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Abstract

The emergent popularity of wireless sensor networks
and cloud-computing services brings us new opportu-
nities of integrating them for performing on-the-fly
sensor-data analysis with as many computing resources
as needed. Yet, users are required to integrate sen-
sor networks and cloud services manually, and even
to redesign their data-analyzing software for its paral-
lelization. To alleviate these problems, we are devel-
oping an agent-based workbench that consists of three
independent but interlinked software tools: (1) the
AgentTeamwork-Lite job coordinator, (2) the MASS
middleware library, and (3) the Connector elastic data
channel. AgentTeamwork-Lite has each computing
node exchange resource information with neighbors,
and deploys a job with a mobile agent that searches for
idle nodes. MASS allows programmers to view their ap-
plications as a series of interaction among autonomic
computation entities that are dynamically mapped to
a cluster of multi-core machines. Connector separates
descriptions of network address, communication pro-
tocol, and data-sampling conditions from applications.
It automatically streams and hands off sensor data to
migrating jobs. This paper presents an overview of our
workbench and its applicability to orchard business.

1 Introduction

The emergent popularity of wireless sensor networks
and cloud services have brought us new opportunities
of on-the-fly sensor-data analysis in the cloud. For in-
stance, consider orchard business. Frost protection is
a big concern among tree-fruit growers. Temperature
sensor networks are vital to observe every overnight
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transition of orchard air temperature, which then can
provide growers with accurate information to protect
their crops. Temperature prediction can be practical-
ized using the following computation scenario: esti-
mating the temperature of sensor-uncovered areas with
temperature interpolation [4]; predicting the overnight
temperature of each area with artificial neural net-
work [8] or empirically-formulated polynomials [9]; and
storing sensor data in databases for future use in pre-
diction. However, the problem is that accurate and
on-the-fly prediction requires substantial computing re-
sources.

Cloud computing could facilitate the above compu-
tation scenario. For instance, Amazon offers various
cloud services: the EC2 cloud compute service to run
the prediction programs, OpenMP as well as Open MPI
to parallelize the programs for on-the-fly computation,
and the S3 storage service to record sensor data. How-
ever, users will quickly encounter the following prob-
lems: where and how frequently their temperature pre-
diction program should run from an economical view-
point; how sensor data can be automatically forwarded
to their program; and how the program can be paral-
lelized to run at real-time speed. In reality, few users
have such advanced skills that they can integrate their
sensor networks and cloud services into a temperature
prediction system.

Our main goal is to alleviate these hurdles and glue
individual cloud services together with an agent-based
workbench that consists of three independent but inter-
linked software tools: (1) the AgentTeamwork-Lite job
coordinator, (2) the MASS middleware library, and (3)
the Connector elastic data channel. AgentTeamwork-
Lite has each computing node exchange resource infor-
mation with neighbors repeatedly to construct a global
computing resource potential field, and deploys a job
with mobile agent that rolls down a steep slope of the
potential field to launch a job at the best node. MASS
facilitates entity-based programming in that an appli-



cation is viewed as a series of interaction among au-
tonomic computation entities with independent code.
These entities are dynamically mapped to threads run-
ning on a cluster of multi-core machines, and their
communication is automatically translated into inter-
process/thread communication. Connector separates
descriptions of network address, communication pro-
tocol, and data-sampling conditions from applications.
It automatically streams and hands off sensor data to
migrating jobs. This paper presents an overview of our
workbench and its applicability to orchard business.

2 Issues

A typical platform for realizing on-the-fly sensor-
data analysis includes: (1) inputs from wireless sen-
sor networks, sensor Web portals, and GIS websites;
(2) computing facilities such as a commercial compute
cloud or a business/academic partner’s cluster; and
(3) outputs presented onto a user-local graphics sys-
tem and/or saved into local/remote file servers. On
top of this platform, users would have to build their
own system for sensor-data analysis, by choosing grid
and cloud services that provide: (1) job coordination
to deploy a job to appropriate computing nodes, (2)
job parallelization to run a job in parallel for real-time
analysis, and (3) data delivery to provide a job with
sensor data in a speedy and fault-tolerant manner.

Job coordination: OpenPBS and Condor [2] are job
deployment (and migration) tools, widely available for
clusters and compute clouds such as Amazon EC2.
While they are optimized to schedule whole computing
nodes, it requires users to identify remote computing
resources a priori. In particular for a parallel job exe-
cution, users may still need to specify resource require-
ments in configuration files. However, unsophisticated
users need autonomic job deployment and migration
where they are not required to identify remote com-
puting resources or specify resource requirements.

Job parallelization: Sensor-data analysis is in most
cases computation intensive, and coded in a model-
based simulation [3] that uses formula-based, spatial,
and/or multi-agent models. For real-time analysis, it
should be parallelized with MPI, multi-threading, or
parallel simulators. However, most model designers
will experience a steep learning curve of the parallel-
computing concepts.

Data delivery: High-speed and fault-tolerant data
deliveries are facilitated with grid-computing technolo-
gies such as GridFTP [6]. Furthermore, the pub-
lisher/subscriber model has been proposed for sensor-
cloud research [7] to inform data-analyzing programs

of changes in sensor data. However, unless sensor data
gets prepared as local files, applications need to be
hard-coded with URLs, (i.e., underlying communica-
tion protocols and IP addresses) to retrieve sensor data.
Moreover, a sensor-side publisher must detect changes
in sensor data, maintain a table of subscribers, and
hand off data to subscribers that may be nomadic over
the Internet.

In summary, users still need to perform time con-
suming and knowledge intensive manual operations to
orchestrate these services. This is our motivation to de-
velop an agent-based workbench for on-the-fly sensor-
data analysis.

3 System Design

This section explains our Java-based specifi-
cation and design of the software components:
AgentTeamwork-Lite, MASS, and Connector.

3.1 AgentTeamwork-Lite Job Coordinator

AgentTeamwork-Lite use the following two
autonomic-computing approaches: (1) bottom-up
self-organizing resource management: each computing
node exchanges its resource information with the
neighboring nodes periodically to maintain a partial
view of a global computing-resource potential field
that is virtually and dynamically built over all the
nodes; and (2) top-down self-adapting job execution: a
user job is submitted with a mobile agent that spawns
child agents rolling down on a steep slope of the
computing-resource potential field where the nearest
hole corresponds to the best computing resources
physically nearby the user. As illustrated in Figure 1,
AgentTeamwork-Lite consists of six execution layers.
Layers 1 - 3 are involved in bottom-up self-organizing
resource management, whereas layers 4 - 6 are in
charge of top-down self-adapting job execution.

1. Layer 1: UDP-broadcast space: The lowest
layer is a TCP-link-assisted inter-segment UDP-
broadcast space. Since UDP broadcast is limited
to within a single segment, additional administra-
tive support, such as IGMP, is necessary to al-
low broadcasting across multiple segments. Our
design facilitates application-level inter-segment
UDP broadcast by establishing a secured TCP link
between representative nodes of each segment and
allowing relaying of intra-segment UDP-broadcast
messages among the segments.

2. Layer 2: UWAgents: The second layer is the
UWAgents mobile-agent execution platform [5]. A



separate daemon process runs at each node ex-
changing agents with other nodes and running
their code.

3. Layer 3: Computing-resource potential

field: The third layer consists of Potential-Field
Agents (PFAgents). Launched at each node, a
PFAgent periodically measures the latest perfor-
mance of its local computing resources including
CPU power, memory space, disk size, network
bandwidth, and their current availability. All of
this information is recorded in each PFAgent’s in-
ternal resource table and is broadcast in a UDP
message within the local network segment and re-
layed to remote segments. Each PFAgent uses this
information to guide a user process to the best
nodes.

4. Layer 4: Commander and sentinel agents:

The fourth layer is the commander and sentinel
agents. The commander agent is launched with
a user program, arguments, and resource require-
ment. It spawns the sentinel agent that repeats
querying the local PFAgent for a site to run its
job and actually migrating to that site. Once the
agent realizes that the current and its neighbor-
ing nodes satisfy the user request, it generates an
application-dependent configuration file (such as
an MPI host file or a MASS configuration file) and
starts a user job. During the job execution, the
sentinel agent is responsible for periodically con-
tacting the local PFAgent for resource-monitoring
purposes and migrating the job to a less-loaded
site if necessary.

5. Layer 5: Middleware Libraries: The fifth
layer corresponds to middleware libraries such as
MPI, OpenMP, and MASS for running a user ap-
plication in parallel. As far as the sentinel agent
supports their configuration file (e.g., an MPI host
file), there is no need to change the libraries.

6. Layer 6: Applications: The sixth layer is where
sensor-data analyzing programs run.

The key is interaction between a sentinel and a
PFAgent. Each PFAgent i periodically receives re-
source information with its N neighbors and computes
its cpu ranki, mem free ranki, mem load ranki, and
net bandwidth ranki as its occupancy in the entire N

summation of each performance measure. As shown
in Formula 1, the comprehensive ranki is calculated
as a sum of each measure weighted with its prede-
fined priority. To move a job from the current to a
next computing node, a sentinel agent uses Formula 2
where hop overhead needs to be empirically obtained
and job size may be fixed to some jobs such as tem-
perature analysis.

Figure 1. System layers

ranki = cpu ranki × w1 + mem free ranki × w2

+ mem load ranki × w3

+ net bandwidth ranki × w4 (1)

job size ≥ hop overhead + job size ×
rankcurrent

ranknext

(2)

3.2 MASS Library for Multi-Agent Spatial Sim-
ulation

The MASS library (layer 5 in Figure 1) facilitates
entity-based programming by allowing an application
to be viewed as repetitive interaction among compu-
tation entities, each describing independent behavior
in its own code, eliminating the need in for-loops to
scan all entities. As a result, the library enables the
following two features: (1) no awareness of processes,
threads, and their communication: the library takes
care of entity-to-process/thread mapping and thus au-
tomatically transforms inter-entity communication into
underlying inter-process/thread communication; and
(2) dynamic load balancing: since there is no more need
to index entities in for-loops, entities are freely dis-
tributed and reallocated to any computing nodes and
CPU cores.

3.2.1 Execution model

Places and Agents are keys to the MASS library. Places
is a multi-dimensional array of elements that are dy-
namically allocated over a cluster of multi-core com-
puting nodes. Each element is called a place, is pointed
to by a set of network-independent array indices, and
is capable of exchanging information with any other



Figure 2. Parallel execution with MASS library

places. Agents are a set of execution instances that can
reside on a place, migrate to any other places with array
indices (thus as duplicating themselves), and interact
with other agents and places.

As shown in Figure 2, parallelization with the MASS
library uses a set of multi-threaded communicating pro-
cesses that are forked over a cluster and are connected
to each other through ssh-tunneled TCP links. The
library spawns the same number of threads as that of
CPU cores per node. Those threads take charge of
method call and information exchange among places
and agents in parallel. Places are mapped to threads,
whereas agents are mapped to processes. Unless a pro-
grammer indicates his/her place-allocation algorithm,
the MASS library partitions places into smaller stripes
in vertical, each of which is statically allocated to and
executed by a different thread (static scheduling). Con-
trary to places, agents are allocated to a different pro-
cess, based on their proximity to the places that this
process maintains, and are dynamically executed by
multiple threads belonging to the process (dynamic
scheduling).

3.2.2 Programming Style

A user designs a behavior of a place and an agent
by extending the Place and Agent base classes respec-
tively. S/he can populate them through the Places and
Agents classes. Actual computation is performed be-
tween MASS.init( ) and MASS.finish( ), using the fol-
lowing methods.

Places Class

• public Places( int handle, [String primi-
tive,] className, Object argument, int size
) instantiates a distributed array with size from
className or a primitive data type as passing an
argument to the constructor.

• public Object[] callAll( String function-
Name, Object[] arguments ) calls the method
specified with functionName of all array elements
in parallel as passing arguments[i] to element[i],
and receives a return value from it into Object[i].

• public Object[] callSome( String function-
Name, Object[] argument, int... index )
calls a given method of one ore more selected array
elements in parallel. If index[i] is a non-negative
number, it indexes a particular element, a row, or
a column. If index[i] is a negative number, say −x,
it indexes every x element.

• public void exchangeAll( int handle, String
functionName, Vector<int[]> destinations)
calls from each of all elements to a given method of
all destination elements, each indexed with a dif-
ferent Vector element. Each vector element, say
destination[] is an array of integers where desti-
nation[i] includes a relative index (or a distance)
on the coordinate i from the current caller to the
callee element. The caller passes its outMessage[]
data member to the callee as a set of arguments,
and receives return values in its inMessage[].

• public void exchangeSome( int handle,
String functionName, Vector<int[]> desti-
nations, int... index) calls from each of the
elements indexed with index[]. The rest of the
specification is the same as exchangeAll( ).

Agents Class

• public Agents( int handle, String class-
Name, Object argument, Places places, int
population ) instantiates a set of agents from
className, passes the argument to their construc-
tor, associates them with a given Places matrix,
and distributes them over these places, based on
the map( ) method that is defined within Agent.

• public void manageAll( ) updates each agent’s
status, based on its latest calls of migrate( ),
spawn( ), kill( ), sleep( ), wakeup( ), and wake-
upAll( ). These methods are defined in the Agent
class and invoked from other functions through
callAll( ) and exchangeAll( ).

Figure 3 shows a simple temperature prediction pro-
gram that creates a virtual space of a meshed orchard
(line 8); sets communication destinations (lines 11-25);



and performs a cyclic analysis (line 18-20). In each sim-
ulation cycle, each orchard cell exchanges local temper-
ature with its neighbors (line 19) and updates its own
temperature (line 20).

1 import MASS.*;
2 import java.util.Vector;
3
4 public class TemperatureAnalysis {
5 public static void main(String[] args) {
6 int size = 100, maxTime = 1000;
7 MASS.init(args);
8 Places ochard=new Places(1, "Orchard", null, size, size);
9

10 // define the four neighbors of each cell
11 Vector<int[]> neighbors = new Vector<int[]>( );
12 int[] north = {0, -1}; neighbors.add(north);
13 int[] east = {1, 0}; neighbors.add(east );
14 int[] south = {0, 1}; neighbors.add(south);
15 int[] west = {-1, 0}; neighbors.add(west );
16
17 now go into a cyclic simulation
18 for (int time = 0; time < maxTime; time++) {
19 streets.exchangeAll(1,Ochard.exchange,neighbors);
20 streets.callAll(Orchard.update);
21 }
22 MASS.finish( );
23 } }

Figure 3. User code using MASS library

3.3 Connector: Data Channels Redirectable to
Remote Sensors, Files, and X servers

As shown in Figure 4, Connector makes it possi-
ble for a nomadic user program to exchange data with
remote sensors, file servers, and a user console as if
it operated onto local files, the standard input/output,
and the local X server. It consists of three components:
(1) Connector-API: a program-side I/O and graphics
package, (2) Connector-GUI: a user-side GUI, and (3)
Sensor Server: a sensor-side sensor publisher.

Connector-API allows a remote user program to be-
have as various protocol clients (including FTP, HTTP,
and X windows) to access remote data through the ma-
jor Java classes such as FileInputStream, FileOutput-
Stream, Frame, and Graphics. File-to-URL mapping
is no longer hard-coded in a user program but is rather
specified in a file map, using a quadratic notation of:
(name, URL[, interval, extract]), where each parame-
ter represents (1) a file name used in a user program,
(2) the corresponding URL including a user account
and password, (3) a repetitive access to a given Web
site every interval seconds, and (4) only text data ex-
tracted from the Web. Figure 5 shows an example of
file-to-URL mapping. The three files: sensor1, file2.txt,
and file3.txt, all named in a user program, are respec-
tively retrieved from the corresponding sensor, FTP,
and HTTP servers. In particular, file3.txt provides the

Figure 4. Elastic stream-oriented channels

user program with data items that are repeatedly read
from the same website every 5 seconds.

sensor1 sftp://account:password@hercules.uwb.edu/sensor1
file2.txt ftp://account:password@ftp.tripod.com/temperature.txt
file3.txt http://www.weather.com/today/Bohell+WA+98011 5 extract

Figure 5. File-to-URL mapping in Connector

Figure 6 is an example user program that takes the
file map shown in Figure 5. It first starts a Con-
nector daemon thread (line 6). While the user pro-
gram writes to the standard output, reads sensor1,
and writes file2 locally, in background the daemon for-
wards “Recording...” to a remote user’s console (line
7), connects to hercules.uwb.edu/sensor1 (line 8), con-
tacts with ftp.tripod.com as an FTP client (line 10), and
transfers data from the sensor to the ftp server (lines
12-13). The Connector daemon is capable of behaving
as an FTP, HTTP, and X client.

1 import Connector.*;
2 import java.util.Scanner;
3
4 public class TemperatureRecording {
5 public static void main( String[] args ) {
6 Connector System = new Connector("file.map");
7 System.out("Recording...");
8 FileInputStream in=new FileInputStream("sensor1");
9 Scanner input=new Scanner(in);

10 FileOutputStream out=new FileOutputStream("file2");
11 DataOutputStream output=new DataOutputStream(out);
12 while(input.hasNextLine( ))
13 output.writeUTF(input.nextLine( ));
14 System.close( );
15 } }

Figure 6. Code using Connector-API

Connector GUI runs on a user-local machine to fa-
cilitate GUI by forwarding keyboard/mouse inputs to



and by receiving monitor outputs from a remote user
program. It is also capable of transferring files be-
tween user-local disks and each user program. To pro-
vide these features, the GUI runs as a TCP server to
keep track of a nomadic user program by accepting its
connection request upon a migration; scrutinizes each
message for its data delivery; and works as an X proxy
client.

Sensor server runs on a sensor-network sink node in
charge of (1) managing all its sensor devices, (2) behav-
ing as an FTP server to make all sensor devices acces-
sible as files from applications, (3) detecting changes
in sampled data, and (4) handing off active connec-
tions to nomadic jobs. For these purposes, as shown in
Figure 7, it receives commands to add, delete, change,
and detect a sensor’s IP address, file name, and data-
sampling conditions, all from the Connector GUI or its
configuration file

add 192.168.15.21 sensor1

add 192.168.15.22 sensor2

detect sensor2 <= 33.6 absolute

Figure 7. Sensor-to-File mapping in Sensor
Server

4 Application to Orchard Business

Temperature prediction is the key to frost protec-
tion. It takes two steps: (1) temperature interpolation
and (2) hourly-based prediction.

Temperature interpolation is a software technique
to estimate temperature on each divided cell of a given
land with N sampled temperature data. This is im-
portant, because the scale of a wireless sensor network
installed on an orchard is generally too limited to per-
fectly measure the air temperature surrounding all the
crops. We use inverse distance weighting [4] that com-
putes each cell’s air temperature T , based on Formula 3
where di is a distance from sensor i to this cell; ti is air
temperature sampled by sensor i; and p is normally 2.
The altitude should be considered for more accuracy,
in which case we estimate each cell’s altitude using the
same algorithm, obtain the actual altitude, and adjust
T with the difference between estimated and actual al-
titude data.

T =

N∑

i=1

(
d
−p

i∑N

j=1
d
−p

j

)ti (3)

Two air-temperature prediction algorithms are
available to use from University of California, Davis

(a) Interpolation (b) Prediction

Figure 8. Temperature analysis

and University of Georgia respectively [9, 8]. The for-
mer uses temperature data Ti observed at two hours
after sunset, predicts the minimum temperature Tp by
applying the UC Davis-developed polynomial to the
observed temperature, and plots hourly predicted tem-
perature from Ti down to Tp using another polyno-
mial [9]. The latter uses an artificial neural network
(ANN) model and predicts temperature from one to
12 hours ahead by training ANN with seasonal param-
eters and weather forecast information [8].

This series of temperature interpolation and predic-
tion can be parallelized as a MASS application that
instantiates a Place object to model an orchard and to
maintain temperature for each cell as shown in Fig-
ure 3. Connector’s sensor server runs on the sink
node of a wireless sensor network to filter and to send
sensor data to the MASS program. The Connector
daemon thread receives and pumps temperature data
to the MASS program as well as accumulates sam-
pled/predicted temperature into a file server. The
Connector GUI presents to the corresponding grower’s
notebook a temperature map and a prediction graph
as shown in Figures 8-(a) and 8-(b).

5 Conclusions

This paper focused on integrating wireless sensor
networks into grid and cloud computing systems, and
presented our agent-based workbench running on top
of these computing systems for on-the-fly sensor-data
analysis, particularly orchard temperature prediction.
Our next step is to complete our development and to
deploy the system to our business partners [1, 10].
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