
An RSSI-based Error Correction Applied to
Estimated Sensor Locations

Masashi Sakurada
Graduate School of Science and Engineering

Ehime University
Matsuyama, Ehime 790-8677, Japan

Munehiro Fukuda
Computing & Software Systems

University of Washington, Bothell
18115 NE Campus Way, Bothell, WA 98011

mfukuda@uw.edu

Abstract—We consider a wireless sensor network (WSN) that
needs to install hundreds of sensor nodes over a vast extent of
land, (e.g., an orchard temperature sensor network). For mon-
itoring critical events such as frost-prone temperature over an
orchard, WSN users, (namely farmers) need to identify all sensor
locations, which is however overwhelming from the viewpoints
of costs and man power. To address this problem, we enabled
non-GPS-adapted sensors to accurately estimate their locations
by applying our RSSI (received signal strength indication)-based
error-correcting algorithm to a conventional location-estimating
method named Gomashio [1]. The paper presents our algorithm
and demonstrates its performance improvement in estimating
sensor locations as compared to Gomashio.

I. INTRODUCTION

For the last three years we have been developing an
agent-based workbench for on-the-fly sensor-data analysis that
particularly focuses on providing crop growers with on-going
and near-future air-temperature information about their orchard
for frost-danger prediction [2]. This workbench collects tem-
perature data from a crop grower’s WSN and applies them
to temperature-predicting programs [3], [4], [5] that we have
parallelized with our multi-agent spatial simulation (MASS)
library [6].

For our system implementation and verification, we have
collaborated with a crop grower and two local WSN companies
in Washington State, U.S.A. Through our collaboration and
discussion, we estimated that the WSN configuration sum-
marized in Table I would facilitate a detailed temperature-
monitoring environment to our crop grower. More specifically,
we assume that an orchard with a 120-acre space installs 25
Viking X sensors, each operated at 900MHz, adapted with a
GPS, and arranged with 8 non-GPS-adapted ZigBee sensors,
which thus brings the total number of ZigBees to 200. ZigBee
sensors capture and send their local climate information such
as temperature, moisture, and possibly image data to the near-
by Viking X that then forwards to the central sink node. We
also assume that each sensor should work as an autonomous
node in ad-hoc communication. Of importance is how to locate
the positions of all the 200 Zigbee sensors.

An orchard area 120 acres
The number of Valhalla Wireless’ Viking Xs [7] 25
The number of AgComm’s ZigBee sensors [8] 200

Radio propagation radius 60m
TABLE I. ORCHARD PARAMETERS

The simplest way to locate these sensors is to manually
take notes of their locations identified with a GPS device
when installing the sensors over an orchard. However, it is
overwhelming to perform this task for 200 sensor nodes.
Furthermore, it is also economically impractical to adapt a
GPS device to all these ZigBee sensors for just obtaining their
location information. Therefore, we should estimate their loca-
tions, using software that runs on these sensor nodes. Because
most sensor nodes are battery-powered, such a program that
estimates sensor locations should be computationally light. We
also anticipate that there are many obstacles in an orchard
such as high trees and wind generators. Therefore, location-
identifying algorithms should not be affected by obstructions.
In summary, the following list shows requirements for identi-
fying sensor node locations:

• High accuracy for location identification
• No special hardware (such as GPS).
• Light calculation
• Less susceptible to obstruction

To address the above requirements, we started our design
with a conventional location-identifying algorithm named Go-
mashio [1]. In this algorithm, each sensor node identifies its
own location, using its communication radius and hop counts
from an anchor node, (i.e., a node that has already identified
its own location). Therefore, it does not require any special
hardware, is not affected by obstacles, and can lower the
amount of calculation as compared to the SOM algorithm [9]
that uses competitive learning. However, Gomashio has a
disadvantage to accumulate errors in subsequently calculating a
new sensor location, based on anchor node’s estimated location
(which may already have some errors).

To minimize such errors in location identification, we
first estimate sensor locations with Gomashio, and thereafter
correct accumulated errors, using our RSSI-ranging algorithm.
This improves the accuracy in estimating sensor locations.
This paper presents our RSSI-based error-correcting algorithm
and demonstrates its accurate error correction as compared to
Gomashio.

II. RELATED WORK

Among many algorithms that estimate sensor locations, we
examine the following four: (1) RADAR [10] and WiPS [11],
(2) Centroid [12], (3) SOM [9], and (4) Gomashio [1], all
satisfying the four requirements that we defined in Section I.
Thereafter, we focus on Gomashio as the best choice to be

used for our target orchard model and discuss its technical
issues we still have to address.

A. RADAR and WiPS

RADAR [10] and WiPS (Wireless LAN based Indoor
Positioning System) [11] estimate the distance between two
sensor nodes with RSSI, (i.e., one of the parameters used in
WSNs), and identify their locations, using trilateration. As
shown below, they obtain the distance information with the
inverse function of the free space propagation loss model
(FPSL).

P (d) = P0 − 20 log10(
4πd
λ

)[dBm] (1)

where

P0 = RSSI at distance 0[m]

λ =
c

f
=

3× 108[m/s]
2.4[GHz]

WiPS allows neighboring WSN nodes to measure a dis-
tance to each other. This method can increase the amount of
location-identifying data and therefor improve the accuracy
in positioning WSN nodes. However, RSSI is susceptible
to various environments such as shadowing, diffraction, and
multi-path fading. Therefore, it is not always possible to
estimate accurate location only with RSSI.

B. Centroid

In Centroid [12], a WSN node that needs to identify its
location computes the average coordinate position of all anchor
nodes visible to it, and accepts this value as its location. More
specifically, given N anchor nodes, a node estimates its position
by calculating the center of mass with the following formula:

(X,Y) = (
X1 + · · ·+XN

N
,
Y1 + · · ·+ YN

N
) (2)

However, an actual node location is not always coincident
with the center of mass among all the anchor nodes in
the coordinate system. Therefore, the accuracy of Centroid’s
location identification is questionable.

C. SOM

SOM (Self-Organizing Map) [9] estimates a sensor po-
sition, using competitive learning. Competitive learning is
based on neural network whose multiple neurons react to a
single input data item. In this machine-learning model, only
the neuron with the strongest output will survive to receive
a larger weight for the network connection than the other
neurons. SOM first gives each network node a random location.
Thereafter, each node exchanges its locational information
including its updated position as well as the number of hops
to and the distance from neighboring nodes, and updates its
position subsequently so as to satisfy conditions given from
neighbors. Through a repetition of this learning phase, SOM
can get its estimation closer to an actual network topology.

SOM has merits in reducing the number of anchor nodes
to be used for its topology estimation and in estimating

node positions with high accuracy, whereas it has demerits
in exhanging a large number of packets. This means the
more accuracy, the more learning phases that increase network
traffic.

D. Gomashio

Gomashio [1] calculates a highly promising area that may
include a target node to be identified around anchor nodes,
using the minimum number of hops from each anchor to
the target and each anchor’s communication radius. When a
target node knows the number of hops from each of multiple
anchors, it can identify the area overlapped with circles, each
corresponding to a different anchor’s communication range.
This area is then considered to include the target node. If the
area is smaller than a given threshold value, the target node is
promoted to a new anchor node and is applied to positining
other sensor nodes. In the following, we give more details on
how to determine a range that includes a given target node to
be identified. The explanation below assumes that a target node
maintains its anchor node information as shown in Table II.

Anchor node Location # hops
Ga (Xa, Ya) 2
Gb (Xb, Yb) 2
Gc (Xc, Yc) 2

TABLE II. ANCHOR NODE INFORMATION

1) For each anchor, the target node determines the circle
that centers this anchor node and has a radius with a
value obtained by multiplying the anchor’s commu-
nication range by the hop count from the anchor to
the target. (See Figure 1-(a)).

2) For each circle obtained in phase 1, the target node
determines the smallest square that encompasses this
circle. Thereafter, the target node identifies the rect-
angle that is overlapped with all these squares. (See
Figure 1-(b)).

3) To determine if the target node can exist in the
rectangle obtained in phase 2 with a high probability,
the target applies all the intra-rectangle’s coordinates
(xi, yi) to the following formulae. In the formulae,
let hg be the hop count from anchor node, r be
the communication radius, (xg, yg) be the position
coordinate of an anchor node, and n be the number
of anchor nodes known to the target node.
If hg = 1:

(xi − xg)2 + (yi − yg)2 < r2

If hg > 1:

(xi − xg)2 + (yi − yg)2 < r2h2
g

(xi − xg)2 + (yi − yg)2 > r2

For a given coordinate (xi, yi), if all (xg, yg) (where
0 < g < n) meets these formulae, (xi, yi) is consid-
ered as one of the target node’s possible coordinates.

After phase 3, the target node chooses a set of minimum
and maximum coordinates (xi, yi), from which it identifies the
final rectangle that includes the target, as shown in Figure 1-
(c). Finally, the target node then identifies this rectangle’s
centroid as its estimated position.

Fig. 1. A rectangulation-based algorithm for locating a sensor

Fig. 2. A false example of rectangulation

Gomashio uses an estimated node as a new anchor node
that will be used in the following estimation. Therefore, if
there is an error in an estimated position, the error will be
accumulated to the next node’s estimation. This repetitive
location identification inevitably deteriorates the accuracy of
estimating network-wide node location.

E. Technical Issues

Gomashio uses each anchor node’s communication radius
and the smallest number of hops from a target to the anchor
node. The estimated node is promoted to a new anchor node
that is then applied to the next location identification. There-
fore, subsequent calculations may amplify estimation errors
large enough to make the entire node estimation inaccurate.
This inaccuracy may cause a contradiction exemplified in
Figure 2.

Figure 2 indicates that a target node maintains its anchor
node information in the table showing its reachability to
all three anchors within 1 hop. However, anchor node Gc’s
coordinate is actually outside of the communication radius.
This contradiction is brought by errors that are frequently
accumulated through Gomashio’s repetitive location estima-
tion. This abnormality prevents Gomashio from calculating an
overlapped rectangle as shown in Figure 1-(b).

III. PROPOSED ALGORITHM

When using a WSN to monitor the orchard climate, we
need to consider that obstacles in an orchard, (e.g., high
trees and wind generators) put noises on RSSI and thus
add errors to RSSI-based sensor location estimation such as

Fig. 3. Relationship between RSSI and inter-node distance

RADAR [10] and WiPS [11]. As discussed in the previous
section, SOM [9] requires a substantial amount of computation
that is not suitable to battery-operated sensors. Therefore, we
identify sensor locations, using Gomashio that is based on the
number of hops to and communication radius of each anchor
node for mitigating noises brought by obstacles. To even
correct Gomashio’s accumulated errors (which we discussed
with Figure 2), we calculate the distance between two sensor
nodes, using the radio wave propagation model that shows the
correlation between the RSSI strength and the distance from a
given radio, and adjust the Gomashio-estimated node locations
with our calculation. The more details of our error-collecting
algorithm are given as follows.

A. Location-Error Correction Algorithm

Figure 3 draws a graph of Formula 1 that represents FPSL.
Our proposed algorithm is based on FPSL to calculate the
distance from a sender to a receiver radio by observing the
sender’s RSSI strength at the receiver. We then apply the
calculated distance to Gomashio-based estimation of these two
radio locations.

In most cases, radio propagation errors occur toward a
direction to attenuate RSSI. This in turn means that we are
unlikely to encounter contradictory cases that have both a
strong RSSI and a long distance from a radio-signal sender,
which corresponds to the shaded portion (or a gray-colored
portion) in Figure 3. We use this RSSI-distance correlation in
order to correct Gomashio’s accumulated errors. The following
three steps are the essence of our error-correcting algorithm
that will be applied to Gomashio-estimated sensor locations.
Note that dgij is the distance between anchor nodes i and
j obtained by the Gomashio calculation; drij is the distance
between anchor node i and j obtained by RSSI; and R is each
anchor node’s communication radius. We assume that anchor
node j is located within the communication radius of anchor
node i. We apply the following three steps to all anchor nodes
in a given network.

1) If drij < dgij, we move anchor node j at the
distance of drij from anchor i.

2) If R < dgij, we move anchor node j at the distance
distance of R from anchor node i.

3) If drij < R, we move anchor node j at the distance
of drij from anchor node i.

IV. PERFORMANCE EVALUATION

To demonstrate the efficiency of our error-collecting algo-
rithm, we compared our algorithm with Gomashio in terms
of accuracy of location identification, using simulation whose
parameters are summarized in Table III.

Parameters Values
Simulation space 700× 700[m]
Radio propagation radius 60[m]
of ZigBee sensors 200
of Viking X sensors 25
Node placement a mesh network

an irregular mesh network
Routing protocol DSR
of anchor nodes 4, 5, 6, 7, 8, 9, and 10
Existing range 4000[m2]
RSSI maximum error 20[dBm]
Attenuation constant a 0.25
Simulation time 100

TABLE III. SIMULATION PARAMETERS

A. Simulator Design

The simulation assumes that a meshed WSN covers a
700m×700m space. The network installs 25 Viking X nodes,
each surrounded by 8 ZigBee sensors in east, south, west,
north, and diagonal directions, which thus brings the total
number of sensor nodes to 225. Each ZigBee’s communication
radius is 60m. We prepared two types of mesh networks: a
regular mesh and a random mesh. The regular mesh places
each sensor node exactly at a different interlaced position.
The random mesh shifts each sensor node from an interlaced
position randomly but a little enough to prevent any node
from being isolated from the others, (i.e. being unable to
communicate with the other nodes). The simulation assumes
DSR (Dynamic Source Routing) that fits to an ad-hoc network
environment, and counts the number of hops for a packet
to travel from a source to a destination node. The threshold
value of rectangular area to identify a node location (and thus
to promote the node to a new anchor) is 4000m2. If this
threshold value is small, we will obtain the higher accuracy of
identifying a node location, however we may end up with a
fewer nodes whose location can be estimated. On the other
hand, a larger threshold value deteriorates the positioning
accuracy. The threshold value of 4000m2 is slightly larger than
60m × 60m that can obtain a high positioning accuracy and
estimate a sufficient number of node locations. The number of
anchor nodes used for estimating a new node position varies
from 4 to 10. For each variation, we repeated 100 simulations.

Our experiment also simulated WSN communication based
on the characteristics of radio wave propagation. The sim-
ulation generates RSSI, using FPSL that is represented by
Formula 1. We also considered the influence of obstacles and
added the corresponding errors to RSSI. Formula 3 models
the function to add errors to RSSI, and Figure 4 draws the
corresponding graph.

Fig. 4. The exponential growth of RSSI errors with distance

Err = f(dist) = 25× 10
a×dist

20 − 1
δ

(3)

Here Err is the function that generates RSSI errors be-
tween two nodes in their dist distance; a is an attenuation
constant; and δ is an adjustment parameter that maintains Err
in the range between 0 and 1. Note that δ is calculated from
the following formula, assuming that dist is at maximum 60m.

δ = 10
a×60
20 − 1

We used random numbers to generate RSSI errors that
are incurred by radio wave attenuation. Basically, the longer
inter-node distance, the more RSSI errors. Assuming many
obstacles in an orchard, we set the maximum RSSI errors to
20dBm when the distance between two nodes reaches the
limit of their communication range (60m). This value was
determined by our empirical data that was published in [13]. In
this simulation, we considered the attenuation of radio waves
due to the presence of obstacles but not the amplification of
radio waves generated by wave interference. Therefore, in this
simulation, RSSI errors work only in a negative direction.

Although Formula 3 defines ideal RSSI errors, the actual
RSSI errors may vary and thus differ from simulation results.
Therefore, we conducted our simulation with three different
attenuation constants: 0.5, 0.25, and 0.1. We observed a similar
trend in all simulation results. Therefore, the next section
shows only the simulation results with attenuation constant
of 0.25.

B. Simulation Results

We compared our RSSI-based error-correcting algorithm
with Gomashio from the viewpoints of their error ranges and
estimated network topologies.

Figure 5 shows the average positioning errors of Gomashio
and our error-collecting algorithm (denoted as Proposal in the
graph) when these two algorithms were applied to a regular
mesh network. As shown in Figure 5, the positioning accuracy
is improved as increasing the number of anchor nodes. The
use of more anchor nodes narrows the rectangular area that

Fig. 5. The effect of error correction in a mesh network

Fig. 6. The effect of error correction in an irregular mesh network

may include a target node to identify, which improves the
accuracy of locating a target node. However, the positioning
accuracy with 6 anchor nodes is slightly lower than that with
5 anchors. This was resulted from how anchor nodes were
placed in the simulation space. Figure 5 demonstrates that our
algorithm achieved higher accuracy than Gomashio in all cases
where the number of anchors varied from 4 to 10. The average
positioning errors of Gomashio was 4.61m, whereas that of our
error-collecting algorithm was 4.44m.

Figure 6 compares the average positioning error of Go-
mashio and our error-correcting algorithm (denoted as Pro-
posal in the graph) when these two algorithms were applied
to a random mesh network. As shown in Figure 6, both the
algorithms improved their positioning accuracy as increasing
the number of anchor nodes. Our algorithm achieved better
than Gomashio with any number of anchor nodes. The average
positioning errors of Gomashio was 8.39m, whereas our
algorithm reduced positioning errors down to 7.76m.

Figure 7 compares the original random mesh network, the
Gomashio-estimated network, and our error-corrected network
when we used 4 anchor nodes in both Gomashio and our
error-corrected topology estimation. As shown in Figure 7, our
algorithm retrieved a network closer to the original random
mesh than Gomashio did. The average positioning error of
Gomashio was 9.30m, whereas that of our algorithm was
7.84m.

Fig. 7. A visualization of error correction in an irregular mesh network

V. CONCLUSIONS

This paper presented an RSSI-based error-correcting algo-
rithm to be applied to estimated sensor locations, particularly
focusing on identifying the position of 200 ZigBee sensor
nodes that will be placed in a 120-acre orchard. We first
adopted Gomashio to identifying sensor locations, and there-
after applied our error-correcting algorithm to estimated sensor
locations. Our algorithm used the nature of radio propagation
and facilitated more accurate sensor positioning.

Issues to address in the future are two-fold:

• Consideration of various communication radiuses
• Investigation and verification of radio wave propaga-

tion properties

We fixed each sensor node’s communication radius to 60m
in accordance with our target orchard environment. Needless
to say, we should consider other communication radiuses than
60m for purpose of applying our error-collecting algorithm
to different environments. Furthermore, we need to verify the
effectiveness of our algorithm in various environments that
allow a combination of multiple communication radiuses.

In this research, we simulated the characteristics of radio
wave propagation, however we need to measure how much
RSSI errors will occur in real orchards. Moreover, we assumed
only the attenuation of radio waves. As a future plan, we will
consider about shadowing and multi-path fading that fluctuate
radio waves irregularly.

ACKNOWLEDGMENT

This research has been conducted under the UW Bothell
and Ehime University academic exchange agreement.

REFERENCES

[1] M. Iwatani, Y. Nishio, M. Murase, and H.Tokuda, “GOMASHIO: Node
poistioning system in ad hoc snesor network,” IPSJ, vol. Vol.2001, no.
No.108, pp. 22–30, November 2001.

[2] M. Fukdua, “Agent-based workbench for on-the-fly sensor-data analy-
sis,” in In Proc. of 2011 IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing - PacRim 2011, August 2011,
pp. 333–339.

[3] B. A. Smith, G. Hoogenboom, and R. W. McClendon, “Artificial neural
networks for automated year-round temperature prediction,” Computers
and Electronics in Agriculture, vol. Vol.68, no. Issue.1, pp. 52–61,
August 2009.

[4] UC Davis Biometeorology Program - Frost Protection,
“http://biomet.ucdavis.edu/frost-protection.html.”

[5] Fred C. Collins Jr., “A Comparison of Spatial Interpolation Tech-
niques in Temperature Estimation,” in Third International Confer-
ence/Workshop on Integrating GIS and Environmental Modeling. Santa
Fe, NM: NCGIA, January 1996, pp. in CD–ROM.

[6] T. Chuang, “Design and qualitative/quantitative analysis of multi-
agent spatial simulation library,” Master’s thesis, Master of Science in
Computing and Software Systems, University of Washington, 2012.

[7] Valhalla Wireless, “http://valhalla-wireless.com/vwr/.”
[8] AgComm, “http://agcomm.net/.”
[9] S. Asakura, D. Umebara, and M. Kawai, “Distributed location esti-

mation method for mobile terminals using the som algorithm,” IEICE
Journal B, vol. Vol.J85-B, no. No.7, pp. 1042–1050, July 2002.

[10] P. Bahl and V. Padmanabhan, “RADAR: An inbuilding RF-based user
location and tracking system,” in In Proc. of IEEE INFOCOM, Vol.2,
August 2002, pp. 775–784.

[11] T. Kitasuka, “Wireless LAN basd indoor positioning system WiPS and
its simulatioin,” in In Proc. of 2003 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing - PacRim 2003,
Vol.1, August 2003, pp. 272–275.

[12] D. Niculescu and B. Nath, “Ad hoc positioning system (aps) using aoa,”
in IEEE INFOCOM, Vol.3, July 2003, pp. 1734–1743.

[13] M. Sakurada, M. Kawahara, and T. Sasaki, “Hybrid ranging method
based on combination algorithm of cycle figuration probability and
recieved signal strength indication,” The Transactions of the Institute
of Electronics, Information and Communication Engineers. B, vol.
Vol.J95-B, no. No.2, pp. 229–237, February 2012.

