-based approximate querying in sensor networks. VLDB J.,
14(4):417–443, 2005.

[91] Amol Deshpande and Samuel Madden. Mauvedb: supporting model-based user
views in database systems. In SIGMOD Conference, pages 73–84, 2006.

[92] Shivnath Babu and Jennifer Widom. Streamon: An adaptive engine for stream
query processing. In SIGMOD Conference, pages 931–932, 2004.

[93] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. Proactive re-optimization.
In SIGMOD Conference, pages 107–118, 2005.

[94] Pedro Bizarro, Shivnath Babu, David J. DeWitt, and Jennifer Widom. Content-
based routing: Different plans for different data. In VLDB, pages 757–768, 2005.

VITA

155

VITA

Mohamed Ali was born in Alexandria, Egypt in 1977. His interest in computer

sciences started in his early years through a set of introductory computer courses.

During high school, Mohamed nourished his interest in computers by a good amount

of supplementary reading materials. In 1994, Mohamed joined the Faculty of Engi-

neering at Alexandria University. After a very competitive freshman year, he joined

the Computer Science Department. In 1999, Mohamed obtained his B.Sc. degree in

computer science with the highest degree of honor from the Faculty of Engineering,

Alexandria University. Mohamed was one of few students in his class who obtained

a Distinction grade in all the undergraduate years of study. Mohamed obtained the

highest GPA among the sixty students of his class upon graduation. Immediately

after the completion of his B.Sc. degree, Mohamed joined the computer science

program for graduate studies where he stared his research in computer vision, ma-

chine learning, and database systems. Two years later, Mohamed obtained his M.Sc.

degree in computer science from the Faculty of Engineering, Alexandria University.

In 2002, Mohamed joined Purdue University as a research assistant with Prof.

Walid Aref. Mohamed’s research sharpened his experience in large scale database

systems. Mohamed published several research papers in various areas of core

database and data stream systems. In summer 2006, Mohamed interned with the

database group at Microsoft Research, one of the top research labs world-wide. Mo-

hamed’s main research interests focus on advancing the state of the art in the design

and implementation of database and data stream systems to cope with the require-

ments of emerging applications. Mohamed Ali graduated with a Ph.D. degree in

computer science from Purdue University in May 2007 and joined the SQL Server

group at Microsoft Corporation as a software design engineer.

