
Agent Programmability Enhancement for
Rambling over a Scientific Dataset

Matthew Sell[0000−0002−5369−7599] and Munehiro Fukuda[000−0001−7285−2569]

Computing and Software Systems, University of Washington Bothell WA 98011, USA
{mrsell,mfukuda}@uw.edu

Abstract. Agent-based modeling (ABM), while originally intended for
micro-simulation of individual entities, (i.e., agents), has been adopted
to operations research as biologically-inspired algorithms including ant
colonial optimization and grasshopper optimization algorithm. Observ-
ing their successful use in traveling salesman problem and K-means clus-
tering, we promote this trend in ABM to distributed data analysis. Our
approach is to populate reactive agents on a distributed, structured
dataset and to have them discover the dataset’s attributes (e.g., the
shortest routes and the best cluster centroids) through agent migration
and interaction. We implemented this agent-based approach with the
multi-agent spatial simulation (MASS) library and identified program-
ming features for agents to best achieve data discovery. Of importance is
ease of describing when and how to have agents traverse a graph, ram-
ble over an array, and share the on-going computational states. We have
responded to this question with two agent-descriptivity enhancements:
(1) event-driven agent behavioral execution and (2) direct inter-agent
broadcast. The former automatically schedules agent actions before and
after agent migration, whereas the latter informs all agents of up-to-date
global information, (e.g., the best slate of centroids so far). This paper
presents our design, implementation, and evaluation of these two agent
descriptivity enhancements.

Keywords: agent-based modeling · programmability · distributed data
analysis.

1 Introduction

Agent-based modeling (ABM) gained its popularity to observe an emergent col-
lective group behavior of many agents by simulating and gathering their micro-
scopic interactions. Nowadays ABM is being applied to not only micro-simulation
but also operations research. This extension is known as biologically-inspired al-
gorithms such as ant colonial optimization (ACO) [1] and grasshopper optimiza-
tion algorithm (GOA) [13], heuristically effective to compute NP-hard problems:
traveling salesman problem (TSP) and K-means clustering problems. Our focus
is to promote this trend in agent-based computation to broader and scalable
data-science problems. Obviously this agent-based approach is not applicable
to all problems nor always competitive to major tools in big-data computing

2 M. Sell and M. Fukuda

including MapReduce, Spark, and Storm1. To seek for killer applications, we
should first point out that biologically-inspired algorithms walk agents over a
given dataset for discovering attributes of the data space, (e.g., the shortest
routes and the best cluster centroids). This is distinguished from data streaming
in most big-data tools that examine every single data item to compute statis-
tics of the entire dataset, (e.g., sum and average). Based on this observation,
we have aimed at facilitating agent-based data discovery by constructing a big
data structure over distributed memory and populating agents to ramble over
the dataset in parallel.

For the feasibility study, we used our multi-agent spatial simulation (MASS)
library where main() serves as a data-analyzing scenario while Places and Agents,
two major classes of the MASS library, construct a distributed dataset and pop-
ulate agents on it respectively. Through our former work [4,7,15], the MASS
library demonstrated two programming advantages: (1) enforcing weak consis-
tency among agent computation and (2) allowing users to code agents from the
vehicle driver’s viewpoint. The former guarantees an automatic barrier synchro-
nization among all agents for their state transitions and migrations each time
main() gets control back from a parallel function invocation on Agents. The lat-
ter intuitively navigates agents along graph edges or diffuses them to adjacent
array elements. However, we also encountered two challenges in describing agent
behaviors where users need (1) to give agents step-by-step actions to take – more
specifically what to do before and after their migration to a new vertex or an
array element and (2) to emulate inter-agent message broadcast with main()
that passes arguments to Agents functions. This emulation makes it tedious for
agents to share on-going computational states, e.g. the shortest route so far in
ACO-based TSP or the best centroids in GOA-based K-means.

These challenges are big burdens to non-computing specialists who are in-
terested in simply dispatching agents into their datasets but not coding every
single agent behavior. Therefore, we are addressing them by automating parallel
invocation of Agents functions and facilitating inter-agent message broadcast.
This paper presents our design, implementation, and evaluation of these two
agent descriptivity enhancements. The rest of this paper consists of the follow-
ing sections: Section 2 details the current challenges in agent descriptivity for
pursuing agent-based data discovery; Section 3 presents our implementation of
event-driven agent behavioral execution and direct inter-agent message broad-
cast; Section 4 evaluates our implementation both from programmability and
execution performance; and Section 5 concludes our discussions.

2 Challenges in Applying ABM to Distributed Data
Analysis

This section emphasizes ABM’s superiority over conventional approach to struc-
tured data analysis, summarizes our previous endeavor with the MASS library,

1 http://{hadoop,spark,storm}.apache.org

Agent Programmability Enhancement for Rambling over a Scientific Dataset 3

and clarifies the challenges in agent descriptivity for ABM to be smoothly
adopted to distributed data discovery.

2.1 Conventional Approach to Analysis of Structured Dataset

Most big-data computing tools benefit statistical analysis of data continuously
streamed as flat texts from social, business, and IoT environments. To extend
their practicability to analysis of structured datasets, they provide users with
additional services to partition, flatten, and stream multi-dimensional NetCDF
data2 into MapReduce with SciHadoop [2]; to describe and process graphs with
GraphX3 on top of Spark; and to schedule repetitive MapReduce processing
over a structured dataset with Tez4. Furthermore, some textbooks [8,11] intro-
duce how to process a graph problem with MapReduce and Spark in an edge-
oriented approach that reads a list of graph edges, narrows down candidate edges
by examining their connectivity, and eventually identifies sub-graphs, (e.g., tri-
angles) in the graph [5]. While these big-data computing tools offered simple
programming frameworks for parallel computing and interpretive execution en-
vironments, their extension to structured datasets does not always achieve the
best programmability and execution performance of data discovery [4]. This is
due to their nature of data streaming. For instance, data streaming does not
allow data to stay in memory and thus cannot analyze different data relation-
ships through the same streaming operation. Repetitive MapReduce invocations
or many Spark transformations would transfer back and forth or swap in and
out data between disk and memory, which slows down the execution speed.

As observed above, the key is allowing different analyses to be applied to
an in-memory structured dataset. GraphLab followed by Turi [9] maintains a
graph structure on Amazon EC2, has each graph vertex access its neighboring
vertices’ state, and prepares a variety of graph functions in Python. NetCDF4-
Python5 is a Python interface to the NetCDF parallel I/O that is implemented
on top of HDF56 and MPI-I/O, so that a NetCDF dataset is loaded over a
cluster system and accessed in parallel by Python programs. Although these
tools handle graphs or multi-dimensional arrays in Python, (i.e., a high-level
interpretive environment), they still focus on statistical analysis of graphs and
arrays such as vertices/edges counting, summation, and max/min values as well
as major machine-learning functions that can be done with data streaming, too.

In contrast to them, our agent-based approach loads a structured dataset
in parallel, maintains the structure in memory, dispatches reactive agents onto
the dataset, and discovers user-designated data attributes in an emergent group
behavior among these agents.

2 https://www.unidata.ucar.edu/software/netcdf/
3 http://spark.apache.org/graphx
4 http://tez.apache.org
5 https://github.com/Unidata/netcdf4-python
6 https://support.hdfgroup.org/HDF5/

4 M. Sell and M. Fukuda

2.2 Previous Work with MASS

We have evaluated the feasibility of and challenges in agent-based data discov-
ery, using the MASS library. MASS instantiates a multi-dimensional distributed
array with Places and initializes it with an input data file in parallel [14]. For
a graph construction, we create a 1D array of vertices and initialize the ver-
tices with a file that contains an adjacency list. MASS populates agents on a
given Places object from the Agents class. MASS performs parallel function call
to all array elements and agents with Places.callAll(fid) and Agents.callAll(fid);
data diffusion across array elements with Places.exchangeAll(); and agent mi-
gration, termination, and additional population with Agents.manageAll(). Note
that these agent behaviors are scheduled as migrate(), kill(), and spawn() in
Agents.callAll() and thereafter committed with Agents.manageAll(). Listing 1.1
shows main() in a typical MASS-based data discovery, which loads a structured
dataset into memory (line 4), populates a crawler agent (line 5), lets it start
from place[0] (line 6), and schedules its dissemination over the dataset (lines
7-9). Weak consistency or barrier synchronizations are enforced between each
statement of callAll() and manageAll(). Listing 1.2 describes each agent’s be-
havior in walk() that examines all edges emanating from the current vertex
(line12) and disseminates its copies along each edge (lines 13-16).

Listing 1.1. The main program

1 import MASS.∗;
2public class Analysis {
3 public void main(String[] args) {
4 Places dataset = new Places(...);
5 Agents crawlers = new Agents(‘‘Crawler’’, dataset, 1);
6 crawlers.callAll(ClawerAgent.init , 0); // start from place[0]
7 while (crawlers.hasAgents()) {
8 crawlers.callAll(ClawerAgent.walk);
9 crawlers.manageAll();

10} } }

Listing 1.2. Agent behavior

1public class Crawler extends Agent {
2 public static final int init = 0; // fid 0 linked to init()
3 public static final int walk = 1; // fid 1 linked to walk()
4 public void init(Object arg) {
5 migrate((Integer)arg); // let it start from place[arg]
6 }
7 public void walk() {
8 if (place.visited == true) {
9 kill();

10 return; }
11 place.visited = true;
12 for (int i = 0; i < place.neighbors.length; i++) {
13 if (i == 0)
14 migrate(place.neighbor[0]);
15 spawn(place.neighbors[i]);
16} } }

Agent Programmability Enhancement for Rambling over a Scientific Dataset 5

Using MASS, we have so far developed two practical applications and one
benchmark test set in data discovery: (a) global-warming analysis based on
NetCDF climate data [15], (b) biological network motif search [7], and (c) com-
parison with MapReduce and Spark in six benchmark programs in graphs, op-
timizations, and data sciences [4]. Through the development work, we encoun-
tered two performance issues in agent management. One is an explosive increase
of agent population that consumed a cluster system’s memory space. For in-
stance in biological network motif search, 5.5 million agents were spawned in
total over 16MB × 8 compute instances to find all motifs with size five. The
other is too many barrier synchronizations incurred between Agents.callAll()
and manageAll(). To address these problems, we have developed two additional
MASS features to improve the execution performance:

1. Agent population control: does not keep all agents active when they
migrate over a dataset, thus allows users to specify the max cap of agent
population in MASS.Init(cap), serializes agents beyond this cap, and de-
serialize them when the population goes down; and

2. Asynchronous and automatic agent migration: unlike typical ABM
simulation based on synchronous agent execution, will reduce synchroniza-
tion overheads through doAll(fid[],iterations), which automates asynchronous
iterations of callAll(fid) and manageAll() invocations.

In [4,5,14], we demonstrated the MASS library’s substantial performance
improvements with these two new features. However, we have not yet addressed
any challenges in agent programmability to pursue agent-based data discovery.
Below we summarize two challenges we have identified as well as our solutions
to them:

1. Manual descriptions of agent decision-making logic: this drawback re-
quires users to precisely give agents step-by-step actions to take. For better
descriptivity, agents should invoke their behavioral function automatically
before their departure, upon their arrival at a new destination, and when re-
ceiving an inter-agent message. As a solution, we annotated @OnDeparture,
@OnArrival, and @OnMessage to agent functions to invoke automatically.

2. Emulation of inter-agent broadcast: while Places can serve as an asyn-
chronous mailbox shared among agents, the synchronous system-wide com-
munication must be emulated at a user level via main() that becomes a focal
point of collecting return values from and sending arguments to agent func-
tions. We implemented direct inter-agent broadcast in the Agents.exchangeAll()
function. It allows agents to smoothly share on-going computational states,
e.g. the shortest route so far in ACO-based TSP.

3 Agent Behaviors to Support Data Discovery

This section describe our enhancement of agent descriptivity that supports event-
driven agent behaviors and inter-agent message broadcast. We also differentiate
our implementation techniques from other ABM systems.

6 M. Sell and M. Fukuda

3.1 Event-Driven Agent Behaviors

While the MASS library maintains weak consistency that guarantees a barrier
synchronization of all agents upon executing callAll(), manageAll(), or doAll(), it
is a big burden for users to repetitively invoke agent/place function calls from the
main() program. Instead, such functions should be automatically invoked when
their associated events are fired. Since agents duplicate themselves and ramble
over a structured data, their major events are three-fold: agents’ departure from
the current place, their arrival at a new place, and their duplication. We allow
users to associate agent functions with these three events, each annotated with
@OnDeparture, @OnArrival, and @OnCreation. We also extend the doAll(fid[
],iterations) function to doWhile(lambda) and doUntil(lambda). They fire these
events and commit the annotated functions while a given lambda expression
stays true or until it sets true. With these features, users can focus on describing
event-driven agent behavior rather than orchestrating their invocations.

A question comes up on how to trigger, to keep, and to terminate this
event-processing sequence. To get started with agent-based data discovery, users
are supposed to first populate agents on a structured dataset through new
Agents(AgentClassName, places) that schedules their very first invocation of
@OnCreation function, say funcA. They will then trigger Agents.doWhile(lambda)
just only one time where lambda in many cases would be ()→agents.hasAgents(),
which repeats annotated agent functions until all agents are gone. If funcA sched-
ules migrate() in it, doWhile() initiates the agent migration, before and after of
which it invokes all @OnDeparture and @OnArrival-annotated functions, each
named funcB and funcC respectively. If funcC schedules spawn(), kill(), and/or
migrate(), the new events are continuously fired by doWhile().

Listing 1.3 shows the simplification of the main() program with doWhile. The
main program is completely relieved from agent behavioral orchestration. All it
has to do is to initiate their repetitive data analysis (line 6). As we are currently
implementing an interactive version of the MASS library with JShell [10], data-
science specialists (who do not care of agent implementation) will be able to
simply inject off-the-shelf agents into their dataset in an interactive fashion. On
the other hand, model designers (who are interested in developing agent-based
algorithms) can now clarify about which event will fire a given agent behavior,
as shown in lines 2 and 6 in Listing 1.4.

The MASS library is a collection of Places/Agents functions, each called
one by one from the main program but executed in parallel over a cluster sys-
tem and with multithreading. Among them, the center of agent management
is Agents.manageAll(). It examines all agents that have changed their status in
the last callAll method through spawn(), kill(), or migrate(). How the manageAll
function processed them is based on batch processing: (1) spawning all new chil-
dren, thereafter (2) terminating those that called kill(), and finally (3) moving all
that called migrate(). This in turn means that a barrier synchronization is carried
out between each of these three actions, which thus enforces weak consistency.
While agent annotation provides users with an option of event-driven program-
ming, the underlying MASS execution model still maintains weak consistency

Agent Programmability Enhancement for Rambling over a Scientific Dataset 7

Listing 1.3. The main program with doWhile

6 crawlers.callAll(ClawerAgent.init , 0); // start from place[0]
7 while (crawlers.hasAgents()) {
8 crawlers.callAll(ClawerAgent.walk);
9 crawlers.manageAll();

should be replaced with

6 crawlers.doWhile(()→ crawlers.hasAgents());

Listing 1.4. Agent behavior with agent annotations

1public class Crawler extends Agent {
2 @OnCreation
3 public void init(Object arg) {
4 ...
5 }
6 @OnArrival
7 public void walk() {
8 ...

by the manageAll function that handles each of OnCreation, OnDeparture, and
OnArrival annotations in the order summarized in Table 1. The eventDispatcher
class in this table uses Java reflection to find each agent’s method associated
with a given annotation. In an attempt to reduce the effect of using Java re-
flection, the eventDispatcher caches methods associated with each annotation.
Our initial testing has shown, as compared with the use of integers representing
functions with callAll (see lines 2-3 in Listing 1.2), this caching method reduces
the impact to an extent where it is of statistical insignificance. Since we focus
on data scalability in data discovery rather than speed-up in ABM simulation,
this implementation would not negate the advantages that MASS provides.

Table 1. Annotation handling in manageAll

actions annotation handling

(1) spawn for (Agent agent : agents)
eventDispatcher.invoke(OnCreation.class, agent);

(2) kill no annotation handling

(3) migrate for (Agent agent : agents)
eventDispatcher.invoke(OnDeparture.class, agent);

move agents to their new place.
... barrier synchronization among all cluster nodes ...
for (Agent agent : agents)

eventDispatcher.invoke(OnArrival.class, agent);

3.2 Inter-Agent Message Broadcast

In general, it is not easy to deliver a message directly from one to another moving
agent. As a solution to inter-agent messaging in MASS, we have originally chosen

8 M. Sell and M. Fukuda

via-place indirect communication among agents that reside on the same place.
In other words, agents use each place’s data members as a mailbox. Rather than
make a rendezvous, senders deposit their messages to a given place, whereas
receivers read or pick them up later by visiting the same place. In many cases
when agents disseminate over a graph, most frequent information exchanged
among agents are run-time attributes of each place, regarding if the current
place, (i.e., a vertex) has been visited or not, if the currently recorded travel
distance to this vertex is longer than a new agent’s distance traveled, and which
vertex is the current vertex’s predecessor. Therefore, we believe that the MASS
indirect communication can cover many agent-based graph analyses.

However, this indirect communication is expensive to maintain message or-
dering or memory consistency, and thus cannot cover biologically-inspired op-
timizations such as ACO, GOA, and particle swarm optimization (PSO) [6].
After every migration of agents, they need to identify the agent temporarily
closest to the optimal solution, for the purpose of having other agents follow the
best. The details are given in Listings 1.5 and 1.6. The MASS main program
(in Listing 1.5) collects the latest agent states from the first Agent.callAll() as
the return values (line 8) and then scatters the best agent information to the
second Agent.callAll() as the arguments (line 10). Since the main behaves as
the focal point of this collective communication and the best agent sorting op-
eration, the entire agent management code in lines 5-10 cannot be condensed
into doAll(max). Therefore, none of agent behavior such as getState and ap-
proachToBest functions in Listing 1.6 can be annotated with @OnDeparture nor
@OnArrival, either.

Listing 1.5. MASS main of PSO

1main() {
2 public void main(String[] args) {
3 Places dataset = new Places(...);
4 Agents swarm = new Agents(‘‘Particle’’, dataset, Integer.intValue(args[0]));
5 Data[] data = new Data[swarm.nAgents()];
6 for (int i = 0; i < max; i++) {
7 swarm.manageAll();
8 data = swarm.callAll(Particle.getState); // gather each agent’s value
9 Data[] best = min(data); // find the best value so far

10 swarm.callAll(Particle.approachToBest , best); // scatter the best value
11} }

Listing 1.6. MASS agent behavior of PSO

1public class Particle extends Agent {
2 int[] bestValue, myValue; // globally best or my current value
3 public Object getState(Object arg) {
4 myValue = {index[0], index[1], place.value};
5 return myValue; // return my current value
6 }
7 public Object approachToBest(Object arg) {
8 bestValue = (int[])arg;
9 x = place.index[0] + updateVelocity(bestValue);

10 y = place.index[1] + updateVelocity();
11 migrate(x, y); // approach to the best agent so far
12} }

Agent Programmability Enhancement for Rambling over a Scientific Dataset 9

To address this problem, we have implemented inter-agent message broad-
cast, so that each agent can collect the states from all the others directly
and identify the best agent so far independently from the main program. The
MASSMessaging class allows agents to broadcast a message to the other agents
or places with sendAgentMessage(message) or sendPlaceMessage(message)
respectively.

Using agent annotations, we deliver a message directly to each agent’s or
place’s method that is annotated with @OnMessage. This relieves the main pro-
gram from collective communication. As demonstrated in Listings 1.7, all agent
behavioral coordination in the main is simplified into doAll(max) that repeats
the max times of PSO agent migration. Listings 1.8 describes event-associated
PSO agents. The logic to find the best value is moved from the main into the
PSO agent (line 11). All the agent logic is clarified with arrival and message
events.

Listing 1.7. Simplified PSO (main)

5 Data[] data = new Data[swarm.nAgents()];
6 for (int i = 0; i < max; i++) {
7 data = swarm.callAll(Particle.getState);
8 ...
9 ...

10 swarm.callAll(Particle.approachToBest , best);

should be replaced with

5 swarm.doAll(max);

Listing 1.8. Annotated PSO (agents)

1public class Particle extends Agent {
2 int[] bestValue, myValue; // globally best or my current value
3 @OnArrival
4 public Object getValue(Object arg) {
5 myValue = {index[0], index[1], place.value};
6 MASSMessaging.sendAgentMessage(myValue);
7 }
8 @OnMessage
9 public Object approachToBest(Object best) {

10 bestValue = (int[])arg;
11 if (myValue[2] > bestValue[2])
12 // the same logic as lines 9−11 in Listing 1.6

Our initial implementation of agent messaging uses Hazelcast 7, an in-memory
distributed data grid. Hazelcast was selected for performance, maturity, and
ease of connecting nodes together. Our use of Hazelcast for messaging allows for
agents to send messages (Java Objects) to either a specific agent, a collection
of agents, or all agents. An agent may transmit a message by calling sendA-
gentMessage and providing either an enumerated value for a broadcast or one

7 https://hazelcast.com/

10 M. Sell and M. Fukuda

or more agent ID numbers. The payload is serialized and the destination agents
receive the message via a callback that is registered upon agent creation or mi-
gration to a different node. An agent method annotated with @OnMessage with
either no arguments or a single argument with data type matching the payload
is invoked and the message is delivered. Message delivery callbacks are queued
using the aforementioned eventDispatcher so that messaging events are handled
at the appropriate time.

3.3 Related Work

RepastHPC [12] and FLAME [3] are two representative platforms to run ABM
simulations in parallel on top of MPI.

RepastHPC populates and moves agents over a shared space named Pro-
jection, which is similar to MASS. It allows users to code agent behavior as
a collection of methods and to schedule their invocation events in their exe-
cution environment named Context. The main program then initiates an en-
tire execution. However, RepastHPC’s event scheduling is an enumeration of
agent methods to be invoked along a repetitive time sequence. We feel that this
scheduling strategy is weaker than MASS that associates each agent method
with a named event. RepastHPC has its agents communicate with each other
indirectly through Project. However, they have no message-broadcast feature.

FLAME views an ABM simulation as a collection of communicating, state-
transiting agents statically mapped over MPI ranks. FLAME distinguishes two
different languages: XML and C. XML declares agent interfaces and sched-
ules their execution events, while C describes agent behaviors. In similar to
RepastHPC, FLAME’s event scheduling makes a list of agent methods to in-
voke. On the other hand, FLAME provides agents with a message box at each
MPI rank, so that each agent can broadcast its state to all the others. How-
ever, message retrievals must be done within a code block specified in MES-
SAGE LOOP. Therefore, FLAME can’t invoke a given method upon a message
broadcast rather than keep polling messages.

Besides event scheduling and inter-agent message broadcast, RepastHPC and
FLAME are not a good choice for distributed data discovery rather than ABM
simulation. The reasons are: RepastHPC needs to handle I/O in the main and
cannot control agent population; and FLAME needs to enclose all spatial data
in each agent [4].

4 Evaluation of Agent Behaviors

We compared the conventional and annotated versions of two MASS applications
from the viewpoints of their code descriptivity and execution performance. These
applications are agent-based BFS (breadth-first search) and PSO programs.

Our descriptivity comparison focuses on quantitative analysis of their MASS-
Java code, in particular regarding their total lines of code (LoC) and boilerplate
code (BP). The latter counts the lines of code that is irrelevant to the algorithms

Agent Programmability Enhancement for Rambling over a Scientific Dataset 11

but needed to use the MASS library for their parallelization. Table 2 shows our
analysis. As expected, both BFS and PSO annotated versions show a 37% to
58% reduction of LoC in the main program due to their simplification of agent
coordination into a doWhile() or doAll() statement. In some cases, however, the
number of agent BP lines is not reduced or may even increase slightly because
of the addition of annotations.

Table 2. BFS and PSO Descriptivity

BFS PSO
Total Main Agent Total Main Agent

Conventional LoC 160 27 43 Conventional LoC 139 52 57
BP 23 10 9 BP 25 15 6

Annotated LoC 148 17 36 Annotated LoC 102 22 57
BP 21 9 9 BP 21 7 11

Reduction LoC in % 7.5 37 16 Reduction LoC in % 26.6 57.7 0
BP in % 9 10 0 BP in % 16 53 -83

Our performance measurements compared both conventional and annotated
version of BFS and PSO programs executed on top of the MASS library. Figure 1
visualizes their execution time. In BFS, its annotated version yielded 29% and
9% slow-down as compared to the conventional version when executed with a
single thread and four threads respectively. In PSO, we observed a significant
performance increase, most likely attributable to a large reduction in message
transmission. This reduction in messaging overhead helped to reduce execution
time by 83%. Contrary to our expectations, increasing the number of threads for
PSO execution actually increased execution time, which we attribute to cache
thrashing and memory contention.

While our previous performance evaluations on MapReduce and Spark in [4]
used different problem sizes in BFS and PSO, each with 3000 vertices and 600×
600 places respectively, we estimated their execution performance with 2048
vertices and 3K × 3K places as in Figure 1. MapReduce and Spark would take
17.4 and 6.9 seconds in BFS and 79.5 and 562.4 seconds in PSO respectively.
These estimates indicate that the annotated version of MASS performs 2 times
slower in BFS but 8+ times faster in PSO than MapReduce and Spark. We are
further improving MASS performance for solving graph problems faster.

5 Conclusions

To apply ABM to distributed analysis of structured dataset, we enhanced the
MASS library with method annotations and inter-agent message broadcast,
which allows data scientists to simply inject off-the-shelf agents from the main
program, whereas developers of agent-based algorithms can focus on describing
event-driven agent behaviors. Our analysis of agent programmability and execu-
tion performance demonstrated a drastic reduction in both LoC and in execution
time for messaging-based applications. For non-messaging applications we ob-
served less than a 10% negative performance effect. Additionally, we feel that
this new event-driven behavior model more clearly encapsulates agent behavior,
thus making the MASS applications easier to understand and easier to maintain.

12 M. Sell and M. Fukuda

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4

ex
ec

ut
io

n
tim

e
(s

ec
s)

threads

(a) BFS: a network of 2048 vertices

Conventional
Annotated

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4

ex
ec

ut
io

n
tim

e
(s

ec
s)

threads

(b) PSO: 500 agents on 3K x 3K places

Conventional
Annotated

Fig. 1. BFS and PSO Execution Performance

References

1. Blum, C.: Ant colony optimization: introduction and recent trends. Physics of Life
Reviews 2(4), 353–373 (2005)

2. Buck, J., et al.: SciHadoop: Array-based Query Processing in Hadoop. In: Proceed-
ings of SC’2011 (2011), doi:10.1145/2063384.2063473

3. FLAME: http://www.flame.ac.uk
4. Fukuda, M., Gordon, C., Mert, U., Sell, M.: Agent-Based Computational

Framework for Distributed Analysis. IEEE Computer 53(3), 16–25 (2020).
https://doi.org/doi:10.1109/MC.2019.2932964

5. Gordon, C., et al.: Implementation techniques to parallelize agent-based graph
analysis. In: Int’l Workshops of PAAMS 2019, Highlights of Practical Applications
of Survivable Agents and Multi-Agent Systems. pp. 3–14. Avila, Spain (June 2019)

6. Kennedy, J., et al.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks IV. pp. 1942–1948 (1995)

7. Kipps, M., et al.: Agent and Spatial Based Parallelization of Biological Network
Motif Search. In: 17th IEEE Int’l Conf. HPCC. pp. 786–791. New York (2015)

8. Lin, J., et al.: Data-Intensive Text Processing with MapReduce. Morgan & Clay-
pool Publishers (2010)

9. Low, Y., et al.: Distributed GraphLab: A Framework fro Machine Learning and
Data Mining in the Cloud. In: Proc. of the 38th Int’l Conf. on Very Large Data
Bases, Vol. 5, No. 8. pp. 716–727. Istanbul, Turkey (August 2012)

10. Oracle: Java Platform, Standard Edition, Java Shell User’s Guide, Release 9. Tech.
Rep. E87478-01 (2017)

11. Parsian, M.: Data Algorithms: Recipes for Scaling Up with Hadoop and Spark.
O’Reilly (2015)

12. RepastHPC: https://repast.github.io/repast hpc.html
13. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: Theory

and application. Advances in Engineering Software 105, 30–47 (2017)
14. Shih, Y., et al.: Translation of String-and-Pin-based Shortest Path Search into

Data-Scalable Agent-based Computational Models. In: Proceedings of Winter Sim-
ulation Conference. pp. 881–892. Gothenburg, Sweden (December 2018)

15. Woodring, J., et al.: A Multi-Agent Parallel Approach to Analyzing Large Climate
Data Sets. In: 37th IEEE ICDCS. pp. 1639–1648. Atlanta, GA (June 2017)

https://doi.org/doi:10.1109/MC.2019.2932964

	Agent Programmability Enhancement for Rambling over a Scientific Dataset

