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Abstract 

 
Geographically co-located sensors are exposed to the same environmental conditions and, 
hence, are part of the same environmental phenomena. Phenomenon-aware stream query 
processing reduces the workload on the sensor's query processor by subscribing each standing 
query to, and only to, a subset of sensors that participate in the phenomena of interest to that 
query. In the case of sensors that generate readings with a multi-attribute schema, phenomena 
may develop across the values of one or more attributes. Ideally, a phenomenon-aware query 
processing system detects and tracks phenomena across all sensory attributes (all dimensions). 
However, such multi-attribute or multi-dimensional phenomenon-aware systems do not scale with 
respect to the number of dimensions.  
 
In this paper, we present a novel n-dimensional Phenomenon Detection and Tracking mechanism 
(termed as nd-PDT) over n-ary sensor readings. Then, we perform dimensionality reduction from 
n to n' by dropping dimensions where no meaningful phenomena are detected. More interestingly, 
we reduce the dimensionality from n' to n'' (n''<n') by detecting various forms of functional 
dependencies amongst the phenomenon dimensions. We then enhance this dimensionality 
reduction as a continuous process that dynamically determines the number of monitored 
dimensions to be anywhere between 1 and n dimensions. Experimental analysis explores the 
trade-offs of reduced-dimensionality PDT in terms of processing cost and query accuracy. 
 
Keywords: Data Streams, Phenomenon-aware, Query Processing, DSMS, Sensors Networks. 

 
 

 INTRODUCTION 1.
With the advances in sensor network technology and with the growing ubiquity of sensor 
deployments, large amounts of sensor data is readily gathered; yet processing this data efficiently 
and accurately still poses significant challenges. We believe that exploring redundancies and 
functional dependencies among these amounts of data can help mitigate such challenges 
particularly in the sensor network query processing domain. Consider the fact that although 
sensor data exhibits tremendous variations across the entire regions of a sensor network, sensor 
readings tend to be similar across geographically co-located sensors over a period of time. 
Hence, the notion of a  phenomenon, as defined in [1][2][3][4] is a group of near-by sensors that 
persistently read similar values over a period of time. The Challenges in the domain of 



Ali, Bindra & Teredesai 

International Journal of Data Engineering (IJDE), Volume (1) : Issue (1), 2012 2 

Phenomenon aware query processing are: (a) the continuous detection and tracking of 
phenomena as they appear, move, and disappear from the sensor field, and (b) the optimization 
of subsequent user queries using the knowledge of detected phenomena. The two goals are 
achieved by implementing two components that reside at the core of a phenomenon-aware 
system: the Phenomenon Detection and Tracking (PDT) module and the phenomenon-aware 
optimizer, respectively. 
 
The PDT module continuously monitors correlations amongst readings arriving from near-by 
sensors. A phenomenon is said to be observed once a group of sensors continue generating 
similar values over a period of time. The phenomenon-aware optimizer then assesses the interest 
of a user-given query in all detected phenomena. If a query is interested in a specific 
phenomenon, the query is remotely deployed over (and only over) the sensors that participate in 
that phenomenon. If the query is interested in multiple phenomena, the query is deployed over 
the union of sensors participating in these phenomena. 
 
In most cases, the number of sensors that participate in various phenomena is significantly less 
than the total number of sensors in the sensor field. Also, the number of phenomena that are of 
particular interest to query Qi, is a subset of all observed phenomena. Therefore, query Qi is 
deployed only over a small subset of sensors where interesting data is believed to exist. This 
phenomenon-guided query deployment reduces the number of queries being processed by each 
sensor that would have, otherwise, processed every single standing query within the system. 
 
The PDT module has been presented in literature in [1][3][4], while phenomenon-aware query 
optimization has been presented in [2]. Currently, all previously conducted research assumes a 
single-attribute sensor schema, where sensors read single value types, e.g., temperature 
sensors, light intensity sensors, humidity sensors, etc. Even if the sensor's schema is a multi-
attribute schema, phenomenon detection (and its subsequent optimizations) is carried over a 
single attribute at a time. This severely limits the applicability of phenomenon aware query 
processors. 
 
In this paper, we alleviate this problem by proposing a phenomenon aware query processing 
system that handles sensors that generate multi-attribute readings, where phenomena may 
develop across some or all of the attributes. Meanwhile, there are hundreds or thousands of 
standing queries that are featured by conjunctive predicates over the values of some or all of 
these attributes. The naive approach is to deploy n independent PDT systems, one per attribute 
(or dimension). Then, the phenomenon-aware query optimizer deploys query Qi over sensor Sj if 
there is consensus or quorum, among all dimensions, that sensor Sj is of interest to query Qi. 
Note that while there is some cost to monitor a dimension in the PDT process the benefit is that it 
results in early filtering of some sensors that are irrelevant to query Qi. However the cost of 
phenomena detection over a large number of dimensions may not justified by the increased 
benefit of reducing the query deployment to a smaller subset of sensors. The challenge then is to 
find the right set of dimensions that balance the PDT cost and the gained reduction in the query 
deployment map. 
 
By developing an n dimensional phenomenon-aware system, we highlight three important 
observations. First, for a given domain, meaningful phenomena tend to appear along a subset of 
the dimensions. If we have n dimension, only n' dimensions (where n' < n) exhibit correlations 
across sensor readings and, hence, result in detected phenomena. Second, the 
appearance/disappearance of phenomena across different dimensions does not seem to be 
random. Instead, whenever a phenomenon is detected in one dimension, other dimensions tend 
to report phenomena simultaneously or within a short period of time. Relating this observation to 
real life, we understand that whenever a fire strikes a sensor field, there will be an observable 
phenomenon over the ʻtemperatureʼ dimension, accompanied by another simultaneous 
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phenomenon over the ʻlight intensityʼ dimension. The same thing happens whenever a 
phenomenon disappears from the sensor field. Third, behavioral changes in the environment 
readings are not only expected but they can also be frequent enough to invalidate the efficiency 
of the chosen set of monitored dimensions for phenomenon-aware optimizations. 
 
The above three observations shape the research conducted in the context of this paper and our 
contributions can be summarized as follows: 
 

1. We enhance phenomenon-aware query processors with the ability to detect phenomena 
across multiple dimensions. 

 
2. We present a two-step dimensionality reduction technique. The first step filters-out the 

dimensions where no interesting phenomena are detected and the second step then 
eliminates functionally dependent dimensions. 

 
3. We further extend the multi-dimensional PDT and make it dynamic such that it can 

handle behavioral changes in the streaming environment by continuously adjusting the 
monitored set of dimensions. Dimensions are added and removed dynamically to balance 
between the cost of phenomenon detection across multiple dimensions and gained 
benefit of deploying queries over smaller subsets of sensors. 

 
4. We experimentally evaluate and compare the multi-dimensional phenomenon-aware 

query processor and its reduced-dimensionality variants in terms of processing costs and 
query accuracy and present the results. 

 
The remainder of this paper is organized as follows. Section 2 provides the background on 
phenomenon-aware systems. Section 3 outlines the issues involved in designing 
multidimensional phenomenon-aware query processing systems. Section 4 focuses on the 
proposed dimensionality reduction techniques and presents the system's ability to be adaptive 
and responsive to changes in the behavior of the underlying stream sources. Section 5 provides 
an experimental analysis of the proposed stream query processor along with its reduced 
dimensionality and adaptive variants. An overview of the related work is given in Section 6. 
Section 7 concludes the paper.  
 

 BACKGROUND 2.
This section summarizes the basic definitions and the key concepts of phenomenon-aware 
stream query processing. More specifically, we present a definition for a phenomenon and 
overview the architecture of phenomenon-aware systems. Then, we discuss the cost-benefits 
trade-off of such systems. 
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Figure 1: Architecture of a phenomenon-aware system. 

 
A phenomenon is a group of near-by sensors that persistently generate similar behaviors over a 
period of time [1][4]. Definition 1 provides a high level definition of a phenomenon that captures 
the notion of similarity among sensors. The notion of similarity has been extensively studied by 
several research groups, yet under different terminologies, e.g., phenomena, isobars, 
homogenous regions, deformable 2D objects, etc. ([5][10][11][15][16][19]). Section 6 overviews 
and compares amongst some of these similarity-based techniques.  
 
Definition 1: In a sensor network SN, a phenomenon takes place only when a set of sensors S in 
SN report similar reading values more than α times within a time window w. 
 
Definition 2: A phenomenon Pτ at time instant τ is a binary tuple (Rτ ,Bw), where Rτ is the 
bounding region of phenomenon Pτ at time instant τ and Bw is the representative behavior of 
phenomenon Pτ over the most recent time window of size w, S.T. stream Si Є Rτ , Prob(|Bw (Si) 
− Bw| ≥ ε) ≤ α. 
 
Definition 2 (as presented in [1]) provides a formal definition of phenomenon. Based on Definition 
2, a phenomenon is associated with a time instant τ because a phenomenon may change its 
location (Rτ) and behavior (Bw) over time. Also, the representative behavior of a phenomenon 
Bw is captured over a window of time (w) to ensure its persistency and to avoid the effect of 
noise. A stream source Si that lies in the phenomenon region Rτ should report a behavior 
(Bw(Si)) that is similar to the phenomenon representative behavior Bw with high probability (i.e., 
Prob(|Bw (Si) − Bw| ≥ ε) ≤ α). Bw, the phenomenon representative behavior, captures the intrinsic 
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features of the underlying phenomenon, e.g., values, frequencies, and trends of tuples 
contributing to the phenomenon. 
 
Figure 1 illustrates the architecture of phenomenon-aware systems. Phenomenon-aware systems 
receive, as input, a set of phenomenon definitions. These definitions are registered and stored in 
a special system catalog called phenomenon definition catalog. The first major component in 
phenomenon aware systems is the phenomenon detection and tracking module (PDT), which 
translates a phenomenon definition into a continuous PDT query. The continuous PDT query is 
distributed over the sensor network to be executed in-network. The outcome of this query is a set 
of detected phenomenon on the format of specified by Definition 2. The detection algorithms, both 
the centralized and distributed versions, are presented in [3]. Detected phenomena are stored in 
the detected phenomenon catalog and are updated continuously in response to the continuous 
evaluation of PDT query. 
 
The phenomenon-aware optimizer, which is the second major component of the system, 
assesses the similarity between the expected query result and the phenomena stored in the 
detected phenomenon catalog. The optimizer binds each query to a subset of the detected 
phenomena that are believed to contain sensor readings of interest to the query. Equivalently, the 
optimizer binds each query to (and only to) the sensors that participate in the query's subset of 
interesting phenomena. These selected sensors are termed the query's working set of sensors. 
Then, the query dispatcher deploys each query remotely to (and only to) the sensors that belong 
to the query's working set, and hence, achieves an efficient query deployment map. The 
phenomenon-aware optimizer is presented in [2]. 
 
Note that the execution of the PDT modules comes at the cost of taking some processing cycles 
from the sensor's scarce resources to continuously detect and track phenomena. However, the 
detected phenomena are used by the phenomenon-aware optimizer to efficiently deploy the 
query over a smaller subset of sensors. Therefore, the remaining CPU cycles of the sensor will be 
invested efficiently in processing queries (and only queries) that are expected to be satisfied by 
the sensor's readings. The phenomenon-aware query processing has been implemented in the 
context of the Nile [11] data stream management system developed at Purdue University. 
 

 MULTI-DIMENSIONAL PHEMOMENON-AWARE QUERY PROCESSINGS 3.
Phenomenon-aware query processing has proved its efficiency in the context of single attribute 
sensor readings, i.e., the schema of incoming sensor tuples consist of a single field. Experiments 
have been conducted over heat sensors, light sensors, humidity sensors, etc. However, saying 
that the concept of phenomenon-aware query processing established its position and 
consolidated its basic concepts in the single-attribute domain, research ambitions have been 
directed towards sensors with multi-attribute schemas. Moreover, thanks to technology advances, 
most commercial sensors in the market generate a multi-attribute schema. Motivated by this, we 
focus on the concept of multi-attribute or multi-dimensional phenomenon-aware query processing 
in this paper. Examples of sensors that generate temperature, humidity, light, speed, 
acceleration, and other different reading attributes in the same tuples include, but are not limited 
to, [22] and [23]. 
In a multi-dimensional domain of sensor readings, similarity (and consequently, phenomena) can 
be expected to develop along any dimension. Given an nd dimensional sensor reading and given 
nq standing queries, a sketch for a naive multi-dimensional phenomenon-aware system that 
deploys queries over their interesting sensors (a.k.a. the query's working set of sensors) is as 
follows: 
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The algorithm above suggests that we run nd independent PDT modules (one module per 
dimension), where nd is the dimensionality of the sensor reading (Step1). Then for every query, 
we compute the query's working set over every dimension independently. Then the query's 
working set is the intersection of the query's workings set from all dimensions (Step 2). This step 
is interpreted as follows: a sensor belongs to the query's working set if there is a consensus 
among all dimensions (or at least a quorum) that this sensor generates data of interest to the 
query. 
 

nd Number of PDT monitored dimensions 
nq Number of standing queries at the 

sensor's query processor 
ninput Number of input events 

Tacquisition Acquisition time: total time taken to 
acquire ninput events from the 

environment and enqueue them at the 
sensor's input buffers 

Tprocessing Processing time: total time taken to 
process ninput events for nq standing 

queries 
tprocessing Processing time for a single tuple per 

single query 
TPDT The cost of a single PDT measured in 

time units 
Seli Selectivity of query number i 

Table 1: Summary of the costing formula symbols. 
 
To better understand a multi-dimensional phenomenon-aware system and to build the correct 
expectations for the performance of such systems, we devote the remainder of this section to 
formalize the expected behavior of the system in terms of its throughput. Table 1 provides a 
summary of the symbols used in these costing equations.  
!ℎ!"#"$!"#$%&%'%() =

!!"#$%
!!"#$%&%'%()

      (1) 

Algorithm: Naive Multi-dimensional Phenomenon-aware Query Processing 
Input: 

• Given multi-dimensional sensor readings with dimensionality of nd 

• Given nq standing query with conjunctive predicates over sensor readings 

Output: 
• Provide an efficient query deployment map that deploys query Qi over Sensor Si 

such that Probability  

!(!".!"#$%   ∈ !".!"#$%&#'"())   >   !,!ℎ!"!  !  !"  !  !"#$!"  !ℎ!"#ℎ!"#. 
Steps: 

1. For every dimension run an independent PDT module to detect phenomena across 

every dimension 

2. For every query, the query working set is the intersection of the query's working sets 

across "all" dimensions. 

3. Deploy query on its workings set of sensors 
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!ℎ!"#"$!"#$% =

!!"#$%×  !!
!!"#$%&%'%()

      (2) 

 

!ℎ!"#"$!"#$"# =
!!"#$%×    !"#!

!!
!

!!"#$%&%'%()!!!"#$%&&'()
     (3) 

 
T!"#$%&&'() =   !!"#$%×!!×!!"#$%&&'() +   !!×!!"#  (4) 
 

!ℎ!"#"$!"#$"# =
!!"#$%×    !"#!

!!
!

!!"#$%&%'%()!(!!"#$%×!!×!!"#$%&&'()!!!×!!"#)
  (5) 

 
We calculate three different types of throughput. (1) The acquisition throughput, which is the total 
number of tuples acquired by the sensor per time unit (Equation 1). (2) The input throughput, 
which is the acquisition throughput multiplied by the number of standing queries (Equation 2). The 
input throughput represents the total number of tuples that need to be processed by the sensor's 
query processor. (3) The output throughput, which is the number of output tuples coming out of 
the sensor's query processor. Equation 3 shows that the output throughput equals number of 
input events (after imposing the selectivity of each standing query) divided by the total time 
(acquisition time and processing time). Higher output throughput indicates that the sensor's 
processing cycles are invested efficiently to direct input tuples to the right queries, i.e., queries 
that are interested in those readings.  
 
Equation 4 captures the processing time as: time spent in queries (i.e., the time taken to process 
a single tuple times the number of input tuples times the number of standing queries) and time 
spent in the PDT modules, which is considered an overhead for phenomenon-aware query 
processors. Substituting the Tprocessing in Equation 3, we get Equation 5. 
 
!! ∝

!
!!(!!)

          (6) 

 
!"#! ∝ !!(!!)         (7) 
 
Equation 6 and 7 show that the number of standing queries per sensors (nq) decreases, and 
meanwhile, each standing query achieves a higher selectivity (Seli), as we increase the number 
of monitored PDT dimensions (nd). By substituting for nq and Seli in Equation 5, we find that the 
output throughput increases due to the higher selectivity gained by increasing the number of PDT 
monitored dimensions. However, the output throughput decreases as we increase the number of 
PDT monitored dimensions due to the TPDT cost itself; which may be prohibitive and may 
dominate the sensor's processing cycles. Hence, the selection of the right set of dimensions to be 
monitored significantly impacts the output throughput and achieves a balance between the TPDT 
cost and the gained selectivity. Section 4 focuses on how to select the right set of dimensions to 
monitor the appearance and disappearance of phenomena. 
 

 DIMENSIONALITY REDUCTION 4.
In Section 3 we discussed the importance of the nd (the number of monitored dimensions) tuning 
parameter. More precisely, the efficiency of a multi-dimensional phenomenon-aware system 
relies on the careful choice of the monitored dimension set: (1) how many dimensions to monitor 
and (2) which dimensions out of the full set of dimensions to select. In this section, we address 
the choice of the monitored dimension set (MDS) as follows: 
 

• Step1: Given a MDS of size nd, what is the optimal choice of another MDS' of size nd -1 
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• Step 2: Given an initial MDS of size nd.initial, what is the optimal choice of a desired MDS 

of size nd.desired 

Step 1 is a single step dimensionality reduction process that reduces nd by a single dimension. 
Step 2 specifies the stopping criterion to stop the dimensionality reduction process. The 
remainder of this section presents two algorithms to perform step 1. Section 4.1 presents an 
algorithm that eliminates dimensions with no (or "few") phenomena that are of interest to standing 
queries and introduces a concrete measure for what we mean by "few" phenomena. Section 4.2 
eliminates dimensions that are functionally dependent on other dimensions. Section 4.3 presents 
the stopping criterion for the dimensionality reduction process. 
 
4.1  Eliminating dimensions with no phenomena 
Running the PDT modules on dimensions that have no phenomena at all or that have few 
phenomena incur additional overhead on the sensor's CPU without any significant reduction in 
the query deployment map. We quantify the effectiveness of running a PDT module on a given 
dimension in terms of the sensor's expected throughput. We make use of two input parameters 
that are computed continuously by the PDT module while the phenomenon detection and tracking 
process is in progress: 
 

• Sensor Participation Ratio (SPR): the average number of phenomena a single sensor 

participates in divided by the total number of phenomena. 

• Tuple Participation Ratio (TPR): the average number of tuples that participate in a 

phenomenon divided by the total number of tuples. 

Also, based on the systems workload, we assume the availability of the following parameters: 
 

• Query-Per-Phenomenon (QPP): the average of number of queries interested in each 

given phenomenon.  

• Phenomenon-Per-Query (PPQ): the average of number of phenomena that each query is 

interested in. 

SPR reflects the number of phenomenon a sensor will be monitoring, while QPR represents how 
many queries are interested in each phenomenon, multiplying SPR by QPR gives the number of 
queries that are expected to run on a single sensor. Thus, 
 
!! = !"#  ×!""         (8) 
 
The expected selectivity of each query is the number of phenomena that are of interest to the 
query multiplied by average percentage of tuples that participate in a phenomenon. 
 
!"#! = !"#  ×!"#         (9) 
 
We substitute for nq and Seli using equations (8) and (9) in equation (5) to evaluate the expected 
throughput for each dimension. Then, we eliminate the dimension with the least expected 
throughput. Note that for the correctness of the equations above, there are two implicit 
assumptions: (1) We assume that sets of queries that are interested in two different phenomena  
are disjoint. This assumption allows us to assume that the overall selectivity is the summation of 
all individual query selectivities. While this assumption is not hundred percent true in practice, it 
simplifies the model without much distortion to the expected behavior. Accounting for overlap in 
the query's interesting set of phenomena is possible but omitted in this paper for brevity. (2) We 



Ali, Bindra & Teredesai 

International Journal of Data Engineering (IJDE), Volume (1) : Issue (1), 2012 9 

assume that every query is interested in one or more phenomena. This allows us to simplify and 
exclude the cases where some queries are interested in sensor values that are not part of any 
phenomena. 
 
4.2  Eliminating functionally dependent dimensions 
It is common in multi-attribute sensors that an increase/decrease in one attributeʼs readings 
implies an increase/decrease in another attributeʼs readings. Generally speaking, the trend of one 
attribute readings is related to the trend of another attribute readings by a functional correlation F 
(i.e., Attr1.value = F(Attr2.value)). For example, the increase in the readings of the temperature 
attribute, in case of a fire, is usually accompanied by an increase in the carbon monoxide (smoke) 
detector attribute readings. 
Such correlations have been previously exploited to develop model based approximate query 
processors [24][25]. For simplicity, we limit the correlation function F to monitor correlations to 
follow a linear relationship on the form of: 
 
 !""#!. !"#$%   = !  ×  !""#!. !"#$%  + !, where x and y are dimensions and a, b are constants. 
          (10) 
 
We assume that linear correlation is sufficient for a wide range of applications. However, 
extending the model to higher orders of correlation is also straightforward. Since, deriving the 
functional dependence between attributes is not the focus of this paper, we assume that if such 
dependencies exist they can be identified and expressed within the phenomenon detection and 
tracking process. In the remainder of this section, we answer two interesting questions: First, 
given two correlated dimensions, which dimension is to be removed to increase efficiency? 
Second, given that we removed the dimension Attr1 (say) which is correlated with Attr2, how the 
phenomenon-aware query optimizer could use Attr1 to filter the query predicates against Attr2.  
Between two correlated dimensions, we eliminate one dimension or the other based on the 
throughput equation (Equation 5). We evaluate the throughput of the system assuming that Attr1 
has been removed. We repeat the throughput evaluation assuming that Attr2 has been removed. 
Then, we decide to eliminate the attribute whose removal maximizes throughput. The intuition 
behind such a decision is that, given two correlated dimensions that are expected to detect a 
similar set of phenomena, we remove the dimension whose phenomenon detection cost is higher, 
or the dimension with tuples that satisfy fewer query predicates. 
 
Given a query predicate on Attr1 on the form of Attr1.ValueLeft< Attr1 < Attr1.valueRight, where 
!""#!. !"#$%   = !  ×  !""#!. !"#$%  + ! and where Attr1 has been eliminated from the system. 
Figure 2 shows that the predicates can be transformed to the other dimension. Then, the query 
interest in the detected phenomena is carried over to the retained dimension. More specifically, 
we calculate the values of Attr2.ValueLeft and Attr2.valueRight using Equation 11. Then, we 
transform the predicate into Attr2.ValueLeft< Attr2 < Attr2.valueRight, where 
ε  is  the  correlation  error 
 
!""#! =

!""#!!!
!

           (11) 
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Figure 2: Transforming predicates across correlated dimensions 

 
4.3 The stopping criterion for dimensionality reduction 
As we discussed earlier, iteratively determining the correlated dimensions and increasing the 
system throughput is the central idea. Unfortunately, it is not trivial to correlate all dimensions with 
each other to produce an optimal set. Hence we suggest the following strategy to determine the 
stopping criterion for determining the optimal size of the monitored set.  
 
Step 1: Start with d dimensions. Measure the throughput in Equation 5. 
 
Step 2: Reduce one dimension (dnew=d-1) where no phenomena are found or where correlation is 
detected then measure throughput again.  
 
Step 3: If the∆!ℎ!"#"$ = !ℎ!"#"$!"#$"# ! −   !ℎ!"#"$!"#$"# ! − 1 <   !,!ℎ!"!  ! ≈
0, then stop iterating, otherwise perform step 2 again.  
 
This strategy of deriving an optimal set is easy to implement and meets the needs of 
incrementally reducing the dimension set. Note that we suggest performing step1 through step 3 
in two phases: Phase 1: we remove all dimensions with no phenomena or with few phenomena 
as described in Section 4.1. Phase 2: remove all correlated dimensions as described in Section 
4.2. The rationale behind this is to avoid the correlation cost between dimensions that have a 
limited number of interesting phenomena. 
 
 

 EXPERIMENT 5.
In this section, we evaluate the performance of the proposed Multi-dimensional Phenomenon-
aware Stream Query Processor. We first discuss the performance metrics, the experimental 
parameters, and other background information regarding reproducibility of our experiments. Then, 
we discuss the experimental results. 
The performance metric used throughout this analysis is accuracy, where we define accuracy ! 
as, 
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! = !
!

          (10) 
 
Where ! is the number of “exact” output events that are generated by an imaginary system with 
infinite resources and  ! is the number of “actual” output events generated by our proposed 
system. Typically, ! < !   since our system will eventually fail to cope with all events once we 
increase the sampling rate to a level that exceeds the sensorsʼ processing capabilities. With 
respect to throughputs as described in section 4, accuracy can be expressed as: 
 
! = !ℎ!"#"$!"#$"# !ℎ!"#"$!"#$"#!"#$%  !"#!"!$%  !"#$%&'()  !"#$%!&"#   (11) 
 
A sensor node has limited processing cycles to sample the environment, process the sampled 
input and satisfy the standing queries, within a given time period. As the number of queries 
increases or as the rate of incoming samples increases, a sensor will not have the capacity to 
process every sample against every query. Furthermore, the storage space (buffers) is also 
restrictive, and queries are time sensitive, which results in data samples being dropped before 
newer ones can be processed. Thus, accuracy tends to decrease as the number of registered 
queries or the sampling rates increase.  
 
5.1 Experimental Setup 
We measure and compare the accuracy (!) across different implementation strategies. These 
strategies are summarized in Table 2. Each sensor in our simulation is multi-attribute or 
multidimensional. Each sensor samples its environment at a sampling rate that is fixed over the 
course of a single experimental run. The data set is generated via a multi-modal normally 
distributed random number generator for each attribute. Our sensors have a fixed size circular 
buffers into which new readings are inserted. If the buffer is full when a new tuple is added the 
oldest tuple is dropped from the buffer. 
 
 

Strategy Description 

NoPDT 
Naïve implementation without 
phenomenon aware optimization. Every 
query is dispatched over every sensor. 

SinglePDT PDT across a single attribute. 
DoublePDT PDT across exactly two attributes. 
TriplePDT PDT across exactly three attributes. 

CorPDT 
PDT with correlation detection and 
dimensionality reduction across other 
attributes. 

Table 2: Strategies considered in the experimental setup 
 
  

Parameter Default Value 

Sampling Rate 0.04 samples per 
millisecond 

Number of Queries 20000 
Number of Sensors 5000 
Selectivity 15% 
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Dimensions (Attributes) 3 
Table 3: Simulation Parameter Settings 

 
 
Our queries are assumed to be long running range queries and are randomly generated with a 
given selectivity. Recall that the output throughput (equation 5), increases by decreasing the 
processing cost and increasing selectivity. For our experiments, both the number of queries and 
the selectivity are preset to the values described in Table 3. All our queries are range queries in 
conjunctive normal form: 
 

!! ≥ !! ∧ !! ≤ !! + ! ∧ !! ≥ !!   ∧ !! ≤ !! + ! ∧…   
∧ !! ≥ !!   ∧ !! ≤ !! + !  

 
Where ai represents an attribute, xi represents a value in the domain of the attribute, s represents 
the range of the query, and (xi + s) is always less than or equal to the maximum value in the 
attributeʼs domain.  
  
Our simulator is implemented in Java 1.6 and all our experiments run on a machine with a 2.4 
GHz Intel Core 2 Duo and 4 GB of RAM.  
 
5.2 The Effect of the Sampling Rate 
In this experiment, we study the accuracy of all five strategies under a variable sampling rate. 
Within each strategy, we expect accuracy to decrease with an increase in the sampling rate. 
Figure 3 shows that the output accuracy decreases as we increase the sampling rate due to the 
scarcity of processing cycles. The results indicate that single PDT and DoublePDT perform better 
than NoPDT. However, as we increase the number of PDTs (TriplePDT), most of the sensor 
nodeʼs processing cycles are spent on the phenomenon detection process and maintenance of 
the PDTs. Consequently, there are not enough cycles left to spend on the actual queries and the 
output accuracy decreases substantially. The strategy of maintaining a correlated PDT seems to 
be by far the most efficient; thereby supporting the motivation behind the proposed approach. As 
we keep increasing the sampling rate, accuracy drops across all strategies due to the sensorʼs 
limited processing cycles in front of the high rate input stream.  
 

 
Figure 3: The effect of sampling rate on query accuracy. 
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5.3 The Effect of the Number of Standing Queries 
In this experiment, we study the effect of increasing the number of standing queries on the 
measured accuracy. Similar to effect of increasing the sampling rate, we expect accuracy to 
decrease as we increase the number of standing queries. The processing cycles become scarce 
as they get divided amongst the standing queries. This behavior is depicted in Figure 4. Again, 
correlated PDT outperforms other strategies. 
 

 
Figure 4: The effect of the number of standing queries on accuracy 
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Figure 5: The effect of the number of sensors on accuracy 

 
 
5.5 The Effect of the Range Query Selectivity 
In this experiment, we vary the selectivity of the range query predicates and examine its effect on 
the output accuracy.  It is interesting to note that the selectivity effect is more pronounced for 
CorPDT. This is because the performance gains of CorPDT come from transforming the query 
predicate from one dimension (the monitored dimension) to other dimensions (the correlated 
dimensions) with the help of the detected and interpolated correlation function. As the range of 

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

1000	
   10000	
   20000	
   40000	
   50000	
  

Ac
cu
ra
cy
	
  

Number	
  of	
  standing	
  queries	
  

NoPDT	
  
CorPDT	
  
SinglePDT	
  
DoublePDT	
  
TriplePDT	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

2000	
   4000	
   5000	
   7000	
   9000	
  

Ac
cu
ra
cy
	
  

Number	
  of	
  sensors	
  

NoPDT	
  
CorPDT	
  
SinglePDT	
  
DoublePDT	
  
TriplePDT	
  



Ali, Bindra & Teredesai 

International Journal of Data Engineering (IJDE), Volume (1) : Issue (1), 2012 14 

the query predicates gets bigger, the transformation seems to get diluted and to become less 
selective over the correlated dimensions. Figure 6 shows the effect of selectivity on the output 
accuracy for all strategies. 
 

 
Figure 6: Effect of selectivity on accuracy 
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smoke detector sensors, every change in the light intensity does not have to mean a fire and 
does not have to show an increase in temperature. Also, every increase in temperature does not 
have to be accompanied by sensing an increased level of smoke. Correlation amongst attributes 
is expected to changes over time. 
 
In this section, our goal is to compare an adaptive CorPDT against a static CorPDT in 
circumstances where the correlation among attributes is non-static. An adaptive CorPDT is 
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Figure 7: The effect of the sampling rate on accuracy 

 
Figure 8: The effect of the number of queries on accuracy 

 
Figure 9: The effect of selectivity on accuracy 

 
 RELATED WORK 6.

The advances in the sensor technology, coupled with wide availability of GPS embedded devices, 
directed the research focus of the GIS community towards spatio-temporal data stream 
processing. There has been an ongoing effort to share and explore the generated data streams 
and amortize the sensor deployment cost efficiently among sensor owners through an open and 
scalable infrastructure, called SenseWeb [10]. Out of several research directions, we consider the 
areas of (1) continuous query processing of spatio-temporal streams, (2) similarity detection 
across geosensor fields, and (3) efficient algorithms for object and region tracking to be most 
relevant to our work. Note that the phenomenon-aware systems are tracking-based systems that 
track similarity-based regions through continuous query processing and optimization over spatio-
temporal streams. 
 
Examples of continuous query processing over data streams generated by GPS-enabled sensors 
and mobile objects include [14] and [18]. More specifically, object tracking in sensor networks 
using continuous queries has been addressed by several research groups. For example, [3][9] 
and [12] propose join algorithms over a sliding window that can be used to track moving objects 
in a sensor field. We distinguish between two types of tracking: object tracking and region 
tracking. Object tracking (e.g., [9] and [12] tracks a single object in the sensor field. Region 
tracking (e.g., [1][2][4][6][7][13][16]) tracks the movements of regions that show similar behavior. 
Phenomenon detection falls under the second category (i.e., region tracking).  
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A framework to track phenomena inside a DSMS is proposed in [1], [3] and [4]. Detection of 
boundaries that separate homogeneous regions of sensors is investigated in [19]. In [7], streams 
of sensor data that have approximately the same value are grouped into continuous regions 
called isobars. The work in [13] identifies an aggregate picture of a sensor networkʼs 
conditions/states that enables online monitoring of evolving phenomena. All these methods 
demonstrate the capacity to successfully estimate phenomenon. Our efforts extend these to 
include a multi-dimensional phenomenon index to keep track of which sensors participate in each 
query. Given a database of object trajectories, [16] refers to a set of objects, which move together 
as a cluster. In [8], the authors focus on topological changes (e.g., region merging/splitting, and 
hole formation/elimination) in areas of high activity during the evolution of a field to monitor 
geographical phenomena. The efforts in [17] bring up added value for the notion of similarity by 
geographically mining for the similarity among users based on their location histories. In [6] the 
notion of phenomena in geosensor networks is abstracted to 2D objects and presents an in-
network energy-efficient algorithm based on the concept of deformable curves to incrementally 
track spatiotemporal changes of the object. The work in [5] extends the notion of similarity among 
sensor values to similarity among the trajectories of moving objects. The emphasis of our work is 
distinct in the sense that we develop a generic framework where any of these notions of similarity 
can be plugged in to provide additional throughput. 
 
Taking into account the spatial properties and the network topology while detecting various notion 
of similarity, a wide spectrum of energy-efficient techniques have been proposed to transmit 
sensor reading over the network. For example, [21] proposes a prediction based strategy to 
reduce power consumption by focusing on regions where moving objects are expected to appear. 
To optimize for the tracking process, [20] reconfigures a tree-like communication structure of a 
sensor network dynamically. The work in [15] makes use of similarity among sensors to divide the 
responsibility of data transmission among sensors that are geographically co-located in the same 
cluster. 
 

 CONCLUSION 7.
Developing a query processor for aggregating geographically distributed information using 
continuous queries over data streams poses significant challenges due to the efficiency issues in 
widespread deployment of hundreds of continuous queries over thousands of sensor nodes to 
monitor tens of dimensions. In a geographically distributed sensor network, processes that exhibit 
similarity in behavior over time are termed as phenomena. We can obtain significant efficiency 
gains by developing systems capable of detecting and tracking phenomena occurring in multiple 
dimensions. Queries can then be deployed intelligently to run on limited nodes that participate in 
the phenomenon of interest. Moreover, functional correlations between dimensions can be 
exploited to further improve the performance of such query processors. 
 
In this paper, we presented a novel n-dimensional Phenomenon Detection and Tracking 
mechanism that reduces both the number of sensors and the number of dimensions over n-ary 
sensor readings on which a continuous query is deployed. We performed dimensionality 
reduction from n to n' by dropping dimensions where no meaningful phenomena were detected. 
We next used functional correlation to reduce the dimensionality further, from n' to n'' by detecting 
various forms of functional dependencies amongst the phenomenon dimensions. We then 
enhance the performance of this dimensionality reduction by making it an adaptive continuous 
process that dynamically determines the number of monitored dimensions. We addressed the 
design issues for each of these advances and developed the metrics that can be used to judge 
the utility of the proposed system. Experiments and results demonstrate that the multi-
dimensional phenomenon-aware stream query processing system significantly outperforms a 
basic stream query processing system and provides enhanced efficiency gains compared to a 
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single dimensional phenomenon-aware system. The adaptive components of the proposed 
system further enhance its utility in comparison to existing efforts. 
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