
An Implementation of Parallel File Distribution in an Agent Hierarchy ∗

Jumpei Miyauchi1 Munehiro Fukuda2† Joshua Phillips2

1Computer Science, Ehime University, Matsuyama, Ehime 790-8577 Japan
2Computing & Software Systems, University of Washington, Bothell, WA 98011 USA

Abstract

AgentTeamwork coordinates parallel job execution in a
hierarchy of mobile agents. A collection of specialized
agents are deployed to remote sites including multiple clus-
ters so as to launch, monitor, check-point, and resume a
parallel and distributed-computing job. It is very important
to develop an algorithm to deliver data files to each of re-
mote processes in a timely fashion. By taking advantage of
an agent hierarchy, we have implemented a file-distribution
algorithm in AgentTeamwork that delivers user files through
an agent tree by duplicating them at each tree level, dividing
them into smaller partitions, and aggregating partitions in
a larger fragment in transit to the same sub tree. This paper
presents the details of AgentTeamwork’s file-distribution al-
gorithm and demonstrates its convincing performance.

Keywords: Parallel file transfer, grid middleware, job de-
ployment, mobile agents

1 Introduction

One of the main motivations for grid computing is to
allocate as many computing resources as requested to a
resource-demanding application. Located remotely, those
resources may be multiple clusters and even a collection of
independent desktops, each not necessarily connected to the
same network file system. This in turn means that efficient
file transfer to remote sites is the key to remote job execu-
tion. Furthermore, it is not guaranteed that remote resources
stay available as long as a given job is running. Therefore,
we need a certain mechanism to redirect file transfer to a
new site where a crashed job has resumed its execution.

We have implemented a file-distribution algorithm to ad-
dress these requirements in the AgentTeamwork system that
deploys a hierarchy of mobile agents to remote sites in or-

∗This research is being conducted with full support from the National
Science Foundation’s Middleware Initiative (No.0438193).

†Corresponding author. Email: mfukuda@u.washington.edu, Phone:
1-425-352-3459, Fax: 1-425-352-5216

der to launch, monitor, check-point, and resume a parallel
and distributed-computing job [7]. Our algorithm focuses
on two aspects of file access patterns: (1) all user processes
may need the same file entirely and (2) they may access a
different portion of the same file. To be fitted to the former
aspect, our algorithm takes advantage of an agent hierarchy
in AgentTeamwork by duplicating a file at each tree level.
To be adjusted to the latter aspect, the algorithm divides a
file into stripes and delivers each one to a different process.

However, an entire file does not have to be passed to its
destination at once. It can be fragmented and transferred in
pipeline, which allows a user process to advance its com-
putation as much as possible. At the same time, file stripes
do not have to be delivered independently. They can be ag-
gregated in one packet in transit to the same tree of descen-
dant agents, which reduces network traffic. Therefore, our
file-distribution algorithm transfers a collection of user files
through an agent hierarchy where each agent at the same
tree level divides files in smaller partitions, aggregates par-
titions in a larger packet headed to the same descendant tree,
and duplicates them if necessary.

To achieve fault-tolerant file delivery, each agent main-
tains in-coming file partitions in its local memory (or/tmp
disk), serializes them with an execution snapshot of its cor-
responding user process, and sends them to a different re-
mote site, so that the user process can keep accessing the
same files even upon a resumption from the very last snap-
shot. In other words, an agent keeps pumping file stripes to
the corresponding user process by resuming only lost stripes
(rather than replicates an entire file as performed in the con-
ventional replica management.)

This paper presents an implementation of file distribu-
tion in AgentTeamwork and demonstrates convincing per-
formance. The rest of paper is organized as follows: Sec-
tion 2 gives an overview of the AgentTeamwork system;
Section 3 explains our file-distribution strategies; Section 4
presents the file-distribution performance; Section 6 differ-
entiates our implementation from related work; and Section
5 concludes our discussions.

2 System Overview

AgentTeamwork is a grid-computing middleware sys-
tem that coordinates parallel and fault-tolerant job execu-
tion with mobile agents [7]. A new computing node can join
the system by running a UWAgents mobile-agent execution
daemon to exchange agents with others [8]. The system
distinguishes several types of agents such as commander,
resource, sentinel, and bookkeeper agents, each specialized
in job submission, resource selection, job deployment and
monitoring, and job-execution bookkeeping respectively.

A user submits a new job with a commander agent that
receives from a resource agent a collection of remote ma-
chines fitted to the job execution. The commander agent
thereafter spawns a pair of sentinel and bookkeeper agents,
each hierarchically deploying as many children as the num-
ber of the remote machines. Each sentinel launches a user
process at a different machine with a unique MPI rank, takes
a new execution snapshot periodically, sends it to the corre-
sponding bookkeeper, monitors its parent and child agents,
and resumes them upon a crash. A bookkeeper maintains
and retrieves the corresponding sentinel’s snapshot upon a
request.

A user program is wrapped with and check-pointed by
a user program wrapper, one of the threads running within
a sentinel agent. The wrapper internally facilitates error-
recoverable TCP and file libraries, each namedGridTcpand
GridFile respectively, which serialize and de-serialize an
execution snapshot with in-transit messages and buffered
file data. A user program can take advantage of these
fault-tolerant features by inheriting theAteamProgclass
that has re-implemented Java socket, file and even mpiJava
classes [11] withGridTcpandGridFile.

Figure 1 shows a Java application executed on and
check-pointed by AgentTeamwork. Besides all its serial-
izable data members (lines 3-4), the application can regis-
ter local variables to save in execution snapshots (lines 32-
33) as well as retrieve their contents from the latest snap-
shot (lines 27-28). At any point of time in its computation
(lines 12-23), the application can take an on-going execu-
tion snapshot that is serialized and sent to a bookkeeper
agent automatically (line 20). As mentioned above, it can
also use Java-supported files and mpiJava classes whose ob-
jects are captured in snapshots as well (lines 14 and 21).

3 File-Transfer Strategies

This section focuses on AgentTeamwork’s file distribu-
tion that facilitates the following three features: (1) hier-
archical, aggregated, and fragmented file transfer, (2) file-
stripe maintenance in memory for check-pointing, and (3)
random access files.

1 import AgentTeamwork.Ateam.*;
2 public class MyApplication extends AteamProg {
3 private int phase;
4 private RandomAccessFile raf; // RandomAccessFile
5 public MyApplication(Object o){} // system reserved
6 public MyApplication() { // user-own constructor
7 phase = 0;
8 }
9 private boolean userRecovery() {

10 phase = ateam.getSnapshotId(); // version check
11 }
12 private void compute() { // user computation
13 ...;
14 raf = new RandomAccessFile(// create a file
15 new File("infile"), // input file
16 "rw"); // mode
17 int data = raf.read(); // read a byte of data
18 raf.close(); // close
19 ...;
20 ateam.takeSnapshot(phase); // check-pointing
21 MPI.COMM_WORLD.Barrier() // an MPI function
22 ...;
23 }
24 public static void main(String[] args) {
25 MyApplication program = null;
26 if (ateam.isResumed()) { // program resumption
27 program = (MyApplication)
28 ateam.retrieveLocalVar("program");
29 program.userRecovery();
30 } else { // program initialization
31 MPI.Init(args); // javaMPI invoked
32 program = new MyApplication();
33 ateam.registerLocalVar("program", program);
34 }
35 program.compute(); //now go to computation
36 MPI.Finalize(args);
37 } }

Figure 1. File operations in AgentTeamwork’s
application

3.1 Hierarchical, Aggregated, and Fragmented
Transfer

It is intuitively natural to utilize parallelism inherent to
an agent hierarchy for the purpose of delivering files to re-
mote processes. In other words, our first file-distribution
strategy is to relay a user file from a commander to all sen-
tinel agents through their hierarchy as duplicating the file at
each tree level. This would mitigate repetitive disk accesses
and file copying operations at a client site in particular if
remote processes need to read an identical set of data files.

It is obviously performance-effective to reduce the num-
ber of file transfers from one to another agent, (and thus
to alleviate inter-agent communication overhead). For this
purpose, our second file-distribution strategy is to aggregate
in one inter-agent message all files that should be delivered
to descendant agents in the same subtree. Especially when
random access files are partitioned in stripes, each accessed
by a different process, this aggregation would improve sys-
tem performance by sending in one message all file stripes
that will be accessed by the same subtree of agents.

It is on the other hand crucial to limit the size of each

aggregated-file message (simplified as a file message in the
following discussions) in order to avoid not only the ex-
tended use of network links but also the prolonged delay
of user process executions. Therefore, our third strategy is
to fragment aggregated files into smaller messages with a
system-defined size.

Figure 2 describes an example flow for sending user files
to sentinel agents, each dispatched to a different remote
node to run a user process. Using the UWAgents mobile-
agent execution platform, AgentTeamwork deploys a job
in a new agent hierarchy where a commander recursively
spawns sentinel agents whose identifier (simplified asid) is
calculated from their parentid × 4+ a sequential number
(1-based if the parent is the commander, otherwise 0-based).
From its id, a sentinel agent can calculate an MPI rank to be
assigned to its user process.

Each agent repeats a sequence of file aggregation, frag-
mentation, and hierarchical transfer every time it receives a
new file message from its parent. To be more specific, each
file or each file stripe includes an additional set of name
attributes formatted in a triplet ofagentId, fileName, and
mpiRank, whereagentIdis a destination sentinel’s id;file-
Nameis the original name of a user file; andmpiRankis
the MPI rank of a process to read this file (stripe). To cre-
ate a file message, an agent stores in a Java hash table all
files and their name attributes whoseagentIdbelongs to the
same child or its descendants. This grouping work can be
achieved by dividing each file’sagentIdattribute by four re-
peatedly until it reaches an immediate child’s id. We limit
the size of each file message with this Java hash table size,
so that a large collection of files destined for the same child
agent will be sent in multiple hash tables. Upon receiving a
file message from its parent, an agent extracts all files from
the hash table and sorts them in their name attributes so as
to group them in their same destination, namely their same
agentIdattribute.

The example in Figure 2 considers that a user has two
data files namedinputFile1 and inputFile2, the former
shared among three user processes with rank 0-2 and the
latter among two processes with rank 0-1. It also assumes
that both files are small enough to fit to one hash table. A
commander agent (denoted ascdr) reads and passes them
in a hash table to the first sentinel (denoted assnt) with id
2. Since all these files have an eight-divisibleagentId, sen-
tinel 2 simply passes the table to sentinel 8 that thereafter
re-groups these file partitions into two hash tables, one for-
warded to sentinels 32 and 128 whereas the other passed
through sentinels 33 and 132 all the way to sentinel 528.

cdr
Id=0

snt
Id=2

snt
Id=8

snt
Id=9

snt
Id=38

snt
Id=36

snt
Id=37

snt
Id=39

snt
Id=32

snt
Id=33

snt
Id=128

snt
Id = 130

Snt
Id=131

snt
Id=132

Snt
Id=528

128_inputFile1_1 contents

528_inputFile2_1 contents
528_inputFile1_2 contents

32_inputFile1_0 contents
32_inputFile2_0 contents

32_inputFile1_0 contents
32_inputFile2_0 contents

528_inputFile2_1 contents
528_inputFile1_2 contents

128_inputFile1_1 contents

key valueGUI (1) Read files

(2) Send a file hash
128_inputFile1_1 contents

528_inputFile2_1 contents
528_inputFile1_2 contents

32_inputFile1_0 contents
32_inputFile2_0 contents

key value

(3) Group files
based on their
destination

(4) Send a file
partition through
sentinels 8 and 32

(6) Send partitions through
sentinels 8, 33, and 132

(5) Send partitions
through sentinel 8

snt
Id = 129

Figure 2. File transfer in an agent hierarchy

3.2 File-Stripe Maintenance in Memory For
Check-Pointing

As briefed in Section 2, each sentinel agent creates a user
program wrapper that periodically takes an execution snap-
shot of a given user program. To serialize file data with the
user program, the wrapper creates and captures in a snap-
shot an GridFile object that buffers file data to be read and
written by the corresponding user program.

Figure 3 shows file-stripe maintenance with GridFile. In
addition to the main thread that executes a user program,
an sentinel agent spawns two child threads namedinputand
outputthreads.

The input thread repeatedly receives a new file message
from its parent sentinel, extracts file partitions from the
message, assigns a Java vector queue to a new file, registers
this queue with the file name in GridFile’s hash table, and
stores incoming file partitions in the corresponding queue.
(Needless to say, if this sentinel agent has children, the input
thread passes them a hash table of file partitions.)

The main thread retrieves a queue from GridFile, read
data from it, and deletes it in response to a user pro-
gram’s file open, read, and close operations. For file create
and write operations, the main thread takes over the input
thread’s task, namely registering a new queue in GridFile
and storing written data in the queue.

The output thread takes charge of sending back user-
written files to the commander agent. More specifically, it
keeps checking GridFile’s hash table to locate a new user-
written queue, reading file partitions from the queue, and
sending them directly to the commander agent that then
writes them back to a user-specified directory.

Of importance is to enforce mutual exclusion of Grid-

if (receive message from
parent) {

extract message;
if (this file is mine) {

enqueue(data);
} else {

reGroup(data);
sendToChild(data);

}
}

Class UserProgram {
main() {

…..;

open(“infile”, “r”);
data = read();
close();

…..;

open(“outFile”, “w”);
write(data);
close();

…..;
}

}

while (true) {

if (has data?) {
data = dequeue();
sendToCdr(data);

}
} GridFile main thread

input thread

output thread

input
file

name

file
portion

1

file
portion

2

key(String) value(Vector)

data queue

contents Hashtabel

output
file

name

file
portion

4

file
portion

3

key(String) value(Vector)

data queue

contents Hashtabel

Figure 3. Files maintained by GridFile

File’s queues that are accessed from these three threads. Al-
though the main thread can read from a file as many data as
written by the input thread, the current implementation sus-
pends the main thread to append data to an existing file until
the file is completely filled by the input thread.

Another problem is how to handle file partitions whose
total volume grows beyond memory space due to the mis-
matching speed in file read and write between the in-
put/output and main threads. Our tentative solution pro-
vides a user with an option that temporarily stores files in
each remote site’s/tmp directory, in which case a sentinel
agent, however, cannot resume those files with it upon a job
migration.

3.3 Random Access Files

AgentTeamwork makes random-access files viewed as
Java’s RandomAccessFile class to users. Moreover, we
have incorporated the MPI-I/O’s file concept [5] into this
class so that a user can partition a given random-access file
into stripes and allocate them to processes by specifying
each rank’sfiletypeandetypes. Figure 4 captures a snap-
shot of AgentTeamwork’s GUI windows where a user has
defined afiletypewith ten differentetypesand divided it into
five stripes. Stripe 0 (or portion 0 in the figure) is composed
of the first and the sixthetypes, and is allocated to rank 0.

Although an entire file is readable and writable to any
process, AgentTeamwork delivers to each sentinel only the
file stripes allocated to it, (while the file delivery follows
the hierarchical transfer algorithm detailed in Section 3.1).
Each user process can access those stripes in their original
file position as if the entire file contents existed locally. If
the process requests file data other than those allocated to

Figure 4. File-stripe allocation

it, the underlying RandomAccessFile object automatically
establishes a GridTcp connection to the owner process that
then transfers the necessary data to the requester.

Our current implementation does not enforce any strict
ordering. Read and write operations are atomic and pro-
cessed in a first-come first-serve basis. As an extension, we
plan to add synchronization methods that mimic those de-
fined in the MPI-IO standard.

4 Performance Evaluation

As described in Section 2, we have implemented the
basic functionality of AgentTeamwork’s specialized agents
on top of the UWAgents mobile-agent execution plat-
form. UWAgents facilitates agent mobility and inter-
agent communication using Java RMI in its previous
version and Java stream sockets in the current version,
(each distinguished as AgentTeamwork/UWAgents-RMI
and AgentTeamwork/UWAgents-Socket respectively in the
following performance evaluation.)

The performance of AgentTeamwork’s file distribution
has been evaluated on a Giga Ethernet cluster of 24 DELL
computing nodes, each with 3.2GHz Xeon CPU, 512MB
memory and a 36GB SCSI hard disk. The following sub-
sections compare AgentTeamwork with Sun NFS for their
file transfer, examine the effect of AgentTeamwork’s file
fragmentation, and evaluate our implementation of random
access files.

4.1 Comparison between AgentTeamwork and
Sun NFS

We used a test case that allows each user process to ac-
cess the same file whose size varies from 8M to 256M bytes.
In AgentTeamwork, its file transfer time has been measured
from a commander agent’s injection to termination. This
sequence includes (1) a commander reads a given file from
its local disk; (2) the file is forwarded, duplicated, and de-
livered to 24 sentinels through the agent hierarchy; (3) each
sentinel accepts the file; and (4) all agents acknowledge to
the commander. In Sun NFS, we have coded the corre-
sponding mpiJava program that makes all 24 ranks access
the same file and send a “completion” signal to rank 0. In
other words, we did not optimize this NFS version with
well-known techniques such as two-phase I/O and data-
sieving where rank 0 reads file contents and thereafter sends
them in messages to the other ranks.

Figure 5 compares AgentTeamwork/UWAgents-RMI
and Sun NFS for their file transfer speed. AgentTeamwork
performed 1.7 times faster than Sun NFS when transfer-
ring a 256-MB file. Obviously, this large difference re-
sulted from their file duplication schemes. AgentTeam-
work accesses disk only one time and duplicates a file in
each agent’s memory space while relaying it through the
agent hierarchy. On the other hand, Sun NFS accesses a
file server in response to each remote user process, which
makes 24 server accesses. However, for a smaller file
with 2M through to 8M bytes, AgentTeamwork performed
slower. This is because each disk access time is negligible
as compared to repetitive file relays through an agent hier-
archy.

Figure 5 also indicates that AgentTeamwork’s file-
transfer speed has slowed down when increasing the data
size from 128M to 256M bytes. The main reason is that
each agent must relay an entire file at once, allocate more
memory to maintain the file, and postpone a launch of its
user application until it completely receives the file. This is
our motivation to packetize a file and to transfer file parti-
tions in pipeline.

4.2 Effect of File Fragmentation and Pipelined
Transfer

We have implemented AgentTeamwork’s
file fragmentation and pipelined transfer on
top of UWAgents-Socket. Figure 6 compares
AgentTeamwork/UWAgents-RMI’s non-fragmented
file transfer with AgentTeamwork/UWAgents-Socket’s file
fragmentation and pipelined transfer where each partition
has been set to 1M, 2M, and 4M bytes.

The evaluation highlighted that AgentTeamwork’s file
fragmentation performed 1.9 times faster than non-

 600

 500

 400

 300

 200

 100

 0
 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

Sun NFS
AgentTeamwork/UWAgent-RMI

Figure 5. File transfer performance of Agent-
Teamwork and NFS.

fragmentation and 3.3 times better than Sun NFS when
sending a 256-MB file. The results have also revealed that
the partition size does not matter for a small file whereas the
larger file the smaller partition works out to. In fact, 1-MB
partitions performed 1.7 times faster than 4-MB partitions.

4.3 Performance of Random-Access File Transfer

The proposed transfer of random-access files have been
also implemented in AgentTeamwork/UWAgents-Socket.
We have measured the time elapsed for the following se-
quence of random-access file transfer: (1) a commander
agent reads 24 stripes of a given file, each to be delivered to
a different sentinel; (2) the commander starts sending them
in 1-MB partitions; (3) agents at each tree level relays file
partitions as regrouping them or further dividing them; and
(4) all agents send an acknowledgment to the commander
when accepting their allocated file stripe.

Figure 7 compares this file-stripe transfer with an entire
file transfer, both fragmented in 1-MB partitions1. The file-
stripe transfer has yielded 1.35 and 4.5 times better perfor-
mance than the entire file transfer and Sun NFS respectively
when sending a 256-MB random access file. Although a
commander agent still needs to send 256 messages, (each
with a 1-MB file partition) as in sending an entire file, each
agent at the bottom of an hierarchy receives only 11 mes-
sages. Obviously, the more user processes the better this
transfer performs.

1We have used the same scale intentionally for the y-axis in Figures 5,
6, and 7 so as to compare them easily.

 600

 500

 400

 300

 200

 100

 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

UWAgent-RMI
UWAgent-Socket 4MB block
UWAgent-Socekt 2MB block
UWAgent-Socket 1MB block

Figure 6. Effect of file fragmentation and
pipelined transfer.

5 Related Work

In this section, we differentiate AgentTeamwork’s par-
allel file distribution from its related work in terms of (1)
remote file caching and process invocation, (2) file striping
and parallel transfer, (3) file duplication through a hierarchy,
and (4) remote file recovery.

File caching at remote sites (where user processes are
running) is a classical and typical technique to reduce both
disk access and network traffic as seen in the most dis-
tributed and grid-computing systems. Legion provides a
user with its low impact buffered interface that caches en-
tire files in memory local to each user process [13]. Globus
GASS facilitates open delegation where multiple user pro-
cesses can share the same file cache as far as they run on the
same site [2]. Condor allows a user process to cache files
in its localtmpdisk as well as to access a remote file server
on demand through Condor’s remote system calls and I/O
sockets [4]. Similarly, AgentTeamwork caches user files at
each remote site. However, without waiting for entire files
to be delivered, a sentinel agent starts a user program that
can proceed its execution as far as file contents are made
available in pipeline.

File striping permits multiple clients to retrieve a large
and shared file from a disk array or a collection of file
servers. PVFS (Parallel Virtual File System) is such a sys-
tem that has focused on parallel file access [12]. GridFTP
uses multiple peer-to-peer channels to transfer a huge vol-
ume of data in parallel [1]. Parallel File Transfer Protocol
has further accelerated cluster-to-cluster, more specifically
PVFS-to-PVFS file transfer through a direct TCP connec-

 600

 500

 400

 300

 200

 100

 300 250 200 150 100 50 0

tr
an

sf
er

 ti
m

e
(s

ec
)

file size (Mbytes)

Entire file transfer in 1M blocks
File stripe transfer in 1M blocks

Figure 7. Performance of random-access file
transfer

tion between each pair of disk-dedicated cluster nodes [3].
Contrary to those systems, AgentTeamwork cannot take ad-
vantage of PVFS nor immediately transfer files that have
been already striped. Although AgentTeamwork must read
sequentially and thereafter stripe a file through the com-
mander agent, it is unique in transferring file strips through
an agent hierarchy and re-aggregating them when relaying
them to the same destination.

File duplication through a hierarchy can distribute an
identical file to multiple remote sites more effectively than
one-to-one file transfer. FPFR (Fast Parallel File Replica-
tion) generates a spanning tree from a file server to multiple
clients where intermediate tree nodes duplicate and relay a
given file to their child nodes [9]. FPFR packetizes a file
in smaller fragments, each of which may even take a dif-
ferent spanning tree for better performance. Using Globus
RFT (Reliable File Transfer) [10], FPFR can detect faults
in a tree and change its topology at run time. This work is
quite close to ours in terms of the implementation concept,
however AgentTeamwork can extend its agent hierarchy to
multiple clusters and private network domains over gate-
ways [6].

Remove file recovery is necessary if a remote user pro-
cess has modified files or is still in progress of file trans-
fer. Condor takes an on-going execution snapshots and
maintains them in a check-point server. Globus RFT keeps
track of the status of a peer-to-peer file transfer. Both are
targeting a single user process or the master process of
master-worker-based applications that resumes its execu-
tion, in-transit file data, and possibly worker processes. On
the other hand, AgentTeamwork places more emphasis on

state-capturing of an entire parallel application where each
sentinel takes snapshots of a different user process including
in-transit file data and passes them to different bookkeepers.

6 Conclusions

We have implemented a file distribution algorithm us-
ing an agent hierarchy in the AgentTeamwork system. The
strategies of our file distribution are three-fold: (1) hierar-
chical and pipelined transfer, (2) file striping and aggrega-
tion at each tree level, and (3) periodical file check-pointing.
The first strategy enables each user process to start and ad-
vance its computation as much as possible. The second
strategy sends files in blocks with the optimal size. Finally,
the third strategy keeps providing a resumed process with
necessary file data. The paper demonstrated the effective-
ness of these file-distribution techniques.

Since AgentTeamwork allows mobile agents to migrate
to and resume at a new remote site, its agent hierarchy can
be considered not only as a self-remapping tree of user pro-
cesses but also as dynamic file-distribution routes to the
most available processor pool.

We understand that there is yet room for improvement
in AgentTeamwork’s file distribution. One is to recover
a large volume of file stripes that would overflow remote
memory and thus must be saved in remote/tmp disk. The
other is to maintain data consistency of files shared among
different processes. With these new features, we feel
that AgentTeamwork can facilitate a high-performance and
fault-tolerant file-distribution environment.

Acknowledgments We are very grateful to Prof.
Shinya Kobayashi, Chair of Computer Science Department
at Ehime University for his support in human-resource allo-
cation to our research.

References

[1] William Allcock, John Bresnahan, Rajkumar Ket-
timuthu, Michael Link, Catalin Dumitrescu, Ioan
Raicu, and Ian Foster. The Globus striped gridftp
framework and server. InProc. of Super Comput-
ing 2005 - SC05, Seattle, WA, November 2005. ACM
Press.

[2] Joseph Bester, Ian Foster, Carl Kesselman, Jean
Tedesco, and Steven Tuecke. GASS: a data movement
and access service for wide area computing systems.
In Proc. of the Sixth Workshop on Input/Output in Par-
allel and Distributed Systems, pages 78–88, Atlanta,
GA, May 1999. ACM Press.

[3] Dheeraj Bhardwaj and Rishi Kumar. A parallel file
transfer protocol for clusters and gird systems. In

Proc. of the 1st International Conference on e-Science
and Grid Computing, pages 248–254, Melbourne,
Australlia, December 2005. IEEE CS.

[4] Condor Team. Conder version 6.6.11 man-
ual http://www.cs.wisc.edu/condor/manual/v6.6.11/.
User manual, University of Wisconsin, Madison, WI,
June 2006.

[5] Message Passing Interface Forum.MPI-2: Extention
to the Message-Passing Interface, chapter 9, I/O. Uni-
versity of Tenessee, 1997.

[6] Munehiro Fukuda. NSF SCI #0438193: Annual report
for year 2006. Annual report, UW Bothell Distributed
Systems Laboratory, Bothell , WA 98011, January
2007.

[7] Munehiro Fukuda, Koichi Kashiwagi, and Shinya
Kobayashi. AgentTeamwork: Coordinating grid-
computing jobs with mobile agents.International
Journal of Applied Intelligence, Vol.25(No.2):181–
198, October 2006.

[8] Munehiro Fukuda and Duncan Smith. UWAgents: A
mobile agent system optimized for grid computing. In
Proc. of the 2006 International Conference on Grid
Computing and Applicaitons – CGA’06, pages 107–
113, Las Vegas, NV, June 2006. CSREA.

[9] Rauf Izmailov, Samrat Ganguly, and Nan Tu. Fast
parallel file replication in data grid. InProc. of Fu-
ture of Grid Data Environments: A Global Grid Fo-
rum (GGF) Data Area Workshop, Berlin, Germany,
March 2004. GGF.

[10] R. K. Madduri, C. S. Hood, and W. E. Allcock. Re-
liable file transfer in grid environments. InProc. of
the 27th Annual IEEE Conference on Local Computer
Networks - LCN2002, pages 737–738, Tampa, FL,
November 2002. IEEE-CS.

[11] mpiJava Home Page.
http://www.hpjava.org/mpijava.html.

[12] Parallel Virtual File System. http://www.pvfs.org/.

[13] Brain S. White, Andrew S. Grimshaw, and Anh
Nguyen-Tuong. Grid-Based File Access: The Legion
I/O Model. In Proc. of the 9th IEEE International
Symposium on High Performance Distributed Com-
puting - HPDC’00, pages 165–174, Pittsburgh, PA,
August 2000. IEEE CS.

