
Facilitating Cellular-Automata-BasedComputational
Spacefor Parallel Multi-Agent Simulations

NaoyaSuzuki
�
, MunehiroFukuda

�
andKoichi Wada

�
�

InformationSciencesandElectronics,University of Tsukuba,Tsukuba,Ibaraki, 305-8573,Japan.
E-mail: � nas,wada� @is.tsukuba.ac.jp�

ComputingandSoftwareSystems,University of Washington,Bothell, WA 98011,USA.
E-mail: mfukuda@u.washington.edu

Abstract— The multi-agent simulation is viewedas the interac-
tion of agents,and is fr equently applied for analyzing their self-
organization in complex systems.To decide their next behavior,
such agentsgenerally accessspatial information that needsto be
not only made available to the agents in local but also diffused
over an entire simulation space.As an efficient implementation
of information diffusion, we proposeto combine the principle of
cellular automata into the multi-agent simulation. There, agents
walk over cellular automata that diffuse spatial information.
To evaluate its efficiency, we have facilitated such information
diffusion on top of the M++ parallel multi-agent simulator.
Our performance experiment showedthat implementing cellular
automata in the Codi-1bit multi-agent simulation achieved 2.18-
time speed-upwhen using 8 processors,as compared to the one
with no support of cellular automata.

I . INTRODUCTION

The multi-agent simulation explores self-organization in
complex systemsthrough the interaction among simulation
entities (or agentsin the context of our paper),eachhaving
its own goal, behavior, and local information in a synthetic
world [1]. This style of simulationhas gainedits popularity
in areassuch as artificial life [2], ecologicalsimulation [3],
and biological modeling, in which traditional mathematical
techniquescannotalways be applied effectively. In spite of
its recognition, the multi-agent simulation has a scalability
problemwheremillions of agentsarerequiredfor simulation
to increaseits precision of computedresults. Thus, of the
major concernsis how to maintain competentperformance
for a large sizeof simulationproblems.

One solution is parallel execution where agentsare dis-
tributed over multiple computingnodesand are processedin
parallel.The High Level Architecture(HLA) [4] is an IEEE-
standardizedtechniqueto maintaina global simulationspace
among networkedcomputers,each publishing local agents
to and subscribingremoteagentsfrom the other processors.
However, the problemis that agentsare static to wherethey
have beeninstantiated,which incurs a considerableamount
of inter-processorcommunicationamongagents[5]. Because
of this reason,HLA is better suited for distributed simu-
lation with coarse-grainagents.As an alternative approach,
we have agentsmigrate where they meet, so that all their
communicationtakes place locally. On top of a cluster of
computers,we have developedthe M++ parallel multi-agent
simulatorin that agentsareexecutedasthreads,eachcapable

of dynamicallycreatingandautonomouslynavigating through
anapplication-specificlogical network[6]. In M++, a network
noderepresentsa simulationsubspace,anda network link is
usedas a route from one node to another. Using M++, we
have codedseveral simulation programsincluding Codi-1bit
[7] that seeksfor a neural network best fitted to a specific
signalgeneration[8].

Although we have demonstratedthe merits of designing
eachagentfrom its behavioral point of view, we have also
noticed a generalproblem: the multi-agent simulation can-
not always best model and execute the diffusion of spatial
information. For example, Codi-1bit requires signals to be
diffusedover a neuralnetwork,which could be implemented
by having an agent either send a signal messageor carry
signal information with it to other agents.This not only
enlarges a semanticsgap betweensimulation algorithm and
its implementation,but also deterioratesthe entire system
performance.

To addressthis problem,we proposeto combinetheprinci-
ple of cellularautomatainto themulti-agentsimulation,where
spatial information is diffused to adjacentsubspacesevery
simulationtime increment.We have facilitatedsucha cellular-
automata-basedcomputationalspaceinto M++. Specifically,
all logical nodesinclude the clocking() abstractmethodthat
is implementedby a simulation programmerand is invoked
by the systemperiodically in order to exchangespatialinfor-
mation with all neighboringnodes.We redesignedour Codi-
1bit applicationwith this new feature,andobtainedconvincing
performanceresultsaswell asbetterprogrammability.

The main purpose of this paper is to demonstratethe
merits of facilitating a cellular-automata-basedcomputational
spaceinto parallelmulti-agentsimulations,by reprogramming
and executing the Codi-1bit simulation on M++. The rest
of our paper is organizedas follows: Section 2 introduces
the M++ execution model; Section 3 explains about the
Codi-1bit algorithm and implementation;Section4 evaluates
the performanceimprovement;and Section5 concludesour
discussions.

I I . M++ EXECUTION MODEL

The M++ execution model is based on three different
network layers as shown in Figure 1. The lowest is the
physical network that definesunderlying computing nodes,

0-7803-7978-0/03/$17.00 c
�

2003IEEE 780

(e.g. a Myrinet clusterof eight PCs in our implementation.)
The middle is the daemonnetwork, a completely-coupled
communicationnetwork among daemonprocesses,each of
which runson a differentcomputingnodeandmanagesagents.
The highestis the logical network, an application-dependent
computationalnetwork that is composedof nodesand links:
the former objectsare usedasa working spacewhereagents
computetheir next behavior, whereasthelatterasa guideway
that routesagentsfrom onenodeto another.

Agents are representedas self-migrating threads (simply
termed threadsin the rest of our discussions)that are pro-
grammedin the M++ language,an agent-orientedlanguage
basedon C++, aretranslatedinto C++ by the M++ translator,
arecompiledinto executablethreads,andarefinally instanti-
ated from a Unix shell prompt [9]. A thread is capableof
constructingthe logical network and navigating itself over
the network with the following four keywords: (1) create
instantiatesagivennodeor a link; (2) deletedeletesanexisting
nodeor a link; (3) hop[along] navigatesa threadto a given
nodeor alonga link; and(4) fork[along] propagatesa copyof
threadto a givennodeor alonga link. Thenetworknavigation
is basedon strongmigration[10] wherea threadkeepsrunning
in the sameexecution context even after its migration to a
differentnode.

Nodesandlinks areboth implementedasan ordinaryC++
object.As a working space,a nodepermitsthreadsto stop it
by andto shareits variablesandmethods.On the otherhand,
a link is intendedasa guideway which threadscanonly pass
along. Instead,threadscan accessvariablesand methodsof
a link incident to a nodewhere they currently reside.Since
nodesandlinks arepassive objects,threadsareresponsiblefor
diffusing their information, (i.e., carrying spatial information
from nodeto nodeor link to link.) For betterprogrammability,
such information diffusion should be automatedusing the
principle of cellular automatarather than threads,so that
simulation designerscan focus on implementingagents in
threads.

TheM++ hasfacilitatedsuchcellular-automatabasedinfor-
mationdiffusion,whereall nodesprovide the clock() abstract
methodthat is implementedto accesstheir incident links and
is calledby the M++ daemonevery time a threadexecutesits
clocking statement.With this clocking statement,all adjacent
nodes can exchange their node information through their
incident links at a time.

Figure 2 gives an example of M++ program. Upon an
instantiation, a thread sets the daemonIdvariable to 0 in
its constructorand startsexecuting the main() function that
describesthecorrespondingagentbehavior. It thencreatesthe
node1 on thedaemon0, establishesthelink 1 from thecurrent
working nodeto the node1, andhopsalong the link 1 to the
node1 whereit hasall nodesinvoke their clock() function as
passingthe argument0.

An actualsimulationwith M++ is carriedout by program-
ming andinjecting the following threeclassesof threads:the
first is in charge of creating a simulation spaceby adding
new nodesand links to the logical network; the secondis

Physical networkPhysical network

DaemonDaemon DaemonDaemon DaemonDaemon

Daemon networkDaemon network

LAN/SAN

Logical NetworkLogical Network

NodeNode NodeNode

NodeNode

NodeNode

Link

Thread1Thread1

hop(1@2);

Link
create node<Node> with(3@2);

Thread2Thread2

Fig. 1. M++ executionmodel

class Node {
public:

void clock(int time) {
link[1]<Link>.data = time;

} };

class Link { public: int data; };

thread Thread {
public:

Thread(): daemonId(0) {}
void main() {

create node<Node>() with(1@daemonId);
create link<Link>() with(1)
to (1@daemonId) with (1);

hopalong(1);
clocking 0;

}
private:

int daemonId;
};

Fig. 2. M++ threadframework

programmedto periodically executea clocking statementto
trigger information exchangebetweenadjacentnodesand to
ultimatelydiffusesuchnodeinformationthroughoutthespace;
andthe third representsvarioustypesof agents.

I I I . CODI-1BIT ON M++

Using the Codi-1bit model,we have verified the effective-
nessof cellular-automata-basedinformation diffusion in the
multi-agentsimulation.It is a neuralnetworksimulationdevel-
opedby the AdvancedTelecommunicationResearchInstitute
in Japan[7]. Thegoalof this simulationis to build, grow, and
evolve a cellular-automata-basedneural network for solving
various problems.One of the problemstackled is to obtain
a neural network that emits a signal close enough to the���	��
������
�������� curve at a given observation point. The
model prepares30 different piecesof geneticcode,for each
of which it builds a cubicarrayof 24 � 24 � 18 cells, initializes
48 cells as a neuron and the others as a blank, simulates
the growth of neuralnetwork, (i.e., changeblank cells in an
axon or a dendritecell) for the first 100 cycles, and charge
the network with neural signals, (i.e., transfer signals from
the 48 neuronsalong adjacentaxon and dendrite cells) for
the following 330 cycles.Thereafter, the modelcomputesthe

781

next generationof 30 genesthroughtheprocessesof selection,
crossover, and mutation.The original programwas codedin
C to find the bestgeneticcode through the repetition of 10
generations.

Among theabove computationphases,the 330-cycle signal
transmissionis a phaseof information diffusion. A neural
signal is periodicallycharged to eachneuron,is dynamically
diffusedto theadjacentaxonsanddendritesaccordingto their
signalreactivity, is collectedat a given neuron,andis checked
if it matchesthe sine curve.

We have coded this signal transmissionin two different
versions of M++ program: one is the agent-basedsignal
transmissionwheresignalsarecarriedby agents,(i.e, threads),
and the other is the combinationof the agent-basedand the
cellular automata-basedsignal transmissionwheresignalsare
diffused through cellular automataperiodically activated by
threads.(The latter is abbreviated to the combination-based
signal transmissionin the following discussions.)In the both
versions,the logical network is formed as a cubic meshof
nodesand links that are instantiatedfrom the Brain and the
Nerve classrespectively.

Figure 3 shows the M++ code of the agent-basedsignal
transmission.Starting from a NEURON-type node, a thread
repeatedly checks the current node type, (i.e., NEURON,
AXON, or DENDRITE) in main() andcalls the corresponding
rule function to propagateits copy along NERVE links to the
adjacentnodes.For instance,in the propagateByNeuronRule()
function, a threadcheckswhetherthe currentnodeis active,
(i.e., ready to transmit signals) or not. If it is active, the
threadpropagatesits copyto theadjacentnodesin six different
directionsthroughforkalong().

Figure 4 shows the M++ code of the combination-based
signal transmission,where any pair of Brain nodes, each
incidentto thesameNerve link, readandwrite variablesof this
link. A Signalthreadstaysin eachNEURON nodeandcharges
it periodically. This charge startsin main() wherethe thread
executesa clocking statementto invoke theclock() methodof
all the nodessimultaneously. Eachnodechecksits own type
andcalls thecorrespondingrule functionsoasto exchangeits
signal throughthe link variableswith the adjacentnodes.For
example, in exchangeSignalByNeuronRule(), a nodewrites 1
to thesignal variableof six incident links thatwill bereadby
the adjacentnodes.

The combination-basedsignal transmissionhas two supe-
riorities over the agent-basedsignal transmission.One is a
narrower semanticsgapbetweensimulationalgorithmandits
implementation.While themulti-agentsimulationis viewedas
the interactionamongagents,it is natural to considerspatial
information,(i.e., signalsin Codi-1bit) aspassive databut not
active agents.Another is better performance.Signalsin the
combination-basedsignal transmissionare link variablesand
thus much lighter-weight instancesthan threadsused in the
agent-basedtransmission,becauseof which the combination-
basedtransmissionperformsfaster. In thenext section,wewill
especiallyfocuson this performancemerit.

thread Signal {
private:

int i, s;
void propagateByNeuronRule() {

if(node<Brain>.active) {
for(i = 0 ; i <= 5 ; i++)

forkalong(i);
}
// the following two resemble the above method
void propagateByAxonRule(){ ... }
void propageteByDenRule(){ ... }

public:
void main() {

for(s = 0 ; s < SignalSteps ; s++) {
switch(node<Brain>.type) {

case NEURON:
propagateByNeuronRule(); break;

case AXON:
propagateByAxonRule(); break;

case DEND:
propagateByDendRule(); break;

} } } };

Fig. 3. M++ codeof agent-basedsignal transmission

class Nerve { public: int signal; }

class Brain {
private:

bool active; int i;
void exchageSignalByNeuronRule() {

if(active)
for(i = 0 ; i <= 5 ; i++)

link<Nerve>[i].signal = 1;
}
// the following two resemble the above method
void exchangeSignalByAxonRule() { ... }
void exchangeSignalByDendRule() { ... }

public:
int type;
void clock(int t) {

switch(type) {
case NEURON:

exchageSignalByNeuronRule(); break;
case AXON:

exchangeSignalByAxonRule(); break;
case DEND:

exchangeSignalByDendRule(); break;
} } };

thread Signal {
int s;

public:
void main() {

for(s = 0 ; s < SignalSteps ; s++) {
signalToNeuron(); // charge Neuron nodes
clocking s; // issues clocking mechanism

} } };

Fig. 4. M++ codeof combination-basedsignal transmission

IV. PERFORMANCE

We have comparedthesimulationperformancebetweenthe
agent-basedandthe combination-basedsignaltransmissionin
the Codi-1bit model,underthe test environmentsummarized
in Table I. The evaluation was conductedby repeatingfour
generationsas changingthe numberof processorsfrom 1 to
8.

As shown in Figure5, the combination-basedsignal trans-
missionyieldedbetterperformancethantheagent-basedtrans-
missionwhenwe usedfour or moreprocessors.In particular,
it achieved2.18-timespeed-upascomparedto theagent-based
transmissionin executionwith eight processors.

The agent-basedtransmissionitself improved its perfor-
mance1.15-time better when using two processors,which
however slowed down as adding more processors.This per-
formancedegradationis correlatedwith a trade-off between
the numberof threadsper machineand that of threadmigra-
tions over the system,(i.e., betweenthe parallelizationeffect
and the communicationoverhead.)Adding more processors

782

TABLE I

TEST ENVIRONMENT

Features Descriptions

CPU Athlon 1GHz � FSB 266MHz)

Memory DDR-SDRAM 256MB

Network card Myrinet M2MPCI32B

Switch Myrinet M2M-DUAL-SW8

OS Solaris8

Compiler gcc-2.95.3

#CPUconsistinga cluster 8

reducesthenumberof threadsallocatedpermachinebut incurs
more threadmigrations.The latter overheadis proportional
to the number of inter-processorlinks that grows rapidly
as more processorsare added.In fact, the total numberof
inter-processorlinks is 432 in two processors,1296 in four
processors,and 1728 in eight processors.A two-processor
configurationstill gainedparallelizationeffect that overcame
the cost of thread migration. However, using four or eight
processorsdeterioratedthe performancedue to the rapidly
growing number of inter-processorlinks, (e.g., three times
andfour times larger thanusingtwo processorsrespectively),
which incurredthe proportionalnumberof threadmigrations.

On the other hand,the combination-basedsignal transmis-
sionachievedbetterthantheagent-basedtransmissionin four-
and eight-processorconfigurations.It is due to a trade-off
betweenthenumberof clock() functioncallsandthatof inter-
processorlinks. As shown in Figure 5, a single processor
execution took more time in the combination-basedthan in
the agent-basedtransmission.This is becauseit had to call
the clock() function of all 24 � 24 � 18 nodes.However, the
number of such function calls can be reducedby adding
more processors.While the numberof inter-processorlinks
grows on the other hand, the link size in Codi-1bit is 200
bytes,which is 2/3 of the threadsize,(i.e., 316 bytes.)Thus,
communicationoverheadis lessin thecombination-basedthan
in the agent-basedtransmission.Furthermore,there is a big
differencein the numberof active threadsbetweenthe agent-
basedand the combination-basedtransmission.The former
needsapproximately150 threadsthat arecreated,propagated
to other nodes, and destructedevery simulation cycle. In
contrast,the latter usesonly 48 threads,eachfixed to a given
neuroncell and charging it with a signal periodically, which
thuscausesno threadmigrations.Therefore,the combination-
basedtransmissioncan minimize the cost of threadcreation,
destruction,migration,and context switch. As a result, these
factors brought better parallelism in execution with eight
processors.

V. CONCLUSION

In this paper, we have proposedthe combination-based
signal transmissionthat combinesthe principle of cellular
automatainto the multi-agent simulation, where spatial in-
formation is diffused to adjacentsubspacesevery simulation

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

CPUs

agent-based
combination-based

Fig. 5. Codi-1bit performance

time increment.To evaluateour proposedscheme,we have
programmedthe Codi-1bit simulationin both the agent-based
and the combination-basedsignal transmissionusing M++,
andhave comparedtheir codeandperformance.As discussed
in sectionIV, the combination-basedsignal transmissionim-
proved simulation performanceespeciallywhen the size of
spatialinformationto be exchanged,(i.e., the M++ link size)
is smallerthanthethreadsize.We have alsodemonstratedthat
theuseof cellular automatais effective for reducingthenum-
berof threadsto be spawned,destructed,andmigrated,which
considerablyimproves the entiresimulationperformance.

Our next planis to developa visualizationtoolkit thateases
on-goingstatuschecksand resultpresentationsof agentsand
cellular automata.

REFERENCES

[1] J. Ferber, Multi-AgentSystemsAn Introductionto DistributedArtificial
Intelligence. Addison-Wesley, 1999.

[2] R.CollinsandD.Jefferson,Artificial Life II . Addison-Wesley, 1992,ch.
Antfarm, pp. 579–601.

[3] J. M.EpsteinandR. L.Axtell, GrowingArtificial Societies. Cambridge,
MA 02142-1493:MIT Press,1996.

[4] IEEE Std 1516-2000,IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA). New York, NY 10016-5997:
IEEE, 2000.

[5] B. LoganandG. Theodoropolous,“The distributedsimulationof multi-
agentsystems,” in Proc. of the IEEE 89(2), 2001,pp. 174–185.

[6] N.Suzuki, M.Fukuda, and L.F.Bic, “Self-migrating threadsfor multi-
agentapplications,” in Proc. of IEEE ComputerSocietyInternational
WorkshoponClusterComputing, Melbourne,Australia,December1999,
pp. 221–228.

[7] Norberto,E.Nawa,M.Korkin, andH. garis,“Atr’s cambrainproject:The
evolution of large-scalerecurrentneuralnetwork modules,” in Proc. of
PDPTA’98, Las Vegas,NV, July 1998,pp. 1087–1094.

[8] M. Fukuda,N. Suzuki,L. M. Campos,andS. Kobayashi,“Programma-
bility andperformanceof m++ self-migratingthreads,” in Proc.of IEEE
Int � l Conferenceon ClusterComputing, Newport Beach,CA, October
2000,pp. 331–340.

[9] M. Fukuda and N. Suzuki, “M++ user’s manual,” University of
Washington, Bothell, WA 98011, Technical Report available in
http://dept.washington.edu/dslab/m++/user man.ps,September2002.

[10] G. Cugola,C. Ghezzi,G. P. Picco, and G. Vigna, “Analyzing mobile
codelanguages,” in Mobile ObjectSystems:Towards theProgrammable
Internet. Springer-Verlag:Heidelberg, Germany, 1997,pp. 93–110.

783

