
Language and Debugging Support for Multi-Agent and Spatial Simulation

Niko Simonson Sean Wessels Munehiro Fukuda∗

Computing & Software Systems
University of Washington, Bothell,

18115 NE Campus Way, Bothell, WA 98011

Abstract

The MASS (Multi-Agent Spacial Simulation) library fa-
cilitates parallelization of applications that are viewed as
interaction among up to millions of agents behaving over
a shared virtual space and that are thus fitted to simula-
tion of ecological, social, and physical mechanisms. The li-
brary invokes user-defined functions of all agents and array
elements as well as exchanges data among them in paral-
lel. The key to success of this library implementation is to
accelerate function invocation with preprocessor-generated
code and to facilitate an application debugging environ-
ment. This paper presents the design strategy, implemen-
tation, and usability of the MASS library preprocessor and
debugger.

1 Introduction

Multi-agent individual-based models view computation
as interaction among agents and individuals, each au-
tonomously behaving in a shared simulation environment.
They have been used for years to simulate ecological, so-
cial, and physical mechanisms that are generally difficult
only with mathematical formulae. To parallelize these mod-
els, we are developing the MASS (Multi-Agent Spatial Sim-
ulation) library that updates the status of all objects at once
with thecallAll method and exchanges data among all ob-
jects at once withexchangeAllmethod. These methods are
attributed as (1) one-sided parallel communication from the
main function to all array elements and (2) one-sided par-
allel communication from each element. Therefore, MASS
benefits not only multi-agent models but also data-intensive
computation with its parallelization.

We implemented MASS in Java from the viewpoint of
its widely used and convenient graphics features. How-
ever, due to Java’s nature as well as the multi-agents’ be-
havioral complexity, MASS encounters the following four

∗Corresponding author. Email: mfukuda@u.washington.edu, Phone:
1-425-352-3459, Fax: 1-425-352-5216

challenges: (1) parallelization is killed by the slow Java
reflection that is used to identify a user function called
from callAll/exchangeAll; (2) exchangeAllincurs substan-
tial communication overhead if applied to computationally
fine-grained elements; (3) a programmer needs to check
inter-element communication flow at an application level;
and (4) agent migration is difficult to keep track of at a user
level.

To address these problems, we have developed a
language preprocessor and GUI-based debugger for the
MASS library. The preprocessor inserts additional code
in a given application for calling a user function from
callAll/exchangeAllwithout using Java reflection and for
transferring multi-element data in bulk. The debugger runs
between a user application and the underlying MASS li-
brary to capture all the library calls so that it graphically
shows each object’s status, monitors inter-object communi-
cation, keeps track of agent migration, and stops/resumes
the user program at a break point.

This paper describes the preprocessor-assisted MASS
performance improvement and library extension, presents
the features and internal design of the MASS debugger, and
demonstrates the uniqueness and usability of these software
tools in comparison with related work.

2 MASS Library

2.1 Execution Model

PlacesandAgentsare keys to the MASS library.Places
is a multi-dimensional array of elements that are dynam-
ically allocated over a cluster of multi-core computing
nodes. Each element called aplace, is pointed to by a set
of network-independent array indices, and is capable of ex-
changing information with any otherplaceobjects.Agents
are a set of execution instances that can reside on aplace,
migrate to any otherplacewith array indices, and interact
with otheragentobjects as well as multipleplaces.

As shown in Figure 1, parallelization with the MASS li-
brary uses a set of multithreaded communicating processes

that are forked over a cluster and are connected to each other
through ssh-tunneled TCP links. The library spawns the
same number of threads as the number of CPU cores per
node. Those threads take charge of method call and infor-
mation exchange amongplaces andagents in parallel.

LAN

Process Rank
0

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Process Rank 1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Process Rank 2

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

C
PU

 C
or

e
0

C
PU

 C
or

e
1

C
PU

 C
or

e
2

C
PU

 C
or

e
3

C
PU

 C
or

e
0

C
PU

 C
or

e
1

C
PU

 C
or

e
2

C
PU

 C
or

e
3

C
PU

 C
or

e
0

C
PU

 C
or

e
1

C
PU

 C
or

e
2

C
PU

 C
or

e
3

A Bag of Agents

Agents

Places

Agents Agents

socket

(x,y)

X-
axis

Y-
axis

socket

M
A

S
S

 L
ib

ra
ry

A

pp
lic

at
io

n

mnode0.uwb.edu mnode1.uwb.edu mnode2.uwb.edu
System Memory System Memory System Memory

Figure 1. Parallel execution with MASS library

2.2 Library Specification

A user designs behaviors of aplaceand anagentby ex-
tending thePlaceandAgentbase classes respectively, pop-
ulates them through thePlacesandAgentsclasses, and per-
forms their computation through the following methods.

Places Class

• public Places(int handle, [String primitive,] String
className, Object argument, int... size)instantiates
a shared array withsize from classNameor a primi-
tivedata type as passing anargumentto theclassName
constructor. This array receives a user-givenhandle.

• public Object[] callAll(String functionName, Ob-
ject[] arguments) calls the method specified with
functionNameof all array elements as passingargu-
ments[i] to element[i], and receives a return value
from it into Object[i]. Calls are performed in paral-
lel among multi-processes/threads. In case of a multi-
dimensional array,i is considered as the index when
the array is flattened to a single dimension.

• public Object[] callSome(String functionName, Ob-
ject[] argument, int... index)calls a given method
of one or more selected array elements. Ifindex[i] is
not negative, it indexes a particular element, a row, or
a column. If index[i] is negative, say−x, it indexes
everyxth element. Calls are performed in parallel.

• public void exchangeAll(int handle, String function-
Name, Vector<int[] > destinations)calls from all ele-
ments a given method of all destination elements, each
indexed with a differentVectorelement. Each vector
element, saydestination[]is an array of integers where
destination[i] includes a relative index (or a distance)
on the coordinatei from the current caller to the callee
element. The caller passes itsoutMessage[]data mem-
ber to the callee as a set of arguments, and receives
return values in itsinMessage[].

• public void exchangeSome(int handle, String func-
tionName, Vector<int[] > destinations, int... index)
calls each of the elements indexed withindex[]. The
rest of the specification is the same asexchangeAll().

Agents Class

• public Agents(int handle, String className, Object
argument, Places places, int population)instantiates
a set of agents fromclassName, passes theargumentto
their constructor, associates them with a givenPlaces
matrix, and distributes them over these places, based
onmap()that is defined within theAgentclass.

• public void manageAll()updates each agent’s status,
based on its latest calls ofmigrate(), spawn(), kill() ,
sleep(), wakeup(), and wakeupAll(). These methods
are defined in theAgent base class and may be in-
voked from other functions throughcallAll() andex-
changeAll().

2.3 Design Issues

From the user viewpoint,PlacesandAgentsare theoret-
ically considered as an array or a collection ofPlaceand
Agentobjects respectively. However, their underlying im-
plementation is not so simple in order to not only serve
as a general simulation framework but also to work over
a distributed-memory cluster. We need to address the two
design challenges below:

Language Issues:Unless a user implements base meth-
ods of thePlaceor Agentclass,PlacesandAgentsdo not
know any methods of a user-defined class. This in turn
means that thecallAll/SomeandexchangeAll/Somemethods
cannot invoke a user function simply through object cast-
ing. Instead we need to use Java reflection to interrogate a
user-defined class. The problem is that the reflection works
one order slower than a direct function call in general. This
slow performance kills parallelization where MASS calls
the same function of all objects at once. To pursue both
naming flexibility and high-speed invocation of user func-
tions, we design a Java preprocessor that inserts additional
code to match the names of user functions defined in MASS
methods and the actual function bodies to invoke, so that the
library calls user functions without the reflection.

Debugging Issues:SincePlacesandAgentsmay be al-
located over a distributed-memory cluster, the status and
execution of their elements is not always visible and trace-
able where the main program is running. For debugging
purposes, users are responsible to collect remote element
status by manually inserting combinations ofcallAll/Some
andexchangeAll/Somemethods as well as adding additional
graphics code into their application programs. In particular,
it is tedious work for application designers to keep track
of migratingAgentobjects over different computing nodes.
We address these debugging issues by designing a wrapper
that covers the original MASS library and facilitates GUI-
based debugging features.

The next two sections explain these solutions.

3 Preprocessor Design

3.1 Library Extension

We extend MASS to avoid Java reflection and to accel-
erate message exchange amongPlaceobjects as follows:

Eliminating Java Reflection: Given a function name in
the MASS methods, we need to quickly identify its func-
tion body to invoke. A trivial but naive idea is to store user
function names in a symbol table at compile time and there-
after to compare each symbol table entry with a function
name specified in a MASS method each time it is invoked at
run time. The problem is repetitive string comparisons that
may weigh more than actual computation at eachplaceor
agent. Instead we use integer comparisons where user func-
tion names found in MASS methods receive a different inte-
ger, (i.e., a function id) at compile time and a MASS method
invokes the user function corresponding to a given function
id. Figure 2 shows preprocessor-generated example code
that jumps from two MASS methods to a different user
function: two user function names such as “exchangeAr-
ray” and “putArray” inexchangeAll()andcallAll() (lines 1-
2) receive a function ID respectively (lines 6-7); the original
exchangeAll()andcallAll() calls the preprocessor-generated
callMethod()(line 12); and the control branches off to the
corresponding user function, based on the function id (lines
14-15).

Exchanging Each Place’s Boundary Information:
The MASS library originally assumes that aPlaceobject is
used as an individual element of a distributed array. How-
ever, the cost forexchangeAll/Someis substantial to fine-
grained computation at eachPlace object, because data
exchange generally takes place with multiple neighbors.
Therefore, a user wants to include a collection of array el-
ements in eachPlaceobject that then exchanges its bound-
ary elements (or shadow elements) in fewer packets with
neighbors as shown in Figure 3. This reduces the frequency
of communication over an entire array while increasing the

1 // the original MASS methods
2 myPlaces.exchangeAll(h, exchangeArray, neighbors);
3 myPlaces.callAll(putArray, args);
4
5 // preprocessor-generated code to jump user functions
6 public static final int exchangeArrayP_ = 0;
7 public static final int putArrayP_ = 1;
8
9 myPlaces.exchangeAll(h, exchangeArrayP_, neighbors);

10 myPlaces.callAll(putArrayP_, arggs);
11
12 public Object callMethod(int funcId, Object args) {
13 switch(funcId) {
14 case exhangeArrayP_: return exchageArray(args);
15 case putArrayP_: return putArray(args);
16 }
17 return null;
18 }

Figure 2. Two MASS methods and their
preprocessor-generated code

Figure 3. Communication among neighboring
Place objects

computation amount perPlace. A new MASS library func-
tion namedexchangeBulkexchanges such boundary infor-
mation among neighboringPlaces. As shown in Figure 4,
we achieve it by translatingexchangeBulkinto a combina-
tion of exchangeAllandcallAll (lines 6-7): the former calls
a given function of all neighboringPlaceobjects to retrieve
their boundary information, and the latter put the informa-
tion into the localPlace’s boundary space. The MASS pre-
processor assumes that a user definesexchangeArrayand
putArray, whereArray is a user-definedPlaceobject, each
actually achieving data retrieval and saving operations. If
not, the preprocessor generates simple stub functions (lines
9-15). Thereafter, it converts this pair ofexchangeAlland
callAll into those calling the user functions with their func-
tion IDs as described in Figure 2.

3.2 Design Strategies

We design and implement the MASS preprocessor,
based on the following two strategies. First, we use an
existing Java compiler-compiler tools: JavaCC and JJTree

1 // A new MASS method to exchange boundary data
2 myPlaces.exchangeBulk(h, Array, neighbors);
3
4 // preprocessor-generated exchange/callAll from
5 // exchangeBulk
6 myPlaces.exchangeAll(h, "exchangeArray", neighbors);
7 myPlaces.callAll(h, "putArray", neighbors);
8
9 public Object exchangeArray(Object src) {

10 return (Object)Array.getBoundary((int[])src);
11 }
12 public Object putArray(Object arg) {
13 Array.putBoundary(inMessages);
14 return null;
15 }

Figure 4. exchangeBulk and its preprocessor
generated code

for parsing and optimizing MASS user programs. Sec-
ond, we carry out two passes of MASS program transla-
tion: pass 1 convertsexchangeBulkinto a combination of
exchangeAll/callAll, and pass 2 generates additional code
to call a user function from a MASS library method with
its function ID. The following details an implementation of
our MASS preprocessor.

3.3 Implementation

The preprocessor performs its optimizations by running
the input code through a Java parser. The parser emits to-
kens in response to the input code. Actions are taken on
specific tokens to check conditions, set flags, and mod-
ify output. A grammar defines a roughly correct version
of Java. It has been modified to create Abstract Syntax
trees. From the grammar, a parser is generated (as Unpar-
seVisitor.java) which by default will output any input which
matches the Java language as defined by the grammar. As
shown in Figure 5, the parse methods can be overwritten
with MASSOptimizer, ExchangeBulkOptimizer, or Reflec-
tionOptimizer to perform MASS optimizations. For exam-
ple, when parsing aMethodDeclarationtoken, a flag will
be set to indicate that a new method is being parsed and that
a new scope must be placed on the stack. Subsequently, if
a ResultTypetoken is parsed while theMethodDeclaration
flag remains set, the return type of the parsed method can
be recorded. These optimizers in Figure 5 set flags in their
visit() methods and implement the logic to respond to those
conditions in theirfind(Token)methods.

The preprocessor has been tested on some MASS
programs including two-dimensional wave simulation
(Wave2D) and three-dimensional computational fluid dy-
namics (CFD). The verification and performance evaluation
has been conducted by comparing manually-translated ver-
sus preprocessor-generated code. Figure 6 demonstrated the
competitive performance of preprocessor-generated code in

ExchangeOptimizer ReflectionOptimizer
MASSOptimizer
UnparseVisitor
Java Grammar

Figure 5. MASS preprocessor implementation

Code Total exchangeAll callAll
Manual 9730.5 ms 4605.25 ms 1505.5 ms
Preprocessor 9785 ms 4366.25 ms 1705.75 ms

Wave2D

Code Total
Manual 9730.5 ms
Preprocessor 9785 ms

CFD

Figure 6. Preprocessor-generated code exe-
cution

Wave2D and CFD when running the code four times on a
64-bit 2.27GHz Intel Core.

4 Debugger Design

A simple debugging program was implemented to assist
MASS developers. Currently, the debugger uses the multi-
threaded Java version of MASS. It allows users to view a
logical arrangement of their computational spaces’ values
through a 2D or 3D graphical view.

4.1 Debugging Features

The basic objective of the debugger is to display the con-
tents of computational nodes in a human-understandable
format, as shown in Figure 7. Its features are designed to
support this goal:

• Displays results in a flat view or hawk’s eye view.
• Opens windows to display additional dimensionality.
• Allows debugging in code or in GUI.
• Sets break points and defines iteration points.
• Advances to next break point or by iteration.
• Shows communication between logical nodes.
• Saves and restores computational values.

The developer can set break points in program iteration.
This differs from traditional debugging code break points,
and is more akin to setting break points based on variable
values. However, the developer can specify when in the
driving code that an iteration occurs, allowing a more fine-
grained approach than might be initially apparent.

Figure 7. Debugger GUI’s hawk’s eye view of
computational node values.

4.2 Design Strategies

Design of the debugger followed a twofold strategy. The
debugger wraps functions of the MASS class library as
shown in Figure 8, and development is driven by the need
for features to show information in terms of the MASS ap-
plication developer’s perspective. The development of the
debugger relied on an iterative approach that focused on de-
sign, planning, and prioritization of features. A basic goal
is to implement features as simply as possible. Early in the
process it became apparent that there were two challenges:
accessing MASS and creating the graphical interface. Com-
paring the two, using MASS was simpler than creating the
graphics, but had yet to be thoroughly explored. The de-
bugger is the first application to demonstrate that multiple
classes can utilize MASS concurrently.

4.3 Implementation

The debugger program exists separately from the MASS
library. Therefore, it is not affected by changes in the MASS
implementation that don’t affect MASS function signatures.
In effect, it serves as an intermediary layer that wraps
MASS functions. In addition to the debugger class, there
are classes for graphical control objects: the display win-
dows and buttons. When data is returned from the MASS
classes, in addition to returning the data to the user, the de-
bugger also instantiates graphical objects using Java’s awt
classes, and displays the results. The organization of the re-
sults are based on the user-defined sizes of the arrays that
are passed to MASS when it is initialized. In this context,
the implementation of the debugging features only has to
use simple private counters and Booleans to keep track of it-
erations and breakpoints. When a breakpoint is hit, further
function calls to MASS are suspended. Since all MASS
results are returned in single arrays, there is no latency in
updating individual node results from the debugger or user
perspective. Depiction of exchange results are more dif-
ficult, because MASS does not provide return values for

Figure 8. Interaction between the debugger, a
user application, and MASS.

them. The user provides a vector of relative node coordi-
nates where data is exchanged. The debugger applies the
vector to each computational node to determine the coor-
dinates where the data exchange occurred, and shows the
last computation (from a MASSCallAll function) as the
data that is sent. Checkpoints take the return values from
a computation and store them in a file. The file is read back
into an array of objects when the checkpoint is restored, and
passed to MASS. It is important to note that this method of
restoring a checkpoint is only valid if the user’s places do
not rely on local resources, such as a local system clock, for
their calculations. The debugger offers three general types
of public methods, as shown in the sample code of a simple
driver application in Figure 9:

• MASS-equivalent functions with identical signatures

• MASS-equivalent functions with extended signatures
for the debugger

• Debugger-only functions, such as setting break points.

The MASS functions with extended signatures combine
MASS-equivalent functions with debugger functions, trad-
ing fewer function calls for ones with more parameters.
Control buttons also implement debugger functions for fea-
tures such as advancing one iteration or continuing to the
next break point while the user’s program is running.

1 // Initialization of MASS through debugger
2 debugger.degubInit(totalSize, totalDimensions,
3 ‘‘DebuggerDriver’’, threads, 0, 999);
4
5 // Pure debugger functions
6 debugger.setTotalIterations(iterations);
7 debugger.setBreakPoint(20);
8 debugger.setStopOnBreakPoint(true);
9

10 // Use of MASS through debugger
11 while(!debugger.isFinished()) {
12 // MASS-equivalent function called through
13 // debugger (shows results in GUI by default)
14 debugger.debugCallAll(0, (Object[])null);
15
16 // ...with iteration set separately
17 debugger.iterate();
18
19 // MASS function with debugger parameters
20 // (ticks iterator shows results in GUI)
21 debugger.debugIterateCallAll(0, (Object[])null,
22 true);
23 }
24
25 // end debugger operations and clean up graphics
26 debugger.finish();

Figure 9. Code using debugger; breakpoint
set for every 20 iterations

5 Related Work

5.1 Preprocessors

Our MASS library and preprocessor design involves
library-assisted parallel execution, preprocessor-assisted
code generation, and code manipulation. Those techniques
are found in the following four language systems.

Parallel Java Library promotes hybrid SMP cluster pro-
gramming in Java by combining multithreaded program-
ming constructs and MPI-based message-passing func-
tions [4]. MASS and Parallel Java libraries both take a
similar approach in hiding all underlying parallelization
work with their Java library classes and methods. How-
ever, the major difference is that MASS does not distinguish
shared and distributed memory but gives a consistent view
of multi-agents running on a shared array regardless of un-
derlying memory architectures.

Extensible PreProcessor (EPP) defines plug-ins for gen-
erating tiny data-parallel Java code [3], where the special
modifier “parallel” given to a Java class generates addi-
tional multithreading code in itsrun() method that handles

all data with virtual processors in parallel. Although MASS
and EPP use a preprocessor approach for parallelization,
EPP focuses on multithreading, whereas the MASS prepro-
cessor extends its scope to hybrid SMP cluster computing.

MPIPP is another preprocessor tool that converts a user-
defined data structure into MPI-derived data types [6]. It
is similar that ourexchangeBulk()function converts a cer-
tain range of boundary array elements toPlace.outMessage
as well asPlace.inMessagesback to the original elements.
However, our MASS preprocessor is different in generat-
ing get()andput()methods to automate entire boundary-to-
boundary element transfers.

Javassist facilitates a compiler-assisted Java bytecode
manipulation that defines new classes, freezes existing
classes, and customizes class members [1]. Therefore,
Javassist can works as another option to optimize theex-
changeBulk()function and to match user function names
in the MASS library and their actual function bodies, by
directly manipulating a user program. However, it would
be the same amount of work required if our preprocessor
were redesigned to introspect and manipulate all MASS
keywords with Javassist.

5.2 Debuggers

The MASS debugger is a framework-oriented, library-
based, visualization-focused, and data-parallel application
debugger. In these categories, we found similarities to and
differences from the following four products.

Hadoop and the MASS debugger are both framework-
oriented debugging utilities. Hadoop uses a Java class based
on the JUnit3 test case and performs testing using a virtual
map cluster [8]. The MASS debugger debugs through the
actual execution of the MASS program, as MASS controls
where its computational spaces run. Hadoop Test Case out-
put is console output, shown through the user’s IDE. MASS
debugger output uses its own graphical interface.

MPI Debugging Interface is used to provide the concep-
tual message passing state of the program [2]. The debug-
ger implementation studies the communicator queues; the
MASS equivalent of these are the parameters of its major
functions. Both applications conclude that accessing the li-
brary class must be led by the debugger. Specific interfaces
to display data are not implemented by the MPI debugger
in contrast to the MASS debugger’s GUI.

TotalView is a feature-heavy, commercial debugging in-
terface designed for distributed software [7]. TotalView,
like MASS, makes use of a GUI for data visualization but
lacks concurrent display of values. The TotalView software
is more sophisticated than MASS but also more compli-
cated, and is not free. MASS, in contrast, is geared specifi-
cally to MASS users and is currently free. Using TotalView
with MASS would strip away all the abstraction that the

MASS library is providing.
Global Arrays are a means to solve data-parallel jobs,

and intersects with MASS’s application areas [5]. It gives
the user very fine-grained control over the data objects it
uses, but at the cost of a great deal of programming com-
plexity in implementation. In contrast, MASS aims explic-
itly to simplify and abstract away complexity. Global Ar-
rays do not in themselves provide explicit debugging tools;
while the MASS debugger is an extension of MASS that
does not currently exist in Global Arrays.

In summary, we believe that our design strategy for the
MASS preprocessor and debugger fits user requirements for
multi-agent spatial simulation.

6 Future Work

6.1 Preprocessor

At present our preprocessor has the following limitations
and issues: (1) MASS applications to be processed should
not contain a method named “callMethod” or use a trailing
underscore (“”) as part of a method name; (2) all meth-
ods to be called fromcallAll/Someor exchangeAll/Some
must accept the same set of parameters in the same order;
(3) user-owned non-MASS methods should not have names
identical to MASS methods; and (4) MASS variables may
not be recognized if they are cast or assigned to other classes
at runtime. We believe that these limitations are acceptable.

As our future work items, we are developing C, C++,
and CUDA-C versions of the MASS library. Since C and
C++ allow programmers to use dynamic linking and func-
tion pointers, we do not see any necessity of developing a
MASS preprocessor for them. However, CUDA-C has its
own extensions to C. Although these extensions are quite
unique to GPUs, we are planning to develop a preprocessor
that assists C programmers in running MASS applications
on GPUs. Our ultimate goal is to facilitate a Java or C++
version of the MASS library for GPU computation through
a cascading code translation to CUDA-C.

6.2 Debugger

Currently, the MASS debugger focuses on the step-by-
step display of computational node data and communica-
tion. The limitations include: (1) agents and their migration
are not displayed; (2) the interface is still only a proof-of-
concept design; (3) break points are not based on computa-
tional node values; and (4) analysis and step-through of the
developer code itself is not implemented.

Implementation of agent status and migration view is the
immediate next step in terms of future development. The
interface must be improved for the overall user experience.
Allowing break points based on computational node values

will give the user more flexibility. However, the goal of the
MASS debugger is to provide an easy way to view MASS
computations, not to become a commercial debugger with
a full feature set. Consequently, certain debugger features:
the ability to step through code and to set break points in
the code itself, are not prioritized for future development.

7 Conclusions

The MASS library eases parallelization of multi-agent
individual-based models as well as data-intensive applica-
tions. In this paper, we analyzed the current issues in code
development and execution with the library, addressed them
with our preprocessor approach and debugger design. The
MASS library and tools will be made available upon an
email request sent todslab@uw.edu.

References

[1] S. Chiba and M. Nishizawa. An easy-to-use toolkit for ef-
ficient java bytecode translators. InProc. of 2nd Int’l Conf.
on Generative Programming and Component Engineering -
GPCE’03, volume LNCS 2830, pages 364–376, Erfurt, Ger-
many, September 2003. Springer-Verlag.

[2] J. Cownie and W. Gropp. A standard interface for debugger
access to message queue information in MPI. InProc. of Re-
cent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, 6th European PVM/MPI Users’ Group Meeting
- PVMMPI’99, volume LNCS 1697, pages 51–58, Barcelona,
Spain, September 1999. Springer.

[3] Y. Ichisugi and Y. Roudier. The extensible Java preproces-
sor kit and a tiny data-parallel Java. InProc. of the Scien-
tific Computing in Object-Oriented Parallel Environments IS-
COPE’97, volume LNCS 1343, pages 153–163, Marina del
Rey, CA, December 1997. Springer-Verlag.

[4] A. Kaminsky. Parallel Java: A unified API for shared memory
and cluster parallel programming in 100% Java. InProc. 21st
IEEE Int’l Parallel and Distributed Processing Symposium -
IPDPS, pages 1–8, Long Beach, CA, March 2007. IEEE-CS.

[5] M. Krishnan, B. Palmer, A. Vishnu, S. Krishnamoorthy,
J. Daily, and D. Chavarria. The global arrays user manual.
Technical report number pnnl-13130, Pacific Northwest Na-
tional Laboratory, Richland, WA, November 2010.

[6] E. Renault and C. Parrot. MPI pre-processor: generating MPI
derived datatypes from C datatypes automatically. InProc.
2006 Int’l Conf. on Parallel Processing Workshops, pages
248–256, Columbus, OH, September 2006. IEEE CS.

[7] Rogue Wave Software, Inc. Totalview. User Guide Version
8.9.2, Boulder, Colorado, November 2011.

[8] J. Venner. Pro Hadoop, chapter 7, Unit Testing and Debug-
ging, pages 207–237. Apress, New York, NY, 2009.

