Remote Exploration Using Cooperative Autonomous
Agents’

Fredrik LOOw
Fredrik Mihlberg
Kungl Tekniska Hogskolan
SE-100 44 Stockholm
Sweden

{d98-fmi,d98-flo}@nada.kth.se

ABSTRACT

Multi-agent simulations have gained popularity as a new
paradigm for analyzing problems in areas such as remote
space exploration, social behavior, and biological modeling.
We have developed an environment for large-scale multi-
agent applications that provides support for thousands of
autonomous agents, each with their own goal, behavior, and
coordination scheme. The platform, known as M++, was
developed to allow for high performance simulations while
maintaining a simple programming interface to allow for
rapid development of simulations. M++’s self-migrating
thread structure allows a simulation to scale from small to
large, while requiring few changes to the initial implemen-
tation.

This paper describes the results of a simulation taken from
the area of remote exploration, where multiple agents are
required to cooperate in order to collect samples from un-
known locations in an environment containing static obsta-
cles.

Keywords

multiagent-based simulation, mobile agents, cooperation, agent

architectures

1. INTRODUCTION

The multi-agent paradigm views applications as the inter-
action between a collection of agents. Each agent has its
own goals, behaviors, and local information in a synthetic
world [8]. In recent years practical use of multi-agent sys-
tems has gained popularity in areas such as remote space

*Student Paper
JrComresponding Author

Munehiro Fukuda
Computing and Software
Systems
University of Washington
Bothell, WA 98011, USA

mfukuda@u.washington.edu

Luis Miguel CamposT

Samuel Irvine
Information and Computer
Science
University of California, Irvine
Irvine, CA 92697, USA

{lcampos,sirvine}@ics.uci.edu

exploration, social behavior, biological modeling and other
areas that traditional mathematical techniques cannot al-
ways represent effectively. However two issues of paramount
importance must be addressed before this new paradigm can
be successfully applied to solve real world problems. The
first issue is how to provide for high performance to large
scale applications that often require millions of fine-grained
agents. The second is how to facilitate the mapping of a
problem description in terms of agents into a concrete soft-
ware implementation (i.e ease of programmability).

Parallelization is one of the most promising techniques to
address the issue of scalability and granularity. Two par-
allelizing schemes can be considered: cell-based and agent-
based schemes [7].

While obtaining the desired effect of application parallelism,
both schemes place the burden of parallel programming (pro-
cessor allocation, message passing, and inter-agents synchro-
nization) on the designer of the model. For instance, the
cell-based scheme requires each processor to exchange the
information of cells and agents that exist on the proces-
sor boundary. The agent-based scheme must implement an
”interest manager” that keeps track of which agents are in-
terested in communicating with each other. Without an in-
telligent interest manager [17], inter-agent messages would
be broadcast over the system, leading to very inefficient use
of the network and a subsequent degradation in system per-
formance. In either scheme, an agent’s functionality must
address its behavioral characteristics relative to the simu-
lation as well as methods for exploiting parallelism in the
underlying system. As a result, the techniques used to par-
allelize multi-agent applications make it difficult for model
designers to concentrate on agent programming.

To solve both the issue of high performance and programma-
bility we have developed an environment for large-scale multi-
agent applications that provides support for thousands of
autonomous agents, each with their own goal, behavior, and
coordination scheme [11, 20]. The platform, known as M++,
allows for high performance simulations while maintaining
a simple programming interface to allow for rapid develop-
ment of simulations. M++’s self-migrating thread structure
allows a simulation to scale from small to large, while re-

quiring few changes to the initial implementation.

To analyze M++’s performance and programmability we
have programmed several algorithms for a remote explo-
ration problem first posed by [19]. The remote exploration
problem can be seen as one where multiple agents are re-
quired to cooperate in order to collect samples from un-
known locations in an environment containing static obsta-
cles. A more detailed description of the problem will be
given in section 3.1.

The rest of the paper is organized as follows: Section 2 gives
an overview of the M4+ environment. Section 3 describes
the problem in detail and gives a description of the different
algorithms we implemented in order to solve it. Section 4
describes the procedure used during the experimental phase
and analyzes the results obtained. Section 5 contrasts M++
with other approaches to mobile agents, thread migration
and simulation systems, and shows why it is a superior ap-
proach. Finally, Section 6 concludes the paper and mentions
future work.

2. M++ EXECUTION MODEL

In this section we describe M++’s architecture, components,
basic primitives and mode of operation. For a more detailed
description please refer to [11, 20, 10]

M++ is a cluster-computing environment that supports the
development and use of multi-agent applications structured
as collections of self-migrating threads, simply called M++
threads. The system is composed of three network layers
as shown in Figure 1. The lowest layer is the physical net-
work (a Myrinet cluster of eight PCs in our implementation),
which constitutes the underlying computational nodes. Su-
perimposed on the physical layer is the daemon network,
where each daemon is a Unix process executing and exchang-
ing M++ threads with others. It’s processor mapping and
system unique ID, termed daemon ID, are predefined on a
user basis via a profile. The logical network is an application-
specific computation network dynamically constructed by
M++ threads on top of the daemon network. Each logi-
cal node has a node ID local to the corresponding daemon,
while a logical link maintains a set of source and destination
IDs, each local to the current and destination logical nodes
respectively.

M++ threads are programmed in the M++ language, a su-
per set of C++ that is preprocessed into C++ and com-
piled into executable code. Figure 2 shows the framework
of M++ code. An M++ thread definition is distinguished
from ordinary C++ classes by replacing the class keyword
with thread. The M++ threads not only include public, pro-
tected, and private members, as in C++, but also the defini-
tion of their autonomous behavior in the main method. The
main method resumes a threads execution from the previ-
ous execution statement when initiating a thread migration
to another node (whether local or physical.) Except for the
main method, all C++ inheritance and polymorphism rules
are applicable to M++ threads. During migration M++
threads carry their execution and data status, while their
code is dynamically loaded at their destination with NFS
support.

1

Logleal Netwark | hopi2::1) s
cramla Hnrl:: with 2::3 ~Tink _Ll'l"”'l
- g s

Caemon Network | 5
s e WS
Physical Network |
_ - - -
L i e]
1 1 1=

[LAMSSAN

Figure 1: M++4 network architecture

class Nodeq{

public:
}
class Link{
public:
}
thread Thread {
public:
Thread() : daemonId(0){ }
main(){
create node<Node> with(1@daemonId);
hop(1@daemonId);
}
private:
int daemonId;
}

Figure 2: M++4 frame work

M++ threads distinguish three classes of network objects:
daemon, node, and link. The daemon object contains dae-
mon node information as well as user-defined data shared
by all M++ threads that are running on the same daemon
process. The node object represents a logical network node
whose method and data members are accessed by M4+
threads residing on this node. The link corresponds to a
logical network link and makes its methods and data mem-
bers visible to threads residing on the both ends (i.e., nodes)
of the link. These daemon, node, and link objects provide
methods that inform M++ threads of their network status
as summarized in Table 1. The sharing mechanisms pro-
vided by these network objects can be considered a form of
inter-thread communication. However, this does not mean
that M++ threads are provided with a complete view of a
distributed shared memory since prior to accessing a given
object, they must migrate themselves to it. Similarly, M++
thread synchronization is permitted on the same daemon or
logical node via the predefined statements: sleep, wakeup,
and wakeupall, each causing respectively, an M++ thread
to sleep, wake up one and wake up all the others at the
current daemon or node.

At system start-up a single logical node, named INIT, is

methods return values

current daemon ID
current host name
total number of daemons

int daemon.id()
string daemon.name()
int daemon.total()

int node.id()
string node.name()
int node.thr.num()

current node ID
current node class name
number of threads on this node

number of links attached to this node
maximum link ID
check existence of link with linkId

int link.count()
int link.max()
bool link.exists(int linkId)

Table 1: Daemon, node, and link’s methods

created on every daemon node. Any M++ thread may be
injected (from the shell or by another M++ thread) into any
of the INIT nodes. It may then start creating new logical
nodes and links on the current or any other daemon, and
may thereafter jump directly or along the links to one of
the destination nodes. These navigational operations are
performed using the following four statements: [e]create,
[e]destroy, [e]hop, and [e]fork. (Note that the statements
starting with an ‘e’ return an error code, otherwise they re-
turn nothing for performance reasons.)

The create statement: This statement permits an M++
thread to create a new logical node or a new logical link. It
is also used to launch a new thread.

o [eJcreate node< NodeClassName>(arys...)

with (Nodeld[@DaemonID]);

instantiate a new logical node from the NodeClass-
Name class, assign Nodeld to it, and map it to the
daemon given by Daemonld. Arguments are given to
this node constructor. Omitting Daemonld creates the
node on the current daemon. (This syntax is similarly
applied to the statements below.)

o [e]create link< LinkClassName>(arys...)
with(Sourceld) to(Nodeld[@Daemonld])
with(Destinationld);
instantiate a new logical link from the LinkClassName
class, assign Sourceld and Destinationld to it, and con-
nect it from the current node to the one with Nodeld
maintained by the daemon with Daemonld.

e [e]create thread< ThreadName>(args...)
[with (NodeId@Daemonld)];
launch a new M++ thread from the ThreadName de-
scription on the node with Nodeld maintained by the
daemon with Daemonld. Unlike node and link IDs,
thread IDs are determined by the system.

The destroy statement: This statement permits an M++
thread to destroy a new logical node or a new logical link.
The current implementation enables an M4+ thread to be
destroyed only at the termination of its own main method
not by other threads.

o [e]destroy node(Nodeld[@Daemonld]);
remove the logical node with Nodeld managed by the
daemon Daemonld

o [e]destroy link(linkId);
remove the logical link accessible with linkId from the
current logical node.

The hop statement: An M++ thread can navigate itself
over the logical network by invoking this statement. Exe-
cution resumes from the statement following the hop state-
ment.

o [eJhop([Nodeld[@Daemonld]]);
allow an M++ thread to jump directly to the node
with Nodeld managed by the daemon with Daemonld.

e [e]hopalong(LinkId);
navigate an M++ thread along the link visible with
the source LinklId from the current node.

The fork statement: It allows an M++ thread to spawn
its copy on a specified destination and have it start from the
statement following the fork statement. The original thread
continues its execution without waiting for the duplicated
thread’s termination.

o [e[fork([Nodeld[@Daemonld]]);
fork a child thread on the node with Nodeld managed
by the daemon with Daemonld.

o [e[forkalong(LinkId);
fork a child thread on the node that can be traced to
along the link visible with the source LinkId from the
current node.

These navigational operations are based on the principle of
strong migration [1], in which each M++ thread resumes
its execution exactly from where it has invoked a migration
statement. With this migration scheme the thread behavior
can be programmed exactly according to its scenario and ex-
ecuted sequentially. This allows model designers to describe
an agent’s behavior from the perspective of the agent, rather
than the that of the simulator system. However, strong mi-
gration requires each thread to carry all its state information
and thus incurs an expensive overhead. In addition, mi-
gration always entails thread generation, destruction, and
context switch.

3. SIMULATION OVERVIEW

3.1 Problem Description

The scenario we propose to analyze in this paper is an adap-
tation of a problem first proposed in [19] and can be de-
scribed as:

The goal is to explore a remote planet and col-
lect samples of a particular rock. The location
of rock samples is not known in advance, but
it is known that they are typically clustered in
certain spots. A number of autonomous agents
are responsible for collecting the samples and re-
turning them to their home base. No map of the
planet is available, although it is known that the
terrain is full of obstacles which prevents direct
communication between agents.

As an aside, the original problem was developed to show the
limitations of logic-based agents [12] in many practical prob-
lems and that reactive agents, in particular the subsumption
architecture developed by Rodney Brooks is a better ap-
proach [2, 3, 4].

3.2 TheExploration Environment

We can think of our exploration environment £ as an undi-
rected graph with n x m nodes. The nodes are connected by
edges in a grid pattern and the agents roam & by traveling
along the edges from one node to another. The nodes are
labeled by a pair of coordinates (z,y). With this in mind
we can describe £ as a 5-tuple

&= (n, m, Pitems, (low, high);pobstacle)~

The explanation of the parameters used in € is as follows:
n — the vertical dimension;

m — the horizontal dimension,;

pitems — the probability that a node has items;

(max,min) — the number of items that can reside on a
node;

Pobstacle — the probability that an edge is blocked.

Of course, if an edge is blocked an agent cannot travel on
that edge.

3.3 Agent Basic Design

Our design objective has been to create simple agents. By
simple we mean the following: First, the agents should have
none or very limited memory (i.e. a few bytes in our case).
Second, the execution of the agents should be done accord-
ing to the subsumption architecture [2]. According to the
subsumption architecture an agent can be thought of as a
set of rules where each rule has a unique priority. A rule is
of the type

IF (condition) THEN (action).

Furthermore, we say that a rule fires if the condition is true
and the action is performed accordingly. During the execu-
tion of an agent, an “infinite” loop scans through the rules
in prioritized order. If a rule fires, the execution flow will
start over again checking for the rule with highest priority.

3.4 A Simulation Run

Let us now more formally define what we mean by running
a simulation. We say that we run a simulation with a con-
stellation C of agents, when we do the following experiment.

1. Inject C at the node labeled by ([n/2],[m/2]) (i.e.
home base).

2. Start the execution of C. This means that all the
agents in C respectively will start their execution ac-
cording to their individual set of rules. Note that an
item is considered collected when it is dropped off at

([n/2], [m/21).

3. Count the number of execution steps S by C. An exe-
cution step is when an agent travels on an edge from
one node to another.

4. When all the items are collected, the experiment is
terminated.

We have not put any restrictions on C other than that it
should consist of a “reasonable” number of agents (of any
kind).

It is clear that we wish to minimize the number of exe-
cution steps. We note that in this setting it would make
sense to think of a simulation as a probabilistic function
sim(€,C) = S§. Then our goal for a given £ is to find a C
that minimizes F[sim(E,C)], where E[-] is the expectation
operator. However, for this to be meaningful we need to in-
troduce a more rigorous formalization which is beyond the
scope of this paper.

3.5 Agent Definition

So far, we have loosely specified what an agent is. It is time
for a formal definition of an agent in our context. In our
context an agent is a pair

(H, load)

where [] is the set of rules labeled with priority relative
the other rules and load is the maximum number of items
an agent can carry. Furthermore, some of the agents are
endowed with the ability to drop crumbs at each edge in
effect creating "trails”. These crumbs are directional, that is
they point to a particular direction. The agents are assumed
to have infinitely many crumbs. In some cases a crumb can
be detected by every agent and in other cases only the agent
that dropped the crumb can detect it. Similarly, in some
cases the agents know the way to ([n/2],[m/2]), and in
other cases they do not. Note that this does not necessarily
contradict the assumption that the agents should have a
very limited memory capacity; for instance, in a "real world”
scenario the agents could be guided to ([n/2], [m/2]) by an
electronic signal broadcast. By dropping a crumb that leads
backwards, we mean dropping a crumb, with the opposite
direction of movement, at the edge which the agent is about
to travel.

The following subsection describes the behavior of the dif-
ferent agents we have implemented.

3.6 Typesof Agents

See’s Agent
This agent is similar to Steel’s agent proposed in [19]. The
rules are as follows:

1. IF encounter an obstacle THEN
change direction.

2. IF carrying items AND at home base THEN
drop items.

3. IF carrying items AND not at home base THEN
drop two crumbs backwards AND go to home base.

4. IF detect items AND not at home base THEN
pick up items.

5. IF detect crumb(s) THEN
pick one crumb up AND follow one (random) trail.

6. IF true THEN
move randomly.

Egotistic Agent

This type of agent drops one individual crumb, only recog-
nized by the agent itself, when carrying items. If however
there is already a crumb in the current edge the agent will
not drop another one. The agent always removes personal
crumbs when encounters one. It will follow crumb trails for
3 or less step in a sequence that leads closer to the home
base. This agent is very similar to the previous one. The
difference is that it can only detect its own trails. In other
words, we have removed the ability to cooperate with other
agents.

1. IF encounter an obstacle THEN
change direction.

2. IF carrying items AND at home base THEN
drop items.

3. IF carrying items AND not at home base THEN
drop a crumb leading backwards AND go to base.

4. IF detect items AND not at home base THEN
pick up items.

5. IF detect personal crumb(s) THEN
pick up one crumb AND follow one (random) item.

6. IF true THEN
move randomly.

Tricky Agent

This type of agent has the particularity that only the first
agent that finds the items drop one single crumb. In addi-
tion, an agent following a trail of crumbs without finding any
items at the end will also remove the crumb. Note that this
agent only follow crumbs leading closer to the home base iff
it already follows crumbs. The previous agent did unneces-
sary work. The Tricky Agent will minimize the overhead by
using a boolean variable pickedLastItem. The idea is that
only the first agent that finds items should make a trail, and
the last one should remove it.

1. IF encounter an obstacle THEN
change direction.

2. IF carrying items AND at home base THEN
drop items AND pickedLastItem < FALSE.

3. IF carrying items AND detect only one crumb AND
pickedLastItem = TRUE THEN
follow the trail in opposite direction AND pick up
crumb.

4. IF carrying items AND detect more than one crumb
AND pickedLastItem = TRUE THEN
follow a (random) trail in opposite direction AND
pickedLastItem <+ FALSE.

5. IF carrying items AND pickedLastltem = FALSE
AND detect trails in opposite directions THEN
follow a (random) trail in the opposite direction.

6. IF carrying items AND pickedLastltem = FALSE
AND detect no trail in opposite direction THEN
go to home base AND drop crumb leading backwards.

7. IF carrying items AND pickedLastItem = TRUFE
AND detect no trail in opposite direction THEN
go to home base AND pickedLastItem < TRUE.

8. IF detect items AND not at home base AND
#items < load THEN
pick up items AND pickedLastItem < TRUE.

9. IF detect items AND not at home base AND
#items > load THEN
pick up items.

10. IF detect trails THEN
follow one (random) direction.

11. IF true THEN
move randomly.

Team of Agents
Two types of agents compose the team: Explorers and Loader.

Loader agents do not search. They simply wait at the home
base for crumbs. When a crumb is detected in a edge adja-
cent to the home base node, a loader follows the trail and
collect the items at the end of the trail. It will collect crumbs
on the way back to the home base only if the last item sam-
ple was taken, or it followed a crumb that did not lead to
any item sample.

Explorers search randomly. An explorer agent picks up sam-
ples only if no trail of crumbs leads into the node containing
the item samples. On the way to the home base it drops one
crumb only if no crumb is found at the edge.

The explorer has the following rules:

1. IF encounter an obstacle THEN
change direction.

2. IF carrying items AND at home base THEN
drop items.

3. IF carrying items AND not at home base THEN
drop a crumb leading backwards AND go to home
base.

4. IF detect items AND detect no trails THEN
pick up the items.

5. IF true THEN
move randomly.

The loader has the following rules:

1. IF carrying items AND at home base THEN
drop items AND pickedLastItem < FALSE.

2. IF carrying items AND not at home base AND
pickedLastItem = FALSE THEN
go to home base.

3. IF carrying items AND not at home base AND
pickedLastItemm = TRUE AND detect one trail THEN
go opposite direction of trail AND pick up crumb .

4. IF detect items AND items < load THEN
pick up the items AND pickedLastItem < TRUE.

5. IF detect items AND items > load THEN
pick up the items.

6. IF true THEN
go to home base.

Comments

We would like to remark that some rare degenerated situ-
ations can occur in which some of the agents as described
above do not work well. For instance, they might end up
locked in a repetitive pattern. In such cases, we apply ad
hoc techniques to break the deadlock. We must remember
that we want to implement the basic behavior of an agent
to measure its performance. Of course, from a theoretical
point of view it is highly desirable to have a universal set
of rules that can be applied to all situations. This requires
very careful analysis if the behavior is non trivial, and we
are presently working on it.

4. EXPERIMENTAL RESULTS

The results of the simulations completed until now are shown
in figures 3 and 4. Some parameters were kept constant
across all simulations. In particular we used a grid size of
50 x 50 and a Uniform Probability Distribution with In the
case of the simulation involving the Team of agents we used
a ratio of 9:1 for Explorers versus Loaders.

All data points represent an average of several runs with
the same characteristics except for the initial seed used for
the random generator. This procedure mitigates the effect of
unrepresentative outcomes. Additionally the best and worst
results for each data point were discarded.

For sake of completeness we would like to mention that all
simulations were ran at Tsukuba’s M++ cluster. More in-
formation about the cluster can be found in [11]

Figure 3 compares the performance of the four algorithms
being tested in terms of number of steps needed for the
collection of agents to complete the task of collecting all
rock samples and return them to the home base.

The results seem quite surprising at first. We observe that
Steel’s algorithm shows a decrease in the number of steps
needed to complete the task as the number of agents involved
increases, as one would expect. However the Team of Agents
algorithm shows exactly the opposite behavior. This can be
explained if we consider that the total number of steps being
measured is the sum of the steps taken by all agents involved.
In the case of the Team of Agents, as we increase the number
of Explorers by a factor of 9 compared to the number of
Loaders we end up with lots of extraneous moves on their
part even as the Loaders are finishing their job. Keep in

Performance of the different types of agents
250000
200000
=
ia
=
= 150000 |
7
S 100000
|
E
2 50000
0 T
0 20 40 60 80 100
Number of concurrent agents
‘—0— Steels — —#ll— - Egoistic - - -A- - Tricky — -> - - Team

Figure 3: Algorithms Performance

mind that even as the Loaders are carrying all samples back
to the home base the Explorers are blissfully exploring the
grid unaware that there are no more samples to be found.
This indicates that the constant ratio used by us in our
simulations has to be adjusted, perhaps as a function of the
grid size. The remaining two algorithms show little variation
in the number of steps taken when the number of agents
increases. This is a very interesting result since it seems to
indicate that for a given grid size there is a (relatively) fixed
number of agents required to finish the task in constant work
(if we consider that the number of steps taken is correlated
to the amount of work performed by the entire population
of agents).

We should naturally study the effect on each algorithm of a
much larger population of agents and larger grid size (and
number of samples to be collected).

Figure 4 shows the actual execution time taken by the agents
for different degrees of parallelism (i.e. number of daemons
involved). We chose Steel’s algorithm to produce the results.

As expected we observe a decrease in the total running time
required to complete the task as we increase the number of
daemons/processors involved in the simulation. Also as ex-
pected, the largest improvement in performance is obtained
when the number of agents involved is largest (in our case
40 agents). For this scenario we measure a decrease in run-
ning time in the order of 60% when we increase the number
of daemons involved from 1 to 6. For remaining cases we
observe a decrease between 30% and 40%. This preliminary
results show unequivocally that M++ scales well especially
when many agents are involved (as it is the case any real
world application). However to fully justify our scalability
claim we need to run simulations involving several thou-
sands of agents and dozens of machines/daemons. We are
currently running such simulations.

A visualization tool (Java applet) and the entire database
of simulation runs will be made available soon at:
ftp://ftp.ics.uci.edu/pub/lcampos

Time as a function of number of daemons

70
60
50 1

5 40 4
5

= 30 A

20 1 *

10

Number of daemons

[——10-—®- ---a--20 —-x-A40]

Figure 4: Scalability in terms of number of Agents

5. RELATED WORK

We are fully aware that M+ + is not the only option available
to researchers interested in multi-agent simulations. In this
section we describe why M++ is a superior environment
when compared to mobile agents, thread migration systems,
and agent-based simulators.

e Mobile Agents: They are classified as cognitive agents [8]
that self-contain all knowledge, intelligence, and be-
havior necessary to independently achieve a sequence
of network tasks such as electronic commerce and in-

formation retrieval. They are interpreted, coarse-grained,

and interact with the user via a window system. Most
systems are not expected to inject a large number of
mobile agents interacting with one another simultane-
ously. From our experiment in [20], IBM Aglets [15]
for instance falls into a congested situation with only
eight aglets distributed among four workstations. This
is not suitable for high performance simulations with-
out a considerable effort on the part of the user to
exploit parallelism.

e Thread Migration: Several distributed-memory-based
systems have implemented thread migration for pur-
poses of balancing processor loads, providing efficient
RPC and reducing remote memory accesses. It is pos-
sible to apply the traditional thread migration sys-
tems to multi-agent applications. However, doing so
has several shortcomings. For instance, UPVM [5]
does not provide threads with navigational autonomy;
Nomadic Thread [13] requires threads to decide their
navigation at compile time; Nexus [9] permits only
weak form of migration; and PM2 [18] implements
inter-threads communication only via message passing.
Users are forced to make a considerable programming
effort to use their threads as agents. Accordingly, this
approach is not suitable for problems requiring strong
navigational autonomy and high level interaction be-
tween agents.

e Agent-Based Simulators: Various agent-based simula-
tors have been made available to the public domain.
For instance, Manta provided an ant colony simula-
tion platform on Windows [6], and Echo enabled var-
ious genotype agents to interact over a lattice of sites
constructed on Sun [14]. Among them, the most gen-
eralized and popular system is Swarm [16] where a col-
lection of agents form a swarm, which can be regarded
as another agent in a higher-level swarm. These sys-
tems place their main emphasis on the construction of
simulation environments rather than on parallel pro-
cessing. Both Echo and Swarm can be parallelized
using cell-based and agent-based schemes respectively
(as discussed in Section 1). However this must be
implemented at user level. This is not suitable for
high performance simulation without considerable par-
allelization effort from the user.

Although the systems listed above can be applied to multi-
agent applications, they cannot match the programmabil-
ity and efficiency of M++ when parallelizing these type
of applications. M++ permits hundreds of thousands of
agents to coexist simultaneously, migrate over the network
autonomously, and interact with each other, while requiring
a minimal programming effort.

6. CONCLUSIONS

In this paper we have described a platform, known as M++,
which provides support for large scale multi-agent applica-
tions. We have shown, albeit only to a small degree, that
the platform provides good performance for simulating large
real world problems. The focus of this paper is however
on the issue of programmability. We have shown that it is
extremly easy to program autonomous multi-agent applica-
tions due to the mapping of the agent concept into M++’s
self-migrating threads. We are currently obtaining new data
that shows M++’s scalability (both in terms of number of
deamons and problem size). We expect to add it to the final
version of the paper.

7. REFERENCES
[1] J. Baumann, F. Hohl, K. Rothermel, and M. Strafer.
Mole - concepts of a mobile agent system. In Mobility
Processes, Computers, and Agents, pages 536—554.
Addison-Wesley, 1999.

[2] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, Vol.2(No.1):14-23, 1986.

[3] R. A. Brooks. Designing Autonomous Agents, chapter
Elephants do not play chess, pages 3—15. The MIT
Press, Cambridge, MA, 1990.

[4] R. A. Brooks. Intelligence without reason. In
Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91),
pages 569-595, Sydney, Australia, 1991.

[6] J. Casas, R. Konuru, S. Otto, R. Prouty, and
J. Walpole. Adaptive load migration systems for pvm.
In Proc. of Supercomputing 94, pages 390-399,
Washington D.C., 1994. IEEE.

[6]

(8]

[9]

[19]

A. Drogoul, B. Corbara, and F. D. Manta: New
experimental results on the emergence of artificial ant
societies. In Artificial Societies: the computer
simulation of social life, London, 1995.

J. M. Epstein and R. Axtell. Growing Aritificial
Societies: Social Science from the Bottom Up. MIT
Press, 1996.

J. Ferber. Multi-Agent Systems An Introduction to
Distributed Artificial Intelligence. Addison-Wesley,
1999.

I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and
communication. Journal of Parallel and Distributed
Computing, Vol.37(No.1):70-82, Aug. 1996.

M. Fukuda. M++ User’s Manual, June 2001.
http://faculty.washington.edu/mfukuda/m-++.

M. Fukuda, N. Suzuki, L. M. Campos, and

S. Kobayashi. Programmability and performance of
m++ self-migrating threads. In 2001 IEEE
International Conference on Cluster Computing, pages
331-340, Newport Beach, CA, USA, October 2001.
IEEE Computer Society Press, USA.

M. R. Genesereth and N. Nilsson. Logic Foundations
of Artificial Intelligence. Morgan Kaufmann, San
Mateo, CA, 1987.

S. Jenks and J.-L. Gaudiot. Nomadic Threads: A
migrating multithreaded approach to remote memory
accesses in multiprocessors. In Proc. of PACT’96,
pages 2—11, Boston, MA, 1996.

T. Jones and S. Forrest. An introduction to sfi echo.
Technical report, Santa Fe Institute, 1600 Old Pecos
Trail, Suit A., Santa Fe NM 87501, November 1993.

D. Lange and M. Oshima. Programming and
Deploying Java Mobile Agents with Aglets. Addison
Wesley Longman, Reading, MA, 1998.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The swarm simulation system: A toolkit for building
multi-agent simulations. Technical report, Argonne
National Laboratory, University of Chicago, June
1996.

K. L. Morse. An adaptive, distributed algorithm for
interest management. Ph.d. dissertation, Dept. of
Information and Computer Science, UC Irvine, CA
92697, Feb. 2000.

R. Namyst and J. Mehaut. PM2: Parallel

multithreaded machine. a computing environment for
distributed architectures. In Proc. of ParCo’95, pages
279-285. Elsevier Science Publishers, September 1995.

L. Steels. Cooperation between distributed agents
through self organization. In Decentralized AI -
Proceedings of the First European Workshop on
Modelling Autonmomous Agents in a Multi-Agent
World, pages 175-196, Cambridge, UK, August 1989.
Elsevier Science Publishers.

[20] N. Suzuki, M. Fukuda, and L. F. Bic. Self migrating
threads for multi-agent applications. In Proc. of the
1st IEEE Int’l Workshop on Cluster Computing -
IWCC’99, pages 221-228, Melbourne, Australia,
December 2-3 1999.

