
Morphing Parallelization Strategy to Support On-the-Fly Video Analysis

Munehiro Fukuda
Comp. & Soft. Systems

University of Washington
Bothell, WA

mfukuda@u.washington.edu

Shuichi Kurabayashi Jeremy Hall
Media & Governance

Keio University
Fujisawa, Japan

{kurabaya, jhall}@sfc.keio.ac.jp

Yasushi Kiyoki
Env. & Info. Studies

Keio University
Fujisawa, Japan

kiyoki@sfc.keio.ac.jp

Abstract

To automate and accelerate Internet video search, we
propose a parallelized on-the-fly video analysis that is dis-
tinguished from the conventional approaches in the follow-
ing two features. One is to morph its parallelization by first
screening out hundreds of videos at each processor in a low
quality of analysis, then repeating this screening process
as increasing the analyzing quality, and finally examining
each of the final candidates among multiple processors. The
other is to download and handle any portion of a video clip
independently at a different processor, which is differenti-
ated from the conventional stream-based analysis that scans
a video from beginning to end.

We have evaluated the promising performance of our
proposed system by parallelizing the Auotonoesis color-
schema-based video analyzer on top of the AgentTeamwork
parallel-computing middleware. This paper presents imple-
mentation techniques and preliminary performance to sup-
port our parallelization strategy.

Keywords: parallel video analysis, parallel video down-
loading, switched parallelism, mixed parallelism

1. Introduction

Lengthy manual efforts are still required for users to find
videos on the Internet matching their expectations. De-
spite that video-search engines help facilitate the narrow-
ing of a search by providing results prioritization, subtitles
listing, and videos rating, users are not yet relieved from
their heuristic trial-and-error video search. This is because
legacy video databases depend on keyword search that may
list hundreds of videos; impossible to pick through in a rea-
sonable amount of time.

A query by video clip [3] can reduce this burden by
sampling each video in a series of screen shots so as to
check how close they appear to a user’s intention. More
specifically, once a list of candidate videos are identified

with a keyword search, their screen shots are compared in
color and texture to those of another video clip (or even
a set of independent pictures) which visually represents a
user’s query. However, this type of search still needs a large
amount of analyzing time, thus unacceptable for the use of
on-the-fly video retrieval.

Among hundreds of candidates, the majority is a set of
unlikely videos. There is no reason to precisely analyze
each of them from beginning to end. Hence, a key to real-
izing quick video search is how fast the analysis can drop
off unlikely videos through a rough analysis toward a de-
tailed analysis of prospective candidates, while leaving the
most-likely videos in the final set.

Parallel computing is a typical solution to accelerate
such video analysis. The easiest is the bag-of-task par-
allelization that allows computing nodes to share a list
of target videos and to pick up one by one from the list
for its content analysis until the list is exhausted. This
multi-videos-over-multi-processors (MVMP) paralleliza-
tion can efficiently deal with hundreds of videos but is
lower-bound to time for analyzing the longest video. There-
fore, when it comes to a detailed analysis of the final candi-
date videos, we need to also consider the single-video-over-
multi-processors (SVMP) parallelization that partitions a
single video into smaller stripes, each analyzed at a differ-
ent computing node.

Based on these observations, we propose a parallelized
on-the-fly video analysis that changes its parallelization
from the MVMP to SVMP strategy as repeating its analyz-
ing iteration from the roughest to the most precise quality.
Two software technologies are used for actual video anal-
ysis and parallelization: Autonoesis [5] and AgentTeam-
work [2]. The former decodes a flash video, samples it
in a series of screen shots, and creates an archive of color
histograms, each corresponding to a different screen shot.
The latter deploys a hierarchy of mobile agents to launch
a user job over a collection of remote computing nodes.
Using them, we have prototyped each component of our
proposed parallel video analyzer including a parallel video

2. Sequential Metadata
Construction 

Video Content
Database 

Video 1  Video n 

1. Sequential Query
Construction 

  3. Context‐
Dependent Matching

Story Matrix Story Matrix

Query Target

Query by
Video 

Figure 1. Autonoesis’ system overview

downloader, and MVMP as well as SVMP-based analyzers.
This paper presents the implementation techniques and

performance evaluations to support our proposed paral-
lelization. The rest of paper is organized as follows: Sec-
tion 2 gives an overview of Autonoesis and AgentTeam-
work; Section 3 explains our implementation strategy; Sec-
tion 4 shows its preliminary performance; Section 5 dis-
cusses related work from video analysis and parallelization
viewpoints, and Section 6 presents our conclusions.

2. Software Infrastructure

This section gives an overview of Autonoesis and Agent-
Teamwork which together form the software infrastructure
of our on-the-fly video analyzer.

2.1. Autonoesis

Autonoesis is a video search engine that performs the
following three tasks as shown in Figure 1: (1) generating
color-schema-based meta-data, (named a story matrix) for
a user’s query by video, (2) constructing a story matrix for
each of target videos retrieved from databases, and (3) com-
paring the query with the targets in terms of their story ma-
trices in order to rank their proximity to the query.

Figure 2 illiterates a story matrix whose columns and
rows respectively correspond to a graphic set of 183 differ-
ent color schemas and a timeline-based set of video frames.
To construct a matrix, a video clip is decoded into frames
along the timeline, each then converted from its RGB to
HSV presentation, from which we create the corresponding
color histogram, based on 150 representative colors of the
Munsell system. Thereafter, the appearance ratio of each
color schema in the histogram is calculated, and only the x
biggest ratios (where x is a user-given number) are recorded

183 Color-Schemas

cs1 cs2 cs3 … cs183

Tim
e

t1 0.2 0.4 0.2 … 0.1

t2 0.1 0.1 0.0 … 0.2

t3 0.1 0.3 0.25 … 0.4

… … … … … …

tn 0.43 0.33 0.11 … 0.04

Figure 2. A story matrix

in the matrix cells specified with their corresponding color
schema and timeline-based frame.

Assuming that a query by video and each target video
have both the same number of timeline-based frames, (de-
fined as n), Autonoesis computes EV , the proximity be-
tween the query and the target in terms of their story matrix,
using the following formula:

EV =
n−1∑
i=0

(
182∑
j=0

Qij ·Mij) (1)

where

• Qij : the appearance ratio of the color scheme csj

found in the query’s frame at time i

• Mij : the appearance ratio of the color scheme csj

found in the target’s frame at time i

•
∑182

j=0 Qij ·Mij : the sum of the cs product between
Q’s and M ’s corresponding matrix items at time i

By sorting EV s of all targets, Autonoesis finds the best
target fitted to a user’s intention.

2.2. AgentTeamwork

AgentTeamwork is a grid-computing middleware sys-
tem that coordinates parallel and fault-tolerant job execu-
tion with mobile agents [2]. A new computing node can join
the system by running AgentTeamwork’s mobile-agent exe-
cution daemon to exchange agents with others. The system
distinguishes several types of agents such as commander,
resource, sentinel, and bookkeeper agents, each specialized
in job submission, resource selection, job deployment and
monitoring, and job-execution bookkeeping respectively.

As shown in Figure 3, a user submits a new job with a
commander agent that receives from a resource agent a col-
lection of remote machines fitted to the job execution. The
commander agent thereafter spawns a pair of sentinel and
bookkeeper agents, each hierarchically deploying as many
children as the number of the remote machines. Each sen-
tinel launches a user process at a different machine with a

User 

Commander 
id 0 

Sen+nel 
id 2 
rank 0 

Bookkeeper 
id 3 

Resource 
id 1 

XML 
DB 

Sen+nel 
id 8 
rank 1 

Sen+nel 
id 11 
rank 4 

Sen+nel 
id 10 
rank 3 

Sen+nel 
id 9 
rank 2 

Bookkeeper 
id 12 

Bookkeeper 
id 13 

Sen+nel 
id 32 
rank 5 

Sen+nel 
id 34 
rank 7 

Sen+nel 
id 33 
rank 6 

Job Submission 

XML Query 
Spawn 

id: agent id 
rank: MPI Rank 

snapshot 

snapshot 

Figure 3. AgentTeamwork’s system overview

unique MPI rank, takes a new execution snapshot periodi-
cally, sends it to the corresponding bookkeeper, monitors its
parent and child agents, and resumes them upon a crash. A
bookkeeper maintains and retrieves the corresponding sen-
tinel’s snapshot upon request.

A user program is wrapped with and check-pointed by
a user program wrapper, one of the threads running within
a sentinel agent. The wrapper internally facilitates error-
recoverable TCP and file libraries, each named GridTcp and
GridFile respectively, which serialize and de-serialize an ex-
ecution snapshot with in-transit messages and buffered file
data. A user program can take advantage of these fault-
tolerant features by inheriting the AteamProg class that has
re-implemented Java socket, file, and even MPI classes with
GridTcp and GridFile.

3. Parallelization

It is our ultimate goal to dynamically decide the best val-
ues of parameters that optimize our parallelization morph-
ing and video-clip partitioning approaches. In this section,
we first define these parameters through our mathematical
analysis, and thereafter explain the programming details of
our parallel video analyzer.

3.1. Mathematical Analysis

Our parallelized video analyzer repeats an iterative ana-
lyzing stage of creating a story matrix for a target video i,
comparing it with a query matrix, and increasing the num-
ber of frames sampled per second for an analysis at the
next stage. Given the following four parameters, the time
to analyze a target video i at the iterative stage j, (namely
Tstageij) is calculated with Formula 2.

• Tvideoi: the length of a video i in seconds

• Sj : the number of frames sampled per second at a
given analyzing stage j. (For example, Sj = 1/8 sam-
ples one frame every eight seconds.)
• Pi: pixels per frame, (i.e., ppf) of a given video i

• Tpix: the analyzing time for each pixel

Tstageij = Tvideoi · Sj · Tpix · Pi (2)

Let us assume that top Rj ratio of the videos at each
stage j (where R0 = 1.0) is passed for their analysis at the
next stage j + 1. The total time to find the final candidate
clip among all Nv videos received from Internet (named
Ttotal) can be estimated with Formula 3

• Nv: the total number of videos to analyze
• Ns: the number of analyzing stages
• Rj : the ratio of keeping the best videos at stage j
• Nt: targets to be analyzed at stage j, defined as

Nv
∏j−1

k=0 Rk

• Np: the number of processors used for parallel video
analysis

Ttotal =
Ns∑
j=1

Nt∑
i=1

Tstageij

=
Ns∑
j=1

Nt∑
i=1

Tvideoi · Sj · Tpix · Pi (3)

Formula 3 assumes that all Nv video clips have been al-
ready loaded in memory. Without even considering any file-
downloading and processor-communication overheads, the
ideal parallelization with Np processors will be performed
in Ttotal/Np. For parallelization morphing, Np > Nt is
the condition to switch from the MVMP to SVMP paral-
lelization strategy at stage j. Even at stages before j (where
Np < Nt), we may apply not only MVMP to the top Np-
divisible number of videos, which is (Nt − Nt mod Np)
videos, but also SVMP to the rest, namely (Nt mod Np)
videos, in order to keep all processors busy.

Formula 3 can be simplified by considering the following
two restrictions: (1) we focus on only targets whose length,
(i.e., Tvideoi) is identical to that of a query by video clip,
and (2) all videos have the same Pi, (e.g., 640× 480ppf).

Ttotal = Tvideo · Tpix · P
Ns∑
j=1

Nv
∏j−1

k=0
Rk∑

i=1

Sj (4)

Therefore, initially given Nv videos with the same
Tvideo length, we should take into account only those three

Figure 4. Analyzing a 20-second video clip
through four stages

parameters of Ns, Sj , and Rj for balancing the quality of
analysis and the total analysis time. The following gives
three examples for choosing Ns, Sj , and Rj to analyze 100
videos, each with a 20-second length.

• Ns = 4, where S1 = 1/8, S2 = 1/8, S3 = 1/4
and S4 = 1/2 samples per second. As shown in Fig-
ure 4, stage 1 should take samples at 0th, 8th, and 16th

seconds; stage 2 at 4th and 12th seconds; stage 3 at
2nd, 6th, 10th, 14th, and 18th; and finally stage 4 at
1st, 3rd, 5th...19th seconds. Ri should be 1 − Si−1,
(i.e., R1 = .88, R2 = .88, and R3 = .75) so as to
avoid dropping off promising candidates. Applying
these numbers to Formula 4, the total analyzing time
is (100× 3 + 88× 2 + 75× 5 + 56× 10)Tpix · P =
1411Tpix · P .
• Ns = 2, where both S1 and S2 are 1/2 samples per

second. Then, stages 1 and 2 should take samples at
even- and odd-number seconds respectively. Ri should
be .5 for example. The total analyzing time will be
(100× 10 + 50× 10)Tpix · P = 1500Tpix · P .
• Ns = 1, where S1 = 1. Obviously, each video needs

20Tpix ·P analyzing time. Therefore, the total will be
(100× 20)Tpix · P = 2000Tpix · P

Needless to say, Np is the fourth parameter that reduces
the total execution time, while being restricted to runtime
resource availability.

3.2. Implementation of Parallel Video An-
alyzer

Regardless of sequential or parallel execution, essential
primitives for our video analysis include video downloading
and analysis, each prototyped as follows;

1. void download(string vURL, int start, int end); down-
loads a range between start and end seconds of a video
clip from vURL and stores it under the /tmp directory.

2. InputStream autonoesis(File vFile, double offset, double
samples); reads a video file from /tmp/vFile, starts an
analysis at offset seconds from its top, takes samples
per second, and returns an InputStream archive.

Given these two primitives, our implementation focuses
on the following two important strategies:

1. How to control download() and autonoesis() over
multiple processors, namely in MVMP and SVMP

2. How to repeat MVMP and SVMP over multiple ana-
lyzing stages as relaying intermediate results from one
stage after another

3.2.1 Parallelization over Multiple Processors

To maintain a downloaded video for analysis, we use a data
structure named VClip that is defined in Figure 5. The array
targets[] includes all video clips downloaded from Internet
with a keyword search. The variable query is a query by a
video clip that may be also downloaded from Internet.

1 private class VClip{
2 string vURL; // YouTube URL
3 File file; // file in /tmp
4 double score; // degree of matching query
5 }
6 private VClip query, targets[];// video clips
7 private double score[]; // degree of matching query

Figure 5. Video data

Assuming that query and targets[] have been already
filled, we focus on a certain stage that starts conduct-
ing an MVMP or SVMP analysis on the range [L..R]
of targets as well as query at offset seconds from their
beginning by sampling S frames per second. There-
fore, both MVMP and SVMP are designed as a func-
tion with the same argument list, each named mvmp()
and svmp(). In the following discussions, we also as-
sume that two data members such as rank and size have
been initialized by MPI.COMM WORLD.Rank() and
MPI.COMM WORLD.Size() upon an analyzer invocation.

1 private void mvmp(VClip query, VClip[] targets, int L,
2 int R, double offset, double S){
3 InputStream qIn=autonoesis(query.file, offset, S);
4 int start=L+(R-L+1)/size*rank;
5 int end = (rank==size-1) ? R: start+(R-L+1)/size-1;
6 for(int i=start; i<=end; i++){
7 if(!targets[i].file.canRead())
8 download(targets[i].vURL, 0, 99999);// till EOF
9 InputStream tIn=autonoesis(targets[i].file,offset,S);

10 score[i]=targets[i].score=matching(qIn, tIn);
11 }}

Figure 6. Multi-videos over multiple proces-
sors (MVMP)

In MVMP as shown in Figure 6, starting with an analysis
of a given query video (line 3), each processor (or rank)
equally divides the range [L..R] of the target videos into

1 private void svmp(VClip qry, VClip[] targets, int L,
2 int R, double offset, double S){
3 InputStream qIn=autonoesis(qry.file,offset+rank,S/size);
4 for(int i=L; i<=R; i++){
5 if(!targets[i].file.canRead())
6 download(targets[i].vURL, 0, 99999);// till EOF
7 InputStream tIn=autonoesis(targets.file[i],
8 offset+ran,S/size);
9 score[i]=target[i].score=matching(qIn, tIn);

10 }}

Figure 7. Single video over multiple proces-
sors (SVMP)

subranges, one of which is assigned to the processor, based
on its rank (lines 4-5). The processor picks up each target
from its subrange (line 6), downloads it from Internet if it
has not yet been done so (lines 7-8), analyzes its contents
(line 9), and compares the result with the query (line 10).

In SVMP, each processor changes its parallelizing strat-
egy into sharing all the videos with the other processors
and analyzing a different portion of each video. The algo-
rithm samples the whole range of each video but by every
S/size frames per second from the offset, so that all videos
are eventually analyzed by S frames per second. For this
purpose, svmp() analyzes the query file at the S/size sam-
pling rate (line 3) in Figure 7 and then picks up each of all
the videos (line 4), for which svmp() performs a file down-
loading (lines 5-6), an S/size-sampled analysis(lines 7-8),
and a comparison with the query (line 9). We can also con-
sider an alternative SVMP algorithm where each processor
downloads and samples only a 1/size range of each video
but by every S frames per second.

3.2.2 Parallelization over Multiple Stages

Figure 8 shows how to control MVMP and SVMP over mul-
tiple analyzing stages, in particular when focusing on the
four-stage example illustrated in Figure 4.

All computation starts from compute(). Initialized to -1,
variable stage increments its value to 0, 1, 2, and 3, each
used to not only indicate an analyzing stage (line 13) but
also keep track of an independent snapshot (line 27). The
compute() method first carries out a keyword search with
YouTube, stores URLs for candidate videos in target[], and
downloads a query video. (lines 10-12). Thereafter, com-
pute() repeats an analyzing stage from 0 to 3 (lines 13-
22). For each stage, if the number of targets for inspec-
tion is larger than or equals to that of all computing nodes,
namely size in the code (line 14), we apply MVMP to the
first size-divisible number of clips (lines 15-17), while ana-
lyzing the rest with SVMP (lines 20-22). If the number of
targets is less than size, we focus on SVMP only. Figure 9
describes how to allocate 100 video clips over 70 processors
and to analyze them with MVMP and SVMP throughout

1 private int stage = -1; // the current analysis
2
3 private void compute(){
4 int top = targets.length;// # of top videos to analyze
5 int Ns = 4; // # of stages
6 double[] off = {0, 4, 2, 1}; // sampling offset
7 double[] Sj={0.125, 0.125, 0.25, 0.5};// sampling interval
8 double[] Rj={0.875, 0.875, 0.75};// ratio to keep best videos
9

10 initTargets(FlvDownLoader.
11 getVideoUrlsByKeywords(args, MAX), targets);
12 download(query.vURL, 0, 99999);// download query till EOF
13 for(++stage; stage<Ns; stage++){
14 if(top / size > 0){ // mvmp for first #CPUs-divisible video clips
15 int L = 0, R = top/size*size-1;
16 mvmp(query, targets, L, R, off[stage], Sj[stage]);
17 MPI.COMM_WORLD.Alltoallv(score,0,R,...,MPI.Double);
18 }
19 if(top % size > 0){ // svmp for the remaining video clips
20 int L = top-top%size, R = top-1;
21 svmp(query, targets, L, R, off[stage], Sj[stage]);
22 MPI.COMM_WORLD.Allreduce(score, L, R,..., MPI.Sum);
23 }
24 for(int i=0; i<top; i++) target[i].score=score[i];
25 Arrays.sort(targets, 0, top - 1);
26 top *= Rj[stage];
27 ateam.takeSnapshot(stage); // check-pointing for future recovery
28 }}

Figure 8. Total design

four stages.
Of importance is how to pass intermediate results, (i.e.,

score[]). In MVMP, each processor maintains a full score[]
of its own subrange and thus needs to exchange it with all
the other processors, for which purpose we use MPI’s All-
toallV() group-messaging function (line 17). On other hand,
in SVMP, each processor maintains a partial score[] of all
over the range and therefore must sum up score[] with all
the others, using Allreduce() group-arithmetic function (line
22). After receiving the full score[] values, compute() sorts
targets[] based on their score and chooses the top Rj set of
targets for the next stage (lines 24-26).

4. Preliminary Performance

We prototyped and evaluated components to download
videos in parallel and to perform MVMP- as well as SVMP-
based analysis. For video analysis, we only sampled target
videos, thus excluding a query analysis and comparison.

4.1. Parallel Video-Downloading

Fitted to both MVMP and SVMP analyses, our video
downloader allows each processor to obtain in parallel not
only different video clips but also a different range of the
same video clip, each called parallel multi-video download-
ing and parallel single-video downloading in the following
evaluation. For the measurement, we used a 1Gbps-network
cluster of 32 Xeon machines, (24 nodes driven at 3.2GHz
and 8 nodes at 2.8GHz, each with 512MB memory).

69 68 3 2 1 0 
rank

stage 0

stage 1

stage 2

stage 3

v0 v1 v2 v3 v68 v69

v70
v99:

MVMP

SVMP

v0 v1 v2 v3 v68 v69

v70
v87:

MVMP

SVMP

v0 v1 v2 v3 v68 v69

v70
v74:

MVMP

SVMP

v55

: 
:

SVMP

v0
v1

……

Figure 9. Analyzing 100 video clips with 70
computing nodes

Figure 10 demonstrates a scalable performance of paral-
lel multi-video downloading that delivers the top 32 videos
with 7084 seconds and 265MB in total, (i.e., each with 221
seconds and 8.2MB in average) from YouTube (in response
to the keyword “solar system”) over up to 32 processors.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 32

tr
an

sf
er

 ti
m

e
(s

ec
)

CPUs

Total execution
Program execution

Figure 10. Performance of parallel multi-
video downloading

Figure 11 shows a performance of parallel single-video
downloading that distributes a 1

#processors segment of the
same video over 1 through to 32 processors. Chosen from
those 32 clips used in the above experiment, the video has
a 137-second and 9.5MB length. The results show that a

video clip with a couple of minutes is too short to download
to more than eight processors in parallel, because it incurs
too much system overhead.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32

tr
an

sf
er

 ti
m

e
(s

ec
)

CPUs

Total execution
Program execution

Figure 11. Performance of parallel single-
video downloading

4.2. Parallel Video Analysis

Due to Autonoesis’ current porting restrictions, we used
a 1Gbps-network cluster of 32 iMac machines, (each with
2.16GHz Intel Core-2 Duo and 2GB memory) for both
MVMP and SVMP analyses.

MVMP distributed 128 copies of a video clip (with
166 seconds and 6.66MB) to remote computing nodes
through AgentTeamwork’s file system. Figure 12 confirms
MVMP’s scalability when using up to 32 computing nodes.

SVMP directly downloaded a different range of a clip
(with 140 seconds and 7.1MB) at each remote node. Fig-
ure 13 shows the performance of SVMP analysis, paral-
lelizable with only up to 4 or 8 processors. This in turn
means that we must use SVMP carefully for parallelizing a
collection of small videos or a large video clip without ter-
minating AgentTeamwork for each run, which can alleviate
most system overheads.

5. Related Work

This section emphasizes the originality of our parallel
video analyzer from the viewpoints of video analysis and
parallelization.

Since a video clip is considered as a collection of inde-
pendent frames, each as even a collection of pixels, most

 0

 500

 1000

 1500

 2000

 2500

 1 2 4 8 16 32

tr
an

sf
er

 ti
m

e
(s

ec
)

CPUs

Total execution
Analysis + file transfer

MVMP Analysis

Figure 12. Performance of MVMP analysis

video retrieval, encoding, and analysis have been acceler-
ated with data parallelism. For instance, Parallel-Horus
is a multimedia programming library [4] that first scatters
video frames over cluster nodes, thereafter performs con-
tent analysis on each frame at a different node, and finally
collects the results into a single file. Even based on data
parallelism, our parallelization is distinguished by the fol-
lowing two points: (1) we download any portions of a given
video as independent data items, whereas most systems read
each frame one by one (as a stream) before partitioning
frames for parallel analysis, and (2) we dynamically change
data granularity to be analyzed from a whole video clip to
frames, (i.e. from MVMP to SVMP), while other systems
fix their granularity to frames or pixel blocks.

Morphing parallelism was discussed in [1] as
switched/mixed parallelism that has been used in many
applications including matrix factorization and discrete-
event circuit simulation. These applications generally start
with data parallelism, keep dividing or minimizing a data
block into smaller sub-blocks, each eventually worthless
to spread over multiprocessors, and thus switch to task
parallelism to assign each sub-block to a single processor.
Our morphing strategy allocates an entire video to a single
processor and subsequently over multiprocessors, which
actually transitions from task (as well as mixed) to data
parallelism in the reverse direction of switched parallelism.

6. Conclusions

We presented a parallel video analysis that morphs its
parallelism from MVMP to SVMP by repeatedly reduc-
ing the number of candidate videos while increasing the
quality of analysis. Our performance evaluation demon-

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32

tr
an

sf
er

 ti
m

e
(s

ec
)

CPUs

Total execution
SVMP Analysis

Figure 13. Performance of SVMP analysis

strated MVMP’s scalability, while asserting the careful use
of SVMP for a collection of small video clips or a large
clip. Our next plan is to finalize the implementation, and
afterward to generalize our system as a post-processor of
multimedia database search.

References

[1] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling
the benefits of mixed data and task parallelism. In Proc.
of the 7th Annual ACM Symposium on Parallel Algo-
rithms and Architecutre - SPAA’95, pages 74–83, Santa
Barbara, CA, July 1995. ACM Press.

[2] Munehiro Fukuda, Koichi Kashiwagi, and Shinya
Kobayashi. AgentTeamwork: Coordinating grid-
computing jobs with mobile agents. Int’l Journal of
Applied Intelligence, Vol.25(No.2):181–198, 2006.

[3] Anil K. Jain, Aditya Vailaya, and Xiong Wei. Query
by video clip. Journal of Multimedia Systems,
Vol.7(No.5):369–384, September 1999.

[4] Frank J. Seinstra, Jan-Mark Geusebroek, Dennis
Koelma, Cees G.M. Snoek, Marcel Worring, and
Arnold W.M. Smeulders. High-performance distributed
video content analysis with parallel-horus. IEEE Mul-
tiMedia, Vol.14(No.4):64–75, 2007.

[5] Taichi Uyeno, Shuichi Kurabayashi, and Yasushi
Kiyoki. A color-schema-based video search engine
with story query construction mechanisms. IPSJ SIG
Notes DBS-146, pages 349–354, IPSJ, Tokyo, 2008.

