
A Parallelization of Orchard Temperature Predicting Programs ∗

Elad Mazurek Munehiro Fukuda†

Computing & Software Systems

University of Washington, Bothell,

18115 NE Campus Way, Bothell, WA 98011

Abstract

Frost protection is a significant concern among tree-
fruit growers. In order to protect orchards from frost,
temperature sensor networks have gained popularity
to judge when and where to turn on wind generators
and sprinklers. Currently these sensor networks only
give growers a real-time alert, however such sensor
networks would be more effective if they were inte-
grated in a computation loop that uses past and cur-
rent temperature data for predicting every overnight
transition of orchard air temperature. Although a cou-
ple of algorithms using artificial neural network and
empirically-formulated polynomials are available to the
public, they need to be parallelized for useful on-the-fly
prediction. To utilize a cluster of multi-core computing
nodes (available through cloud services), we are devel-
oping MASS, a library for multi-agent spatial simula-
tion, and parallelizing temperature prediction programs
with MASS. This paper demonstrates the MASS li-
brary’s suitability to parallelization of temperature pre-
diction programs for on-the-fly sensor-data analysis by
(1) porting the programs to MASS, (2) running them
in a multi-core system, (3) feeding real-time sensor
data to them, and (4) measuring their analyzing per-
formance.

1 Introduction

Frost protection is a big concern among tree-fruit
growers who suffer $840 million and $2.5 billion frost
and freeze crop losses in the nation and the world re-
spectively [8]. Currently, fruit growers use the pub-
lic frost alert, their experiential knowledge, repetitive
tree observation, and temperature sensor networks (if

∗This research is being conducted with partial support from

UW Provost International Grants, Faculty-led Program
†Corresponding author. Email: mfukuda@u.washington.edu,

Phone: 1-425-352-3459, Fax: 1-425-352-5216

they can be afforded) for judging when and where to
turn on wind generators and sprinklers to protect or-
chards from frost. Ideally they want to use tempera-
ture sensor networks to predict every overnight transi-
tion of orchard air temperature, which then can pro-
vide growers with accurate information to protect their
crops. Temperature prediction can be practicalized us-
ing the following computation scenario: estimating the
temperature of sensor-uncovered areas with temper-
ature interpolation [3]; predicting the overnight tem-
perature of each area with artificial neural network [9]
or empirically-formulated polynomials [10]; and storing
sensor data in databases for future use in prediction.

The problem is that accurate and on-the-fly predic-
tion requires substantial computing power, more specif-
ically only in a short frost season, (i.e., April through
to June). Parallel computing with cloud services could
satisfy their computation needs with as many comput-
ing nodes as possible, accompanied by cloud-common
software tools such as OpenMP [7], MPI [6], and
MapReduce [2]. However in reality, there are little
temperature prediction programs that have been paral-
lelized for conducting on-the-fly real-time analysis. In
other words, most prediction-model designers are not
specialized in parallel computing.

To facilitate parallelization of temperature predic-
tion programs, we are currently developing MASS, a
library for multi-agent spatial simulation that is based
on entity-based programming [4] where an applica-
tion is viewed as a series of interaction among au-
tonomic computation entities with independent code.
These entities are dynamically mapped to threads run-
ning on a cluster of multi-core machines, and their
communication is automatically translated into inter-
process/thread communication. Therefore, model de-
signers utilizing MASS can focus on their application
development without planning on future paralleliza-
tion.

This research is to demonstrate the MASS library’s
suitability to parallelization of temperature prediction

programs for on-the-fly sensor-data analysis by (1)
porting the programs to MASS, (2) running them in
a multi-core system, (3) feeding real-time sensor data
to them, and (4) measuring their real-time analyzing
performance. The rest of the paper is structured as fol-
lows: Section 2 discusses possible parallelization strate-
gies for existing temperature-predicting programs; Sec-
tion 3 sketches a system overview for on-the-fly temper-
ature prediction with MASS; Section 4 details MASS-
based parallelization of temperature prediction; Sec-
tion 5 shows performance improvement with MASS
parallelization; and Section 6 conclude our discussions.

2 Existing Algorithms and Technolo-

gies

2.1 Temperature Prediction and Interpolation

Temperature prediction is the key to frost protec-
tion. It takes two steps: (1) hourly-based prediction
based on the past/current temperature data, and (2)
temperature interpolation, a software technique to es-
timate temperature on each divided cell of a given land
with N sampled temperature data. Due to both eco-
nomic and technical reasons, the scale of a wireless sen-
sor network installed on an orchard is generally too
limited to perfectly measure the air temperature sur-
rounding all the crops. For instance, our research col-
laborator uses 20 temperature sensors for his 120-acre
orchard. While he wants to ultimately install 10 sen-
sors per acre, bringing the total number of sensors to
1200, this is both economically and technically unfea-
sible for many farmers. Hence the motivation for tem-
perature interpolation.

Two air-temperature prediction algorithms are
available to use: one from University of California,
Davis [10] and the other from University of Georgia
respectively [9]. The former uses temperature To and
dew point Td observed at sunset as well as T2 at two
hours after the sunset; predicts the minimum tempera-
ture Tp by applying Formula 1 to the observed temper-
ature; and plots hourly predicted temperature Ti from
T2 down to Tp using Formulae 2 and 3. (Note that
these formulae are based on Fahrenheit.)

Tp = 0.494 × T0 + 0.027 × Td + 4.900 (1)

b =
√

fracTp − T2n − 2 (2)

Ti = T2 + b
√

i − 2 (3)

The latter uses an artificial neural network (ANN)
model as shown in Formulae 4 through to 8 and pre-
dicts temperature Tfuture from one to 12 hours ahead

by training ANN with seasonal parameters and weather
forecast information and thereafter applying the ANN
to the current temperature Tcurrent.

signalin = Tcurrent × weight (4)

signala =
e2.0×signalin − 1

e2.0×signal1 + 1
(5)

signalb = e
−1.0×signalin×signalin (6)

signalc = 1 − e
−1.0×signalin×signalin (7)

Tfuture =
1

1 + e−1.0×(signala+signalb+signalc)
(8)

Two representative algorithms used to interpolate
temperature are inverse distance weighting and poly-
nomial regression [3]. Inverse distance weighting com-
putes each cell’s air temperature T , based on Formula 9
where di is a distance from sensor i to this cell; ti is air
temperature sampled by sensor i; and p is normally 2.
The altitude of a sensor should be considered for more
accuracy, in which case we estimate each cell’s altitude
using the same algorithm, obtain the actual altitude,
and adjust T with the difference between estimated
and actual altitude data. Polynomial regression solves
the parameters a0, a1, ..., a10 of Formula 10 where Ti

is air temperature sampled by sensor i; (Xi, Yi) is the
coordinate or the longitude and latitude pair of sensor
i; and Zi is the altitude of sensor i. The complexity of
both algorithms is O(N2M), (where M is the number
of cells), and is thus computation intensive.

T =

N
∑

i=1

(
d
−p
i

∑N

j=1
d
−p
j

)ti (9)

Ti = a0 + a1Xi + a2Yi + a3X
2
i + a4Y

2
i + a5XiYi + a6X

3
i

+a7Y
3

i + a8X
2
i Yi + a9XiY

2
i + a10Zi (10)

2.2 Parallelization Techniques

The series of temperature prediction and interpola-
tion discussed above is so computation intensive that it
needs parallelization when performing on-the-fly anal-
ysis using real-time sensor data. The parallelization of
these algorithms is based on data parallelism in that
an orchard is divided in sub-spaces small enough for a
grower to accurately identify a space facing frost dan-
ger and to start wind generators or sprinklers there.

Typical parallelization tools available in cloud ser-
vices include OpenMP [7], MPI [6], and MapRe-
duce [2]. OpenMP is a shared-memory-based compiler-
assisted parallelization to incrementally tune up these

temperature-analyzing programs but cannot be ex-
tended to distributed-memory cluster systems. There-
fore, for more CPU scalability, it is a natural transition
to use hybrid parallelization with OpenMP and MPI,
where each MPI rank takes a collection of several or-
chard sub-spaces, each assigned to a different OpenMP
thread within the same rank. Programmability is the
main concern of this approach. For instance, we need
to restrict only one thread in each process to call MPI
functions while overlapping MPI communication and
computation with multiple threads for better perfor-
mance, which brings more complexity to such hybrid
programs. MapReduce gives efficient task parallelism
only if each sub-space can be thoroughly processed by
an independent pair of mapper and reducer functions.
Needless to say, it is not fitted for data parallelism
where neighboring sub-spaces of a given orchard need
to exchange their data during computation.

To address the difficulty of writing sensor-data anal-
ysis programs based on data parallelism, we are devel-
oping MASS: a library for multi-agent spatial simula-
tion. It facilitates entity-based programming by allow-
ing an application to be viewed as repetitive interaction
among computation entities, each describing indepen-
dent behavior in its own code, eliminating the need of
for-loops to scan all entities. Places and Agents are keys
to the MASS library. Places is a multi-dimensional ar-
ray of elements that are dynamically allocated over a
cluster of multi-core computing nodes. Each element
is called a place, and is pointed to by a set of network-
independent array indices. Each place is also capa-
ble of exchanging information with any other places.
Agents are a set of execution instances that can re-
side on a place, migrate to any other places with array
indices (thus as duplicating themselves), and interact
with other agents as well as multiple places.

Temperature prediction can be then parallelized as
a MASS application that instantiates a Place object to
model an orchard and to maintain temperature for each
cell. We can also introduce to this MASS application
the effect of air flow or wind that behaves as a collection
of agents. In the following two sections, we give further
details of this parallelization work.

3 System Overview

Figure 1 illustrates an overview of the orchard
temperature-prediction system that we are currently
developing in collaboration with AgComm [1] and Val-
halla Wireless [11].

Temperature sensor networks are formed with
900MHz long-distance radio devices that work as mas-
ters, routers, and slaves [11], all capable of monitoring

orchard air temperature. To extend the coverage of
monitored areas and stay within budget, we are also
planning to use 4.2GHz ZigBee radio devices [1] that
are cheaper but limited to short-distance communica-
tion, thus functioning only as slaves in need of packet
relay via 900MHz router devices to the master node.

We assume that the master node is connected to
the Internet for delivering sensor data to temperature-
analyzing applications running remotely in clouds. In
general, a sensor device transmits its data in UDP
packets. However, it is a big burden for application
developers to directly manipulate raw UDP packets.
To mitigate this burden, we have developed the Con-
nector tool kit that facilitates uniform and elastic data
channels from sensors to cloud applications, from the
applications to mobile users, and between the appli-
cations and remote data storages [5]. With Connec-
tor the master node of each sensor network can be-
have as a TCP server (termed a sensor server), so that
temperature-analyzing jobs are blocked until new data
is made available.

Our temperature analyzing program consists of the
following three components:

1. Artificial Neural Network: trains itself with
past temperature data downloaded from remote
data bases, and thereafter keeps reading real-time
sensor data to predict the transition of orchard air
temperature for the next three or four hours.

2. Prediction Polynomials: reads temperature
data sampled everyday at two hours after the sun-
set, and calculates the overnight temperature tran-
sition till the time when the predicted temperature
goes down to the lowest degree.

3. Inverse Distance Weighting: receives results
of per-minute temperature prediction from both
the Artificial Neural Network and Prediction Poly-
nomials components. It then interpolates the re-
sults to create temperature maps in a per-minute
chronological order.

These components use the Connector.Graphics class
that provides them with an interface identical to the
Java standard but that internally generates JPEG files
instead of bitmap images, which will be then sent to a
mobile user or a given web server.

Mobile users can use the following two options to
check graphical results:

1. Connector GUI: launches a graphical menu on
remote desktop/laptop computers and allows users
to receive JPEG files directly from temperature
analyzing programs as well as to control these pro-
grams and remote sensor servers.

Figure 1. A system structure for orchard tem-
perature prediction

2. Web Server: facilitates Connector GUI in the
web server, and thus allows users to get access to
the remote programs and sensor servers through
their mobile devices.

In the next section, we will explain our paralleliza-
tion strategies for ANN, prediction polynomials, and
temperature interpolation.

4 Parallelization

4.1 MASS Library

We define the behavior of an orchard cell and wind
flow by extending the Place and Agent base classes re-
spectively, and then populate them through the Places
and Agents classes. Actual temperature analysis is per-
formed by the following methods.

Places Class

• public Places(int handle, String Orchard,
Object files, int nFiles) instantiates a shared
array of nFiles elements from the Orchard class
as passing files to the Orchard constructor, where
each file corresponds to a different sensor.

• public Object[] callAll(String predict) calls
the predict() method of all Orchard elements, each
corresponding to a different sensor and returning a
set of predicted temperature. Calls are performed
in parallel among multi-processes/threads.

• public void exchangeAll(int handle, String
exchangeTemp, Vector<int[]> neighbors)

calls from each of all Orchard elements to the ex-
changeTemp() of all its neighbors, each indexed
with a different Vector element. Each vector ele-
ment, say neighbor[] is an array of integers where
neighbor[i] includes a relative index (or a distance)
on the coordinate i from the current caller to the
callee element. The caller passes its outMessage[]
data member to the callee as a set of arguments,
and receives return values in its inMessage[].

Agents Class

• public Agents(int handle, String Windflow,
Object files, Places Orchard) instantiates a
set of Windflow agents, passes files to their con-
structor, associates them with the Orchard ma-
trix, and distributes them over these places, based
on the map() method that is defined within the
Windflow class.

• public void manageAll() updates each Wind-
flow agent’s status, based on its latest calls of mi-
grate(), spawn(), kill(), sleep(), wakeup(), and
wakeupAll(). These methods are defined in the
Agent base class and will be invoked from other
functions through callAll() and exchangeAll().

At present, we only focus on temperature (but not
on wind flow) and therefore use the MASS.Places only
in our temperature-analyzing programs.

4.2 Artificial Neural Network

The Artificial Neural Network algorithm as designed
for temperature prediction uses historical temperature
data to train itself and set the appropriate calculation
weights to be used for future predictions. This learning
period requires that the application process tempera-
ture data for the last three months or the same month
of the last three years. The weights must be calibrated
in order to make accurate predictions in real-time.

The historical data used for our purposes was pro-
duced by different sensors and as such exists as sepa-
rate files for each sensor. Sequential processing of the
data within the ANN application is very time consum-
ing and inefficient. To minimize execution time and
optimize performance, the processing of each file is de-
signed to occur in parallel using MASS. The MASS
process is instantiated to form a grid of ANN places,
supporting a one-to-one ratio of a data file to a place.
Each sensor’s data file is given a unique ID and cor-
responds to the index of the MASS place that is re-
sponsible for using it. When the MASS threads are
launched via MASS.callAll(), each place then proceeds
to set its prediction engine weights in accordance with

Formulae 4 - 8, and the collective results are integrated
upon exit.

After the digestion process the ANN application is
ready to make predictions for sensor data obtained in
real-time.

4.3 Prediction Polynomials

To obtain more accurate prediction results, a poly-
nomial air temperature prediction algorithm is used
to sample temperature two hours after each sunset.
The program uses output files provided from temper-
ature sensors through Connector data channels. This
information is used to predict the temperature of ev-
ery point in the area from two hours after sunset until
sunrise in ten minute increments.

Similarly to the ANN parallelization technique,
MASS is utilized to parallelize the execution of the pro-
gram by creating a grid of polynomial prediction places,
one for each sensor, allowing for prediction calculations
for all sensor data to be made concurrently. Each in-
put file is also given a unique ID to correspond to the
index of the MASS place responsible for its processing.
When the MASS service is launched via MASS.callAll()
each place uses the polynomial prediction algorithm to
calculate its given area temperature in ten minute in-
tervals. Once integrated, the results are depicted in the
form of a temperature graph that depicts the change
in temperature as a function of time from sunset un-
til sunrise. For real time processing, the results ob-
tained are used to cross check the ANN results for any
outliers, as well as make predictions for temperature
changes three hours past sunset to sunrise.

4.4 Inverse Distance Weighting

Inverse Distance Weighting (IDW) is used to inter-
polate current and predicted temperature data and to
create a temperature map every time interval, (e.g. 10
minutes in our implementation). We first mesh a given
orchard in latitude and longitude precisely enough to
have each cell cover all orchard sub-spaces that the
crop grower wants to observe. For each time interval,
We apply Formula 9 to each cell and thereafter adjust
its temperature using its altitude information.

To code IDW with MASS, we instantiate a Places
object to represent a meshed orchard where each array
element corresponds to a meshed orchard cell. For-
mula 9 indicates that each cell needs all sensor data
for estimating its temperature for an every time inter-
val. MASS can achieve this data distribution by simply
invoking callAll(interpolate, sensor data) that passes
sensor data to the interpolate function of all cells. This

function call then starts multiple processes and threads
to interpolate each cell’s temperature in parallel.

4.5 Output Modeling

The ANN prediction algorithm was shown to have
a low margin of error for predictions made only up
to 3 hours from sundown. Prediction outliers to and
after that point are offset by values calculated by the
polynomial prediction algorithm, as they proved to be
more in sync with actual results gathered three hours
past sunset to sunrise.

Once integrated, the results are depicted in the form
of a graph showing temperature changes as a function
of 10 minute time increments from sunset to sunrise.

Figure 2. Output modeling

5 Performance Evaluation

5.1 Artificial Neural Network

Application performance was measured on a Dell
Precision T5500, running 4 CPUs, each with two cores
and two hardware threads, thus allowing for up to 16
threads to execute concurrently. Tests were ran to
measure scalability improvements of up to 8 concur-
rent MASS executions. Measurements are in Millisec-
onds and show total processing time for each num-
ber of data files along with number of CPU cores
utilized. Parallelism was observed to improve per-
formance by 63% when processing 8 files, utilizing 4
MASS threads. Due to the hardware configuration
of the test computer, MASS thread counts over 4 in-
duced performance degradation, as they perpetuated
increased L1/L2 cache misses.

Figure 3. Parallel execution of artificial neural
network

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1�file 2�files 4�files 8�files

1�thread�

2�threads

4�threads

8�threads

Figure 4. Parallel execution of prediction poly-
nomials

5.2 Prediction Polynomials

Performance testing for the Prediction Polynomial
algorithm was done under the same environment con-
ditions as previously mentioned for the Artificial Neu-
ral Network. Measurements are in Milliseconds and
show total processing time for each number of temper-
ature data files along with number of CPU cores uti-
lized. For performance evaluation, we prepared and
processed files that contained interpolated tempera-
ture data instead of receiving the data directly from
the sensors. Parallelism was observed to improve per-
formance by 55% when processing 8 files, utilizing 4
MASS threads. As mentioned in the previous section,
performance degradation was also experienced when
utilizing more than 4 MASS threads.

6 Conclusions

This paper described how sensor networks and
cloud-computing services can be integrated to pre-
dict orchard air temperature for frost-protection pur-
poses. To make available on-the-fly temperature pre-
diction, we are developing the MASS library for multi-
agent spatial simulation, parallelized with MASS two
temperature-predicting programs: artificial neural net-
work and prediction polynomials. MASS demonstrated
competitive parallelization with multiple cores in the
same computing node, (up to four in our current ex-
periment). Our next plan is to scale up the computa-
tion of these temperature predicting programs over a
cluster of multi-core nodes, to parallelize temperature
interpolation based on inverse distance weighting, and
to develop all the GUI components.

References

[1] AgComm. http://agcomm.net/.
[2] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In Proc. of the
6th Symposium on Operating System Design and Im-
plementation - OSDI’4, pages 137–150, San Francisco,
CA, December 2004. Publisher.

[3] Fred C. Collins Jr. A Comparison of Spatial In-
terpolation Techniques in Temperature Estimation.
In Third International Conference/Workshop on In-
tegrating GIS and Environmental Modeling, pages in
CD–ROM, Santa Fe, NM, January 1996. NCGIA.

[4] V. Grimm and S. F. Railsback. Individual-based Mod-
eling and Ecology. Princeton Univesity Press, Prince-
ton, NJ, 2005.

[5] J. Melchor and M. Fukuda. A design of flexible data
channels for sensor-cloud integration. In Proc. 21st
International Conference on System Engineering - IC-
SEng 2011, page to appeaer, Las Vegas, NV, August
2011.

[6] Message Passing Interface (MPI) Standard.
http://www.mcs.anl.gov/research/projects/mpi/.

[7] OpenMP Specifications.
http://www.openmp.org/mp-documents/spec30.pdf.

[8] A. P. C. Services. Market applica-
tions frost & freeze protection. Web page,
http://www.agroshield.com/market-
applications.html, 2007.

[9] B. A. Smith, G. Hoogenboom, and R. W. McClendon.
Artificial neural networks for automated year-round
temperature prediction. Computers and Electronics
in Agriculture, Vol.68(Issue.1):52–61, August 2009.

[10] UC Davis Biometeorology Program - Frost Protection.
http://biomet.ucdavis.edu/frost-protection.html.

[11] Valhalla Wireless. http://valhalla-wireless.com/vwr/.

