Facilitating CellularAutomata-BasedComputational
Spacefor Parallel Multi-Agent Simulations

NaoyaSuzuki, Munehiro Fukuda and Koichi Wada
* Information Sciencesand Electronics,University of Tsukuba,Tsukuba,lbaraki, 305-8573,Japan.
E-mail: {nas,wadg @is.tsukuba.ac.jp
t Computingand SoftwareSystemsUniversity of WashingtonBothell, WA 98011,USA.
E-mail: mfukuda@u.washington.edu

Abstract— The multi-agent simulation is viewed asthe interac-
tion of agents,and is frequently applied for analyzing their self-
organization in complex systems.To decide their next behavior,
such agentsgenerally accessspatial information that needsto be
not only made available to the agentsin local but also diffused
over an entire simulation space.As an efficient implementation
of information diffusion, we proposeto combine the principle of
cellular automata into the multi-agent simulation. There, agents
walk over cellular automata that diffuse spatial information.
To evaluate its efficiency, we have facilitated such information
diffusion on top of the M++ parallel multi-agent simulator.
Our performance experiment showedthat implementing cellular
automata in the Codi-1bit multi-agent simulation achieved 2.18-
time speed-upwhen using 8 processorsas compared to the one
with no support of cellular automata.

I. INTRODUCTION

The multi-agent simulation explores self-olganization in
comple systemsthrough the interaction among simulation
entities (or agentsin the context of our paper),eachhaving
its own goal, behaior, and local information in a synthetic
world [1]. This style of simulation has gainedits popularity
in areassuch as artificial life [2], ecologicalsimulation [3],
and biological modeling, in which traditional mathematical
techniquescannotalways be applied effectively. In spite of
its recognition, the multi-agent simulation has a scalability
problemwheremillions of agentsare requiredfor simulation
to increaseits precision of computedresults. Thus, of the
major concernsis how to maintain competentperformance
for a large size of simulationproblems.

One solution is parallel execution where agentsare dis-
tributed over multiple computingnodesand are processedn
parallel. The High Level Architecture(HLA) [4] is anIEEE-
standardizedechnigueto maintaina global simulationspace
among networked computers,each publishing local agents
to and subscribingremoteagentsfrom the other processors.
However, the problemis that agentsare static to wherethey
have beeninstantiated,which incurs a considerableamount
of interprocessorcommunicatioramongagents[5]. Because
of this reason,HLA is better suited for distributed simu-
lation with coarse-grainagents.As an alternatve approach,
we have agentsmigrate where they meet, so that all their
communicationtakes place locally. On top of a cluster of
computerswe have developedthe M++ parallel multi-agent
simulatorin that agentsare executedasthreadseachcapable

0-7803-798-0/03$17.00 (©2003IEEE 780

of dynamicallycreatingand autonomoushnavigating through
an application-specifitogical network[6]. In M++, a network
noderepresentsa simulationsubspaceand a networklink is
usedas a route from one nodeto another Using M++, we
have codedseveral simulation programsincluding Codi-1bit
[7] that seeksfor a neural network best fitted to a specific
signal generation8].

Although we have demonstratedhe merits of designing
eachagentfrom its behaioral point of view, we have also
noticed a generalproblem: the multi-agent simulation can-
not always best model and execute the diffusion of spatial
information. For example, Codi-1bit requires signalsto be
diffusedover a neuralnetwork, which could be implemented
by having an agent either send a signal messageor carry
signal information with it to other agents.This not only
enlages a semanticsgap betweensimulation algorithm and
its implementation,but also deterioratesthe entire system
performance.

To addresghis problem,we proposeto combinethe princi-
ple of cellularautomatéanto the multi-agentsimulation,where
spatial information is diffused to adjacentsubspacesvery
simulationtime incrementWe have facilitatedsucha cellular
automata-basedomputationalspaceinto M++. Specifically
all logical nodesinclude the clodking() abstractmethodthat
is implementedby a simulation programmerand is invoked
by the systemperiodicallyin orderto exchangespatialinfor-
mation with all neighboringnodes.We redesignedur Codi-
1bit applicationwith this new feature andobtainedcorvincing
performanceesultsas well as betterprogrammability

The main purposeof this paperis to demonstratethe
merits of facilitating a cellularautomata-basedomputational
spaceinto parallelmulti-agentsimulations by reprogramming
and executing the Codi-1bit simulation on M++. The rest
of our paperis organizedas follows: Section 2 introduces
the M++ execution model; Section 3 explains about the
Codi-1bit algorithm and implementation;Section4 evaluates
the performanceimpraovement; and Section5 concludesour
discussions.

Il. M++ EXECUTION MODEL

The M++ execution model is basedon three different
network layers as shovn in Figure 1. The lowest is the
physical network that defines underlying computing nodes,

(e.g. a Myrinet clusterof eight PCsin our implementation.)
The middle is the daemonnetwork a completely-coupled
communicationnetwork among daemonprocessesgach of
which runson a differentcomputingnodeandmanagesgents.
The highestis the logical network an application-dependent
computationalnetwork that is composedf nodesand links:
the former objectsare usedas a working spacewhereagents
computetheir next behaior, whereaghe latterasa guideway
that routesagentsfrom one nodeto another

Agents are representedas self-migating threads (simply
termedthreadsin the rest of our discussions}hat are pro-
grammedin the M++ language,an agent-orientedanguage
basedon C++, aretranslatednto C++ by the M++ translator
are compiledinto executablethreadsand arefinally instanti-
ated from a Unix shell prompt [9]. A threadis capableof
constructingthe logical network and navigating itself over
the network with the following four keywords: (1) create
instantiates givennodeor alink; (2) deletedeletesanexisting
nodeor a link; (3) hop[along] navigatesa threadto a given
nodeor alongalink; and(4) fork[along] propagates copy of
threadto a givennodeor alongalink. The networknavigation
is basedn strongmigration[10] whereathreadkeepsunning
in the sameexecution context even after its migrationto a
differentnode.

Nodesandlinks are both implementedasan ordinary C++
object. As a working space a node permitsthreadsto stop it
by andto shareits variablesand methods.On the otherhand,
alink is intendedasa guideway which threadscanonly pass
along. Instead,threadscan accessvariablesand methodsof
a link incidentto a nodewherethey currently reside.Since
nodesandlinks arepassie objects threadsareresponsibldor
diffusing their information, (i.e., carrying spatial information
from nodeto nodeor link to link.) For betterprogrammability
such information diffusion should be automatedusing the
principle of cellular automatarather than threads, so that
simulation designerscan focus on implementing agentsin
threads.

The M++ hasfacilitatedsuchcellularautomatabasednfor-
mationdiffusion, whereall nodesprovide the clodk() abstract
methodthatis implementedo accesgheir incidentlinks and
is calledby the M++ daemonevery time a threadexecutesits
cloking statementWith this clodking statementall adjacent
nodes can exchange their node information through their
incidentlinks at a time.

Figure 2 gives an example of M++ program. Upon an
instantiation, a thread sets the daemonldvariable to 0 in
its constructorand starts executing the main() function that
describeghe correspondinggentbehaior. It thencreateshe
nodel onthedaemorD, establishethelink 1 from the current
working nodeto the node1, andhopsalongthelink 1 to the
nodel whereit hasall nodesinvoke their clodk() function as
passingthe agumentO.

An actualsimulationwith M++ is carriedout by program-
ming and injecting the following threeclassef threadsithe
first is in chage of creatinga simulation spaceby adding
new nodesand links to the logical network; the secondis

781

Logical Network hop(1@2); @

create node<Node> with(3@2)"
4

Link

[Thread2

Daemon network

Daemon Daemon Daemon
Physical network

(LAN/SAN]

Fig. 1. M++ executionmodel
I ass Node {
“8 | ock tine)
ol d cloc
|k[]<£ >, dat a:{irre;
class Link { public: int data; };
th{)lead Thread {
pu Thread() daenonld(0) {}
voi d nuai .
create node<Node>() with(l@aenonld);
create |ink<Link> with(1
to (1@aenonld with (17);
hopal ong(" 1);
cl ocki ng O;
privat

int daermnl d;

Fig. 2. M++ threadframevork

programmedto periodically executea cloking statemento
trigger information exchangebetweenadjacentnodesand to
ultimately diffusesuchnodeinformationthroughouthe space;
andthe third representvarioustypesof agents.

I1l. CoDI-1BIT ON M++

Using the Codi-1bit model, we have verified the effective-
nessof cellularautomata-basethformation diffusion in the
multi-agentsimulation.lt is a neuralnetworksimulationdevel-
opedby the AdvancedTelecommunicatiorResearcHnstitute
in Japan7]. The goal of this simulationis to build, grow, and
evolve a cellularautomata-basedeural network for solving
various problems.One of the problemstackledis to obtain
a neural network that emits a signal close enoughto the
sinf(0 < # < 27) curve at a given obsenation point. The
model prepares30 different piecesof geneticcode,for each
of whichit builds a cubicarrayof 24x24x 18 cells, initializes
48 cells as a neuron and the others as a blank, simulates
the growth of neuralnetwork, (i.e., changeblank cells in an
axon or a dendritecell) for the first 100 cycles, and chage
the network with neural signals, (i.e., transfer signals from
the 48 neuronsalong adjacentaxon and dendrite cells) for
the following 330 cycles. Thereafterthe model computeshe

next generatiorof 30 geneghroughthe processesf selection,
crosseer, and mutation. The original programwas codedin

C to find the bestgeneticcode throughthe repetition of 10
generations.

Amongthe abore computationphasesthe 330-g/cle signal
transmissionis a phaseof information diffusion. A neural
signalis periodically chagedto eachneuron,is dynamically
diffusedto the adjacentaxonsanddendritesaccordingto their
signalreactvity, is collectedat a given neuron,andis checked
if it matchesthe sine curve.

We have codedthis signal transmissionin two different
versions of M++ program: one is the agent-basedsignal
transmissiorwheresignalsarecarriedby agents(i.e, threads),
and the other is the combinationof the agent-based@nd the
cellular automata-basesignal transmissiorwheresignalsare
diffused through cellular automataperiodically activated by
threads.(The latter is abbreviated to the combination-based
signaltransmissiorin the following discussions.)n the both
versions,the logical network is formed as a cubic mesh of
nodesand links that are instantiatedfrom the Brain and the
Nene classrespectely.

Figure 3 shows the M++ code of the agent-basedignal
transmission.Starting from a NEURON-type node, a thread
repeatedly checks the current node type, (i.e., NEURON,
AXON, or DENDRITE) in main() and calls the corresponding
rule function to propagatets copy along NERVE links to the
adjacentnodes.For instancejn the propagateByNewnRule()
function, a threadcheckswhetherthe currentnodeis active,
(i.e., ready to transmit signals) or not. If it is actwve, the
threadpropagategts copyto theadjacennodesn six different
directionsthroughforkalong()

Figure 4 showns the M++ code of the combination-based
signal transmission,where ary pair of Brain nodes, each
incidentto thesameNene link, readandwrite variablesof this
link. A Signalthreadstaysin eachNEURON nodeandchages
it periodically This chage startsin main() wherethe thread
executesa clocking statemento invoke the clock() methodof
all the nodessimultaneouslyEachnode checksits own type
andcallsthe correspondingule functionso asto exchangeits
signalthroughthe link variableswith the adjacentnhodes.For
example,in exchangeSignalByNeanRule() a node writes 1
to the signal variableof six incidentlinks thatwill bereadby
the adjacentnodes.

The combination-basedignal transmissionhastwo supe-
riorities over the agent-basedignal transmission.One is a
narraver semanticgap betweensimulationalgorithm andits
implementationWhile the multi-agentsimulationis viewedas
the interactionamongagents,it is naturalto considerspatial
information, (i.e., signalsin Codi-1bit) aspassve databut not
active agents.Another is better performance Signalsin the
combination-basedignal transmissiornare link variablesand
thus much lighterweight instancesthan threadsusedin the
agent-basedtransmissionpecausenf which the combination-
basedransmissiomperformsfaster In the next section we will
especiallyfocuson this performancemerit.

782

thread Signal {
private:
int i, s;
voi d propagat eByNeur onRul e(} {
f§ node<Br ai h>, active).
or(i =0 ; 1 <=5,;"1++)
forkalong(i);
;/ the following two resenbl e the above nethod
voi d propagat eByAxonRul e(..
\6|o d propaget eByDenRul e() .}
u (o
P void main() { .
or(,s =0 ; s < Signal Steps ; s++) {
switch(node<Brai h>. type) {
case NEUR(tNiB Ne Rule(): b K
ropagat e uronRul e(); break;
cage gx%\lt ByAx Rul b k
ropagat e on e(); break;
cage BERID: Y 0
SR }propagateByDendRuI e(); break;

Fig. 3. M++ codeof agent-basedignaltransmission

class Nerve { public: int signal; }

class Brain {

private:))
bool active; int i:
voi d exchageSi gnal ByNeur onRul e() {
i f¥ active . .
or(i = ;.= 5 1++)
I 1 nk<Nerve>[i].signal = 1;

two resenbl e the above nethod
i i gnal ByAxonRul e
voi d exchangeSi gnal ByDendRul e

public:

|/ the follow.n
voi d exchangeSi

[

int tyPe;)
VOi d_g g%kg i nt t{) {
swtc e
case NE E&O\I)
excha((;ﬁSl gnal ByNeur onRul e(); break;
case AXON:
exchan%e& gnal ByAxonRul e(); break;
case DEND:
113 exchangeSi gnal ByDendRul e(); break;
thread Signal {
int s;
ublic
void main() { .
or(s =0 ; s < Signal Steps ; s++)
si gnal ToNeuron(); "// charge Neuroh nodes
113 clocking s; // issues clocking nechani sm

Fig. 4. M++ codeof combination-basedignaltransmission

IV. PERFORMANCE

We have comparedhe simulationperformancebetweerthe
agent-basedndthe combination-basedignaltransmissiorin
the Codi-1bit model, underthe test ervironmentsummarized
in Table I. The evaluation was conductedby repeatingfour
generationss changingthe numberof processordrom 1 to
8.

As shown in Figure 5, the combination-basedignal trans-
missionyieldedbetterperformancehanthe agent-basettans-
missionwhenwe usedfour or more processorsln particular
it achieved 2.18-timespeed-umscomparedo the agent-based
transmissiorin executionwith eight processors.

The agent-basedransmissionitself improved its perfor
mance 1.15-time better when using two processorswhich
however slowed down as adding more processorsThis per
formancedegradationis correlatedwith a trade-of between
the numberof threadsper machineandthat of threadmigra-
tions over the system,(i.e., betweenthe parallelizationeffect
and the communicationoverhead.)Adding more processors

TABLE |
TEST ENVIRONMENT

Features Descriptions
CPU Athlon 1GHz (FSB 266MHz)
Memory DDR-SDRAM 256MB
Network card Myrinet M2MPCI32B
Switch Myrinet M2M-DUAL-SW8
0os Solaris8
Compiler gcc-2.95.3

#CPU consistinga cluster 8

reduceghe numberof threadsallocatedoermachinebut incurs
more thread migrations. The latter overheadis proportional
to the number of interprocessorlinks that grows rapidly
as more processorsare added.In fact, the total number of
inter-processotinks is 432 in two processors1296 in four
processorsand 1728 in eight processorsA two-processor
configurationstill gainedparallelizationeffect that overcame
the cost of thread migration. However, using four or eight
processorsdeterioratedthe performancedue to the rapidly
growing number of inter-processorlinks, (e.g., three times
andfour timeslarger than usingtwo processorsespectiely),
which incurredthe proportionalnumberof threadmigrations.

On the other hand,the combination-basedignal transmis-
sionachieved betterthanthe agent-basettansmissionn four-
and eight-processorconfigurations.It is due to a trade-of
betweerthe numberof clock() function callsandthatof inter-
processorlinks. As shavn in Figure 5, a single processor
execution took more time in the combination-basedhan in
the agent-basedransmission.This is becauset had to call
the clodk() function of all 24x24x18 nodes.However, the
number of such function calls can be reducedby adding
more processorsWhile the numberof inter-processorinks
grows on the other hand, the link size in Codi-1bit is 200
bytes,which is 2/3 of the threadsize,(i.e., 316 bytes.) Thus,
communicatioroverheads lessin the combination-basethan
in the agent-basedransmission Furthermore thereis a big
differencein the numberof active threadsbetweenthe agent-
basedand the combination-basedransmission.The former
needsapproximatelyl50 threadsthat are created propagated
to other nodes, and destructedevery simulation cycle. In
contrast the latter usesonly 48 threadseachfixed to a given
neuroncell and chaging it with a signal periodically which
thus causeso threadmigrations.Therefore the combination-
basedtransmissioncan minimize the costof threadcreation,
destruction,migration, and contet switch. As a result, these
factors brought better parallelism in execution with eight
processors.

V. CONCLUSION

In this paper we have proposedthe combination-based
signal transmissionthat combinesthe principle of cellular
automatainto the multi-agent simulation, where spatial in-
formationis diffusedto adjacentsubspacesgvery simulation

783

500

agent-based —+—
combination-based ---x---

Elapsed time (seconds)

100 | B

50 B

1 2 4 8
#CPUs

Fig. 5. Codi-1bitperformance

time increment.To evaluate our proposedscheme,we have
programmedhe Codi-1bit simulationin both the agent-based
and the combination-basedignal transmissionusing M++,
andhave comparedheir codeand performanceAs discussed
in sectionlV, the combination-basedignal transmissionm-
proved simulation performanceespeciallywhen the size of
spatialinformationto be exchanged(i.e., the M++ link size)
is smallerthanthe threadsize.We have alsodemonstratethat
the useof cellular automatas effective for reducingthe num-
ber of threadsto be spavned,destructedand migrated,which
considerablyimprovesthe entire simulationperformance.

Our next planis to develop a visualizationtoolkit thateases
on-goingstatuschecksand result presentationef agentsand
cellular automata.

REFERENCES
(1]
[2
K]
4

J. Ferber Multi-Agent SystemgAn Introductionto Distributed Artificial
Intelligence Addison-Wésley 1999.
R.CollinsandD.Jeferson,Artificial Life Il. Addison-Wesley 1992,ch.
Antfarm, pp. 579-601.

J. M.EpsteinandR. L.Axtell, Growing Artificial Societies Cambridge,
MA 02142-1493MIT Press,1996.

IEEE Std 1516-2000,|EEE Standad for Modeling and Simulation
(M&S) High Level Architectue (HLA). New York, NY 10016-5997:
IEEE, 2000.

B. Loganand G. Theodoropolous;The distributed simulationof multi-
agentsystems, in Proc. of the IEEE 89(2), 2001, pp. 174-185.
N.Suzuki, M.Fukuda, and L.F.Bic, “Self-migrating threadsfor multi-
agentapplications, in Proc. of IEEE ComputerSocietyInternational
Workshopon ClusterComputing Melbourne Australia,Decembef 999,
pp. 221-228.

Norberto,E.Nawa,M.Korkin, andH. garis,“Atr's cambrainproject: The
evolution of large-scalerecurrentneuralnetwork modules, in Proc. of
PDPTA98, Las Vegas,NV, July 1998, pp. 1087-1094

M. Fukuda,N. Suzuki,L. M. CamposandS. Kobayashi,'Programma-
bility andperformanceof m++ self-migratingthreads, in Proc. of IEEE
Int’ | Confeenceon Cluster Computing Newport Beach,CA, October
2000, pp. 331-340.

M. Fukuda and N. Suzuki, “M++ users manual, University of
Washington, Bothell, WA 98011, Technical Report available in
http://dept.washington.edu/dslab++/ugr_man.ps,Septembe2002.
10] G. Cugola,C. Ghezzi,G. P. Picco, and G. Vigna, “Analyzing mobile
codelanguages$,in Mobile ObjectSystemsTowards the Programmable
Internet SpringerVerlag: Heidelbeg, Germany 1997,pp. 93-110.

(5]
(6]

(71

(8]

19

