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Abstract

Integrating sensor networks in cloud computing gives
new opportunities of using as many cloud-compute
nodes as necessary to analyze real-time sensor data on
the fly. However, most cloud services for parallelization
such as OpenMP, MPI, and MapReduce are not always
fitted to on-the-fly sensor-data analyses that are im-
plemented as model-based entity-based, and multi-agent
simulations. To address this semantic gap between an-
alyzing algorithms and their actual implementations,
we are developing MASS: a library for multi-agent spa-
tial simulation that composes a user application of dis-
tributed array elements and multi-agents, each repre-
senting an individual simulation place or an active en-
tity. All computation is enclosed in each of elements
and agents that are automatically distributed over dif-
ferent computing nodes. Their communication is then
scheduled as periodical data exchanges among those en-
tities using their logical indices. We are currently im-
plementing a multi-process and a multi-threaded ver-
sion of the MASS library, both to be combined in a
single version in the near future. This paper focuses
on an implementation and preliminary performance of
the multi-process version.

1 Introduction

The emergent dissemination of wireless sensor net-
works and the recent popularity of could computing
have brought new opportunities of sensor-cloud inte-
gration [4] that will facilitate on-the-fly analysis, sim-
ulation, and prediction of physical and environmental
conditions by feeding real-time sensor data to cloud
jobs. For instance in agriculture, frost protection need
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to predict the overnight transition of orchard air tem-
perature, which can be done by sending temperature
data to prediction polynomials [10] and artificial neu-
ral network [9] running in the cloud. Another example
is accurate car navigation that finds the best route to
drive through a busy metropolitan area by feeding the
current traffic data to traffic simulation models such
as [6].

For on-the-fly analysis, these simulation models need
to be accelerated with cloud/grid-provided common
parallelization tools such as OpenMP, MPI, a hybrid
of these two libraries, and MapReduce, all generally
suited well to simple task parallelism. However, of con-
cern is a big semantic gap between sensor-data analyz-
ing models and these software tools. Most model-based
simulations [1] apply formula-based, spatial, and/or
multi-agent models to sensor data, where model de-
signers would prefer to code their algorithms as focus-
ing on each individual simulation entity [3]. Therefore,
the designers feel difficulty in mapping their algorithms
to the underlying parallelization tools.

Our research goal is to reduce this semantic gap by
providing users with MASS, a new parallelization li-
brary for multi-agent and spatial simulation that facil-
itates: (1) individual-centered programming of multi-
agents and simulation spaces, each automatically par-
allelized over the underlying platforms and (2) utiliza-
tion of a SMP cluster, (i.e. composed of a collection of
communicating multithreaded processes). MASS com-
poses a user application of distributed array elements
and multi-agents, each representing an individual sim-
ulation place or an active entity. All computation is en-
closed in each element or agent, and all communication
is scheduled as periodical data exchanges among those
entities using their relative indices. In temperature pre-
diction, an orchard is meshed into two-dimensional ar-
ray elements over which agents move as air flow. This
model unleashes an application from accessing entities
in for-loops, and thus eases dynamic allocation of en-
tities to multiple computing nodes and multiple CPU



cores.
We are currently implementing a multi-process and

a multi-threaded version of the MASS library, both
to be combined in a single version in the near future.
This paper focuses on an implementation and prelim-
inary performance of the multi-process version. The
structure of papers is as follows: Section 2 gives a
brief overview of the MASS programming model; Sec-
tion 3 explains our library implementation; Section 4
demonstrates the efficiency of the MASS programma-
bility with a traffic simulation model; Section 5 shows
some preliminary performance results; Section 6 differ-
entiates MASS from the related work; and Section 7
clarifies our future milestones.

2 Programming Model and Interface

This section explains the MASS programming model
and its major library functions to facilitate parallel sim-
ulation.

2.1 Programming Model

Places and Agents are keys to the MASS library.
Places is a multi-dimensional array of elements that are
dynamically allocated over a cluster of multi-core com-
puting nodes. Each element is called a place, is pointed
to by a set of network-independent array indices, and
is capable of exchanging information with any other
places. Agents are a set of execution instances that can
reside on a place, migrate to any other places with array
indices (thus as duplicating themselves), and interact
with other agents and places.

As shown in Figure 1, parallelization with the MASS
library uses a set of multi-threaded communicating pro-
cesses that are forked over a cluster and are connected
to each other through ssh-tunneled TCP links. The
library spawns the same number of threads as that of
CPU cores per node1. Those threads take charge of
method call and information exchange among places
and agents in parallel. Places are mapped to threads,
whereas agents are mapped to processes. Unless a
programmer indicates a place-allocation algorithm, the
MASS library partitions places into smaller stripes in
vertical, each of which is statically allocated to and ex-
ecuted by a different thread (static scheduling). Con-
trary to places, agents are allocated to a different pro-
cess, based on their proximity to the places that this
process maintains, and are dynamically executed by
multiple threads belonging to the process (dynamic
scheduling).

1The multi-process version uses only the main thread within

each process to run an application

Figure 1. Parallel execution with MASS library

2.2 Programming Interface

A user designs a behavior of a place and an agent
by extending the Place and Agent respectively. The
entities are populated through the Places and Agents
based classes. Actual computation is performed be-
tween MASS.init( ) and MASS.finish( ), using the fol-
lowing methods.

MASS Class

• public init( String[] args, int nProc, int
nThr ) uses nProc processes, each with nThr
threads.

• finish( ) finishes computation.

Places Class

• public Places( int handle, [String primi-
tive,] String className, Object argument,
int size ) instantiates a shared array with size
from className or a primitive data type as passing
an argument to the className constructor. This
array receives a user-given handle.

• public Object[] callAll( String function-
Name, Object[] arguments ) calls the method
specified with functionName of all array elements
as passing arguments[i] to element[i], and receives
a return value from it into Object[i]. Calls are per-
formed in parallel among multi-processes/threads.
In case of a multi-dimensional array, i is considered
as the index when the array is flattened to a single
dimension.



• public Object[] callSome( String function-
Name, Object[] argument, int... index )
calls a given method of one or more selected array
elements. If index[i] is a non-negative number, it
indexes a particular element, a row, or a column.
If index[i] is a negative number, say −x, it indexes
every x element. Calls are performed in parallel.

• public void exchangeAll( int handle, String
functionName, Vector<int[]> destinations)
calls from each of all elements to a given method of
all destination elements, each indexed with a dif-
ferent Vector element. Each vector element, say
destination[] is an array of integers where desti-
nation[i] includes a relative index (or a distance)
on the coordinate i from the current caller to the
callee element. The caller passes its outMessage[]
data member to the callee as a set of arguments,
and receives return values in its inMessage[].

• public void exchangeSome( int handle,
String functionName, Vector<int[]> desti-
nations, int... index) calls from each of the
elements indexed with index[]. The rest of the
specification is the same as exchangeAll( ).

Agents Class
• public Agents( int handle, String class-

Name, Object argument, Places places, int
population ) instantiates a set of agents from
className, passes the argument to their construc-
tor, associates them with a given Places matrix,
and distributes them over these places, based on
the map( ) method that is defined within the Agent
class.

• public void manageAll( ) updates each agent’s
status, based on its latest calls of migrate( ),
spawn( ), kill( ), sleep( ), wakeup( ), and wake-
upAll( ). These methods are defined in the Agent
base class and may be invoked from other func-
tions through callAll( ) and exchangeAll( ).

• public void sortAll( boolean descending )
sorts agents within each place in the descending
or ascending order of their key data member.

3 Library Implementation

In this section we will discuss implementation for the
major components of MASS. Figure 2 describes the re-
lationship between classes and machines in a cluster by
example of the inter-process communication. After a
message containing a command with parameters is cre-
ated it is transported to the slave process through the
mNode class communication pipeline, established with
Java Secure Channel (JSCH). Once received, the slave
process parses the message and executes the command.

Figure 2. MASS-internal classes over a cluster

3.1 MASS, mNode, and mNodeProcess Imple-
mentation

1. MASS: is responsible for the construction and
deconstruction of a cluster and maintains refer-
ences to all Places, Agents and mNode instances.
init( ) identifies all remote hosts in the host file
and through JSCH, a mNodeProcess is launched
on the remote hosts, while a mNode instance is
created locally as a wrapper for the JSCH connec-
tion. MASS can be initialized on any host running
a SSH Server and Java Virtual Machine. Through-
out the application lifecycle MASS provides use-
ful methods for retrieving any previously created
Places or Agents instance.MASS.finish( ) is called
at the end of an application to deconstruct the
cluster, this is done by sending termination com-
mands to all slave processes and closing all the
connections.

2. mNode: works as a wrapper for all inter-process
connections and includes several useful methods
for process communication. Each mNode pair rep-
resents a communication pipeline between nodes
and a single collection of mNodes exists on ev-
ery process in the cluster. The mNodes primary
function is to write and read objects passed be-
tween process through Java’s ObjectInput and
ObjectOutput streams that sit ontop of a JSCH
or Sockect based connection.

3. mNodeProcess: runs as a slave process on a re-
mote host. The mNodeProcess facilitates all com-
mands invoked by Process 0, managing program
flow on behalf of Process 0. The mNodeProcess
has a three states in its lifecycle, initiations, run-
ning, and deconstruction. During initiation the
mNodeProcess establishes mNode communication
pipelines with Process 0 and all other mNodePro-
cess in the cluster. After the mNodeProcess has



finished initialization it will sit in an infinite loop
waiting for commands from Process 0, execute the
command, and return to waiting for the next com-
mand. Once the command to terminate is received
the mNodeProcess closes all connections and self-
terminates.

3.2 Places Implementation

Places manages all place elements in the simulations
space. Every process maintains a collection of Places
instances, each Places instance created by a user pro-
gram on Process 0 has a corresponding instance on a
number of slave processes in the cluster. There are two
major methods for place manipulation in the Places
class, callAll and exchangAll. The Places class utilizes
Helper threads to assist in the implementation of the
exchangeAll algorithm.

1. callAll/Some( ): Is for issuing commands and
sending data to all or some place elements. Each
mNodeProcess receives a method identifier, place
element indices, and arguments from Process 0,
and invokes the given method of the specified place
elements. The returning value of this method
maybe returned to Process 0 after all executions
have completed. Process 0 waits to receive the
confirmation or return message from all mNode-
Processes.

2. exchangeAll/Some( ): Is a complete exchange
algorithm for exchanging data among place ele-
ments. The three steps to exchangeAll are send re-
quest, exchange local data, and process responses.
Each mNodeProcess receives a method identifier,
and a collection of invoking destinations from Pro-
cess 0. If a destination is outsides the bounds the
local process a request is generated to the corre-
sponding slave process (Node). Shown in Figure 3,
each process carries out this data exchange asyn-
chronously, using one sender and as many Helper
threads as the slave processes. The sender thread
sends each Node a message over the secondary
connection that specifies what method needs to
be invoked by which place element in the Node,
at which point the sender thread may exchange
data among local elements while waiting for the
response. Helper threads are each in charge of a
different Node and always waits for a new message.
Once received the Helper threads process the mes-
sage by invoking the specified method of the re-
quested place element and sends the turning value
as a response to the corresponding sender thread.
Synchronization is used to coordinate place ele-
ment updates among threads.

Node 0

Node 2 - N

Node 1

*Arrow represent 

connection initiation

Main Thread

Helper Thread

Primary Connection

Secondary Connections

Figure 3. An implementation of exchangeAll

4 Programmability

We consider the MASS programmability, using a
simple traffic simulation program whose model and
code are presented in Figures 4 and 5 respectively. The
program simulates the traffic status of a street map
(constructed as a two-dimensional Places array) over
which a number of cars, (each controlled by an indi-
vidual agent and denoted as a red dot in the map)
drive to a given destination.

The steps to develop this traffic simulation program
and any program using MASS are as follows. First,
create a class that inherits from the Place and Agent
classes, in this example MeshedStrees and Car respec-
tively. Second, create call methods within the classes
and assign them function ids. Lastly, create a driver
program that will run simulation.

The simulation starts with three parameters such as
a map size, a given nCars number of cars, and max-
Time to finish the simulation (lines 8-10). Then, it
invokes the MASS library (line 13), creates a streets
array (line 16), and distributes car objects on it (line
19). It also sets up communication links from each ar-
ray element to its four neighbors (lines 24-27). There-
after, the program enters a cyclic simulation where each
iteration exchanges the traffic status among all array
elements (line 32), decides each car’s next destination
(lines 34-37), and moves it there (line38).

The real-time geographical and traffic data (to be
provided by traffic sensor systems) can be reflected to
the map( ) method of both the Place and Agent classes
that create user-defined roads and populates cars at
run time.

This example code demonstrates two programming



Figure 4. Traffic Simulation Space

advantages with the MASS library. One is clear sepa-
ration of the simulation scenario from simulation mod-
els. The main( ) function in Figure 5 works as a
scenario that introduces necessary models, instanti-
ates/constructs entities, and controls their interaction.
This separation allows model designers to focus on each
model design. The other advantage is automatic par-
allelization. The MASS library constructs the streets
array over multiple computing nodes, populates cars
on it as maintaining the cars-to-streets proximity, and
calls their functions in parallel. These advantages can
be applied to other multi-agent spatial simulations such
Schroedinger’s wave simulation, Fourier’s heat simula-
tion, and artificial societies.

5 Preliminary Performance

Performance evaluation was conducted for callAll
and exchangeAll functions separately to observe their
overheads as computational granularity changes from
fine-grained to coarse-grained. The computational
granularity increases from 10 through to 200 iterations
of a floating point multiplication. exchangAll was setup
with four adjacent neighbors to the north, east, south,
and west. The number of participating slave processes
(nodes) increases from one to eight. In this evalua-
tion all machines are equiped with similarly config-
ured 3.2Ghz Xerons with 512MB memory connected
to Giga-Ethernet.

Figure 6 shows callAll’s performance results. The
results show us an expected pattern as the number of
floating point operations increases so does overall time
to completion. We also see an expected drop in time to
completion as the number of nodes increases within an
individual grouping. Concluding that, the gains in per-
formance are substantial between the number of slave
processes as the computation granularity increases.

When analyzing exchangeAll’s performance in Fig-

1 import MASS.*; // Library for Multi-Agent Spatial Simula-
tion

2 import java.util.Vector;
3
4 // Simulation Scenario
5 public class TrafficSimulation {
6 public static void main( String[] args ) {
7 // validate the arguments
8 int size = Integer.parseInt( args[0] );
9 int nCars = Integer.parseInt( args[1] );

10 int maxTime = Integer.parseInt( args[2] );
11
12 // start MASS
13 MASS.init( args );
14
15 // create streets in a distributed array
16 Places streets = new Places( 1, ‘‘MeshedStrees’’,
17 null, size, size );
18 // populate agents that behave as cars on the streets
19 Agents cars = new Agents{ 2, ‘‘Car’’, null, streets,
20 nCars}
21
22 // define the four neighbors of each cell
23 Vector<int[]> neighbors = new Vector<int[]>( );
24 int[] north = { 0, -1 }; neighbors.add( north );
25 int[] east = { 1, 0 }; neighbors.add( east );
26 int[] south = { 0, 1 }; neighbors.add( south );
27 int[] west = { -1, 0 }; neighbors.add( west );
28
29 now go into a cyclic simulation
30 for ( int time = 0; time < maxTime; time++ ) {
31 // exchange #cars with four neighbors
32 streets.exchangeAll( 1, MeshedStreets.exchange,
33 neighbors );
34 streets.callAll( MeshedStreets.update );
35
36 move cars to a neighbor if space is available
37 cars.callAll( Car.decideNewPosition );
38 cars.manageAll( );
39 }
40
41 // finish MASS
42 MASS.finish( );
43 }
44 }

Figure 5. Traffic Simulation Code

ure 7 we notice a pattern emerges as the computation
granularity increases. For 10 floating point operations
the time to completion increases, for 100 floating point
operations, the time to completion tends to be similar
regardless of the node count, and for 200 floating point
operations, the time to completion decreases as we add
nodes. This can be explained by the overhead associ-
ated with the exchangeAll algorithm. Increasing the
number of computing nodes increases the inter-process
communication overhead. The advantages of parallel
computation must overcome this overhead before per-
formance can be improved with additional nodes. We
conclude that performance improvements only exists
for coarse computation granularity.

In summary, we see the potential for MASS to im-
prove performance of parallel programs. This is true for
algorithms that include both callAll at fine computa-
tion granularity and exchangAll at coarse computation
granularity.



Figure 6. Performance results of callAll

Figure 7. Performance results of exchangeAll

6 Related Work

This section differentiates MASS from its related
work in two major aspects: (1) distributed shared ar-
rays and (2) parallel multi-agent simulation environ-
ments.

Example systems supporting distributed shared ar-
rays include UPC: Unified Parallel C [11], Co-Array
Fortran [8], and GlobalArray [7]. UPC allocates global
memory space in the sequential consistency model,
which is then shared among multiple threads running
even on different computing nodes. Co-Array For-
tran allows “so-called” images, (i.e., different execu-
tion entities including ranks, processes, and threads)
to co-allocate, to perform one-sided operations onto,
and to synchronize on shared arrays. GlobalArray fa-
cilitates not only one-sided but also collective opera-
tions onto global arrays that are shared among dif-
ferent MPI ranks. Although MASS has a similarity
as these language-based runtime systems in allocating
global shared arrays, it is unique in implementing both
one-sided and collective operations as the form of user-
defined remote method invocations rather than provid-

ing users with system-predefined operations. In par-
ticular, exchangeAll/Some operations in MASS do not
invoke a method call to each array element but rather
invoke a parallel call from each to other elements, (in
other words, inter-element parallel calls).

Most multi-agent simulation environments such as
PDES-MAS [5] and MACE3J [2] focus on parallel ex-
ecution of coarse-grained cognitive agents, each with
rule-based behavioral autonomy. These systems pro-
vide agents with interest managers that work as inter-
agent communication media to exchange spatial in-
formation, as well as multicast an event to agents.
From the viewpoints of agent-to-space or agent-to-
event proximity, PDES-MAS recursively divides each
interest manager into child managers, structures them
in a hierarchy, and mapped them over a collection of
computing nodes for parallelization. MASS is different
from them in handling fine-grain reactive agents that
sustain a partial view of their entire space and inter-
act with other agents in their neighborhood. Although
an array element in MASS can be considered as an in-
terest manager in PDES-MAS and MACE3J, MASS
instantiates a large number of array elements, (i.e., in-
terest managers), and define their logical connection
with exchangeAll/Some functions.

In summary, MASS is unique in facilitating user-
defined inter-element communication in distributed ar-
rays and realizing fine-grain reactive agents, each in-
teracting with others through numerous array elements
(i.e., interest managers).

7 Conclusions

The MASS library is intended to facilitate entity-
based simulation for on-the-fly sensor-data analysis. In
this paper, we demonstrated the programming advan-
tages in using the MASS library for such simulation as
well as its competitive performance in parallel execu-
tion of fine-to-medium grain computation. Our next
step is to extend this multi-process version to a multi-
process multi-threaded version to utilize a cluster of
multi-core computing nodes.
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