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Abstract

This annual report presents the PI’s research activities conducted in year 2006 on NSF SCI
#0438193: Mobile-Agent-Based Middleware for Distributed Job Coordination. The PI has contin-
ued to investigate and to evaluate the applicability of mobile agents to grid-computing middleware
by implementing and enhancing his AgentTeamwork system that facilitates job deployment, check-
pointing, resumption, migration and monitoring in a hierarchy of mobile agents. In year 2006, the
PI, his undergraduate research assistants, and an Ehime University graduate student focused on inter-
cluster job coordination, remote resource monitoring and database construction, GUI and file transfer,
language support, and application development. We have also measured the preliminary performance
of AgentTeamwork’s inter-cluster job coordination and parallel file transfer.
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1 Overview

NSF SCI #0438193: Mobile-Agent-Based Middleware for Distributed Job Coordination is an RUI
project that investigates and evaluates the applicability of mobile agents to grid-computing middleware
by implementing and enhancing the AgentTeamwork system. The system facilitates job deployment,
check-pointing, resumption, migration and monitoring in a hierarchy of mobile agents.

Year 2006 brought in the following achievements as the mid year of our three-year NSF-granted
research activities:

1. an implementation and a preliminary performance evaluation of our inter-cluster job coordination
algorithm in an agent hierarchy,

2. an implementation of AgentTeamwork’s dynamic job-scheduling infrastructure including runtime
remote-resource monitoring and database management,

3. an implementation and a preliminary performance evaluation of AgentTeamwork’s parallel and
pipelined file-transfer mechanism, and

4. an enhancement of our language support as well as application development.

In addition to the research activities and preliminary results, this report will give details of the PI’s
student supervision, publications and budget activities in 2006 as well as his research plan for year 2007.

2 Research Activities

This section clarifies updates in AgentTeamwork’s system overview and reports our implementation
progress in year 2006.

2.1 System Overview

The following descriptions highlight new components and features with underlines so as to distinguish
them from those implemented in year 2005.

AgentTeamwork is grid-computing middleware that uses mobile agents to deploy a user program
to and monitor its execution at idle computing nodes [2]. A new node can join the system by run-
ning a UWAgents mobile-agent execution platform to exchange agents with others [3]. The system
distinguishes several types of agents such as commander, resource, sensor, sentinel, and bookkeeper
agents, each specialized in job submission, resource selection, resourcemonitoring, job deployment and
resumption, and job-execution bookkeeping respectively.

A user submits a new job with a commander agent that spawns a resource agent. To find a collection
of remote machines fitted to resource requirements, the resource agent locally retrieves appropriate
resource information from AgentTeamwork’sXML databaseas well as downloads new information
from a remote ftp server if necessary1. Thereafter,theresourceagentdispatchesa collectionof sensor
agentsin a hierarchyto remoteclustersand desktopcomputersthat havenot beenallocatedto user
computations.

Given a collection of destinations, the commander agent spawns a pair of sentinel and bookkeeper
agents, each hierarchically deploying as many children as the number of the destinations. Each sentinel
launches a user process at a different machine with a unique MPI rank, takes a new execution snapshot
periodically, sends it to the corresponding bookkeeper, monitors its parent and child agents, and resumes
them upon a crash. A bookkeeper maintains and retrieves the corresponding sentinel’s snapshot upon a
request. Userfiles andthestandardinput aredistributedfrom thecommanderto all thesentinelsalong
their agenthierarchy,while outputsareforwardeddirectly to thecommanderanddisplayedthroughthe
AgentTeamwork’sGUI.

1The current implementation accessesftp.tripod.comto download new XML files registered within 24 hours.
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A user program is wrapped with a user program wrapper, one of the threads running within a sentinel
agent. The wrapper presents a message-recording and error-recoverable TCP library namedGridTcp to
a user program, and serializes its execution snapshot in bytes including in-transit messages. Although
an application can be coded with GridTcp similarly to the direct use of Java sockets, AgentTeamwork
provides a user with a fault-tolerant version of the mpiJava API [5] that has been actually implemented
with GridTcp.

2.2 Implementation

In the following, we explain the progress and status of our work items listed in Section 7 “Plan for Year
2006” of our last year’s annual report [1] in the same order.

2.2.1 Inter-Cluster Job Coordination

AgentTeamwork used to support job coordination over only a collection of desktop computers. In other
words, the system was not able to deploy a job to multiple clusters over their gateways, although the
GridTcp library facilitated inter-cluster communication at a user level. The challenges in inter-cluster
job coordination are three-fold: (1) to allow mobile agents to migrate over a gateway to each cluster
computing node, (2) to develop an algorithm of efficiently mapping a hierarchy of sentinel agents to a
collection of clusters, and (3) to minimize the overhead of over-cluster communication among agents
that repeat sending a ping message and an execution snapshot to others.

The first challenge was resolved by revising UWAgents so that agents gained a new capability of
traveling between separate networks or clusters and even sending messages to those on the other net-
work. Note that the details of UWAgents’ inter-cluster migration were described in [3]. The following
code fragment shows an example of agent migration through two cluster gateways, (i.e.,gateway1 and
gateway2) to a computing node namednode1in a private address domain:

String[] gateways = new String[2];
gateways[0] = "gateway_1";
gateways[1] = "gateway_2";
hop("node1", gateways, "nextFunction", args );

The second challenge was addressed by forming a tree of sentinel agents, each residing on a different
cluster gateway and further generating a subtree from it that covers all its cluster-internal nodes. Fig-
ure 1 describes an implementation of our inter-cluster job coordination. It distinguishes clusters with a
private IP domain from desktops with a public IP address by grouping them in the left and right subtrees
respectively of the top sentinel agent withid 2. In the left subtree, all but the leftmost agents at each
level are deployed to a different cluster gateway. Note that we call themgateway agentsin the following
discussions and consider the left subtree’s root withid 8 as the first gateway agent. Each leftmost agent
and all its descendants are dispatched to computing nodes below the gateway managed by this leftmost
agent’s parent. We distinguish them from gateway agents ascomputing-node agents.

This deployment has three merits: (1) all gateway agents are managed in a tree of non-leftmost
nodes and simply differentiated from computing-node agents; (2) each gateway agent can calculate its
position in the left subtree starting from agent 8 so as to locate a cluster it should manage; and (3) each
computing-node agent can calculate its position within a subtree starting from its gateway agent, (i.e.,
within its cluster) so as to locate a computing node it should reside and to calculate its MPI rank from
its agent id.

The third challenge was overcome by having an agent temporarily cache its communication counter-
part’s IP address after their first communication as far as they reside in the same network domain. With
this address caching mechanism, an agent can send messages to its final destination or its gateway agent
rather than relay them through the ascendant and/or descendant agents in the hierarchy.
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Figure 1: Inter-cluster job distribution in AgentTeamwork

2.2.2 Dynamic Job Scheduling

We have first focused on providing an infrastructure to facilitate dynamic job scheduling. It includes
two components: (1) the sensor agent that migrates to a remote site and periodically collects its resource
status and (2) the resource agent that maintains such runtime resource information on an XML-based
database and generates a runtime collection of remote IP names fitted to a given job execution.

Sensor Agent
A pair of sensor agents, each deployed to a different node, periodically measure the usage of CPU,
memory, and disk space specific to their node as well as their peer-to-peer network bandwidth. These
two agents are distinguished as a client and a server sensor. The client initiates and the server responds
to a bandwidth measurement. They spawn child clients and servers respectively, each further dispatched
to a different node and forming a pair with its correspondence so as to monitor their communication and
local resources.

The sensor agents’ inter-cluster deployment is similar to that of sentinel agents, while sensors must
form pairs of a client and a server. Upon an initialization, the resource agent takes charge of spawning
two pairs of root client and server sensors, one dedicated to desktop computers and the other deployed
to clusters. The former pair recursively creates child clients and servers at different desktops in the
public network domain. The latter pair migrate to different cluster gateways where they creates up to
four children. Two of them migrate beyond the gateway to cluster nodes as further creating offspring.
The other two are deployed to different cluster gateways, and subsequently repeat dispatching offspring
to their cluster nodes and other cluster gateways.

With this hierarchy, the resource information of all cluster nodes is gathered at their gateway and
thereafter relayed up to the resource agent that eventually reflects it to the local XML database.

Resource Agent
We have enhanced the resource agent to create and to access a database for runtime information on
remote resources. More specifically, the resource agent downloads new XML files from a shared ftp
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Figure 2: A GUI output

server, maintains them in its local XML database for both initial and runtime resource status, and updates
XML files with runtime status that has been reported from sensor agents. These features have allowed the
resource agents to choose a runtime-based collection of remote IP names fitted to a given job execution.

2.2.3 GUI and File Transfer

Figure 2 shows our applet-based GUI that allows users to submit their job through the graphical menu,
to specify their data files handled in their application, to type in keyboard inputs at run time, and to view
the status of and the standard output of each sentinel agents.

Upon receiving a new job request, the GUI creates and executes a shell script that launches a com-
mander agent as passing job execution parameters. Thereafter, the commander agent reads input data
files and the standard input, packetizes those file streams, and distributes packets to each sentinel agent
through its agent hierarchy. This file transfer avoids multiple reads of the same file on a user site, dupli-
cates file fragments at each tree level of sentinel agents, and sends them in pipeline so that a remote user
process can start its computation without waiting for an entire file.

On the other hand, output files and the standard output are forwarded from each sentinel directly to
the commander agent that writes them in a user-local disk and/or prints them out in a GUI window.

We have also implemented the GridFile class that is instantiated at each sentinel (and thus running
under its corresponding user process) so as to wrap all files exchanged with the user process. Those
files are maintained in local memory, captured in an execution snapshot, and de-serialized at a new site
when the corresponding user process resumes its computation after a migration or a crash. GridFile
can also maintain user files in the/tmpdisk space at each remote node if they are too large to place in
memory. We are currently revising GridFile to carry these/tmpfiles to a new site where a user process
has migrated.
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1 import AgentTeamwork.Ateam.*;
2 public class MyApplication extends AteamProg {
3 private int phase;
4 public MyApplication(Object o){} // system-reserved constructor
5 public MyApplication( ) { // user-own constructor
6 phase = 0;
7 }
8 private boolean userRecovery( ) {
9 phase = ateam.getSnapshotId( ); // check the snapshot version

10 }
11 private void compute( ) { // real computation
12 ...;
13 ateam.takeSnapshot(phase); // user-initiated check-pointing
14 ...;
15 }
16 public static void main( String[] args ) {
17 MyApplication program = null;
18 if ( ateam.isResumed( ) ) { // application resumed in the middle
19 program = (MyApplication)
20 ateam.retrieveLocalVar( "program" );
21 program.userRecovery( );
22 } else { // application started from the top
23 program = new MyApplication( );
24 ateam.registerLocalVar( "program", program );
25 }
26 program.compute( ); // call real computation
27 } }

Figure 3: User-specific check-pointing code

As of December 2006, random access files cannot be modified among multiple processes, which is
our current work item and will be implemented in the first half of year 2007.

2.2.4 Language Support

AgentTeamwork assumes that each application should be compiled to or directly coded in a collection
of functions namedfunc id whereid is a zero-based index. Launched from each sentinel agent, the user
program wrapper first callsfunc 0, then repeats calling a differentfunc id indexed by the return value
of its previous function, and ends in the function whose return value is -2. (See Figure 3 in our annual
report for year 2005 [1].) The wrapper also takes an execution snapshot at each transition from one to
another function call.

We have implemented a function-based cryptography in the user program wrapper for the purpose
of securing an execution of a given user program at a remote site. The user program wrapper uses
Javassist [4] to encrypt allfunc id functions at a job submission and to decrypt each function on demand
by directly manipulating byte code of a user application.

In addition to thefunc id-based code framework, we have facilitated a more efficient coding style
where users can code their applications as specifying variables and code portions to be check-pointed.
Figure 3 shows such an example that starts frommain( )as an ordinary user program (line 16), instanti-
ates application objects (line 23), recovers necessary variables from the latest snapshot if resumed (lines
19–20), and check-points its intermediate execution where it needs to do so (line 13).

2.2.5 Applications

Besides the Java Grande MPJ benchmark programs [6], we have ported the following three programs to
mpiJava [5] and thereafter to AgentTeamwork:

Programs Descriptions Major communication

Wave2D.java 2D Schroedinger Equation SendRecv with neighboring ranks
MD.java 2D Molecular Dynamics SendRecv with neighboring ranks
Mandel.java Mandelbrot Master-slave communication with Bcast, Send, and Recv
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One of our pursuits in AgentTeamwork is to allow users to develop their applications based on not
only the master-slave model but also other communication models. For instance, Wave2D passes a
new wave amplitude value from one to another neighboring cell, which is implemented in heart-beat
communication between two adjusting ranks. MD can be coded in a similar manner by restricting each
molecular not to travel beyond a collection of cells allocated to one computing node, (i.e., not to jump
over a neighboring node). Using those three applications, we are currently conducting performance
evaluation of inter-cluster job coordination over two 32-node clusters, (thus over 64 nodes in total).

To increase AgentTeamwork’s applications, the PI has also designed an mpiJava-based program-
ming assignment for his CSS434 “Parallel and Distributed Programming” course where his students
parallelize scientific applications using mpiJava.

2.2.6 Resource Database

We have implemented our own XML database instead of using the eXist open software for the purpose
of facilitating dynamic job-scheduling in the database. Our database implementation consists of the
following components:

1. XDBase.javais our database manager that maintains two collections of XML-described resource
files in a DOM format: one maintains initial XML files downloaded from a shared ftp server and
the other is specialized to XML files updated at run time for their latest resource information.
Upon a boot,XDBase.javawaits for new service requests to arrive through a socket.

2. Service.javafacilitates basic service interface toXDBase.javain terms of database management,
query, deletion, retrieval, and storage, each actually implemented in a different sub class.Ser-
vice.javareceives a specific request from a user either through a graphics user interface or a
resource agent, and passes the request toXDBase.javathrough a socket.

3. XDBaseGUI.java is an applet-based graphics user interface that passes user requests toXD-
Base.javathroughService.java.

4. XCollection.java is a collection of sub classes derived fromService.java, each implementing a
different service interface. A resource agent carriesXCollection.javawith it for the purpose of
accessing its localXDBase.java.

5. ResousrceAgent.javahas been enhanced to create initial and runtime resource collections (as
described above) as well as to provide a commander agent with a list of available resources mixed
with clusters and single desktops.

Our last implementation plan for the resource database is to list up available computing resource in
their degree of availability and fitness to a given job request.

3 Major Findings

In year 2006, our performance evaluation has focused on job deployment and file transfer in an agent
hierarchy. The former enabled job deployment over clusters, and the latter has implemented parallel and
pipelined file transfer. This section shows our preliminary results.

3.1 Job Deployment in an Agent Hierarchy

We have evaluated the system performance for job deployment and termination over two cluster systems,
namedmedusaanduw-320. As summarized in Table 1, both include 32 computing nodes, whilemedusa
is faster thanuw1-320. For this evaluation, we have used a master-worker test program that does nothing
rather than simply exchanges a message between rank 0 and each of the other ranks.

Our interests in AgentTeamwork’s job coordination performance are two-fold: one is effect on the
entire performance by snapshot transfer to and maintenance at bookkeeper agents; and the other is effect
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medusa:a 32-node cluster for research use
Gateway node:

specification outbound
1.8GHz Xeon x2, 512MB mem, and 70GB HD 100Mbps

Computing nodes:
#nodes specification inbound
24 3.2GHz Xeon, 512MB memory, and 36GB HD 1Gbps
8 2.8GHz Xeon, 512MB memory, and 60GB HD 2Gbps

uw1-320: a 32-node cluster for instructional use
Gateway node:

specification outbound
1.5GHz Xeon, 256MB memory, and 40GB HD 100Mbps

Computing nodes:
#nodes specification inbound
16 1.5GHz Xeon, 512MB memory, and 30GB HD 100Mbps
16 1.5GHz Xeon, 512MB memory, and 30GB HD 1Gbps

Table 1: Cluster specifications

on the performance by cluster node allocation. The following two subsections examine the system
performance from these two viewpoints.

3.1.1 Effect of Snapshot Maintenance

Since AgentTeamwork deploys a job in a hierarchy of sentinel agents, its performance should be upper-
bounded byO(logN) in principle no matter how many computing nodes are involved in the same job.
However, from our early stage of performance-tuning work, we have noticed that job execution and ter-
mination is delayed by transferring computation snapshots along an agent hierarchy to and maintaining
them at fewer hosts than bookkeeper agents. This is our main motivation to conduct performance evalu-
ation as disabling and enabling a sentinel agent’s ability of caching the the corresponding bookkeeper’s
IP address as well as increasing the number of hosts where bookkeeper agents maintain snapshots. To
be more specific, the following three test cases have been considered:

1. Non IP-caching deployment: transfers all execution snapshots along an agent hierarchy to and
maintains them at only one host where all bookkeepers reside.

2. IP-caching deployment with 1 bookkeeper: allows each sentinel to cache the corresponding book-
keeper’s IP address as far as the bookkeeper is reachable directly and stays at the same host. Note
that all bookkeepers are still gathered on only one host.

3. IP-caching deployment with 2 bookkeepers: allows each sentinel to cache the corresponding book-
keeper’s IP address. Furthermore, two hosts are allocated to bookkeepers, one for bookkeepers
dedicated tomedusaand the other foruw1-320.

Note that all of these test cases allocate bothmedusa’s anduw1-320’s computing nodes evenly to
a job. Figure 4 compares their performance. Since the maximum number of children each agent can
create has been set to four in this experiment, we added the plotted line ofk log4N (wherek = 8) in
order to compare these three test cases with the ideal performance.

As shown in Figure 4, the non IP-caching deployment shows a super-linear increase of its overhead.
Needless to say, this performance drawback was incurred by snapshot transfer along an agent hierarchy,
where all snapshots had to be funneled through the commander agent and thus this transfer overhead
is proportional to the number of computing nodes. The non IP-caching deployment even performed
worse when involving two cluster gateways in a job execution, (i.e., when the number of computing
nodes> 32). This is because each gateway itself takes periodical snapshots including all user-level
GridTcpmessages passing through it. The more computing nodes the larger gateway snapshot growing
in proportion. For this reason, each gateway is overloaded by relaying its own large snapshots as well as
linearly growing snapshots from another gateway. As a result, the overhead of snapshot transfer delayed
an entire program termination in a super-linear order.
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Figure 4: Job deployment effect by snapshot maintenance

Contrary to the non IP-caching deployment, the IP-caching deployment with one bookkeeper has
drastically improved its job deployment performance by allowing execution snapshots to be delivered
directly to a bookkeeper. A special attention must be paid to snapshot transfer from a computing-node
agent that runs in a private IP domain and is thus unable to reach the corresponding bookkeeper directly.
Snapshots still needs to be forwarded up to the gateway agent and thereafter to be delivered directly
to the bookkeeper. Despite this inevitable relay of snapshots, the IP-caching deployment has worked
effectively. This proves our assumption that a gateway is overloaded by relaying large snapshots sent
from another gateway rather than many but small snapshots from intra-cluster sentinels. Allocating only
one host to bookkeepers, the IP-caching deployment still shows unsatisfactory performance as compared
to the logarithmic curve,log4N in particular when increasing the number of computing nodes from 48
to 64.

Finally, the IP-caching deployment with two bookkeepers has removed all the overheads discussed
above to demonstrate the best performance mostly bounded bylog4N .

3.1.2 Effect by Cluster Node Allocation

Our next focus is to measure the effect on the deployment performance by allocatingmedusa’s com-
puting nodes first oruw1-320’s nodes first rather than allocating both nodes evenly to a job. For this
evaluation, we have used the following four scenarios of job deployment and termination as increasing
the number of computing nodes engaged in a job.

1. Medusa first: uses upmedusa’s computing nodes first for a submitted job, and thereafter allocates
uw1-320’s nodes to the same job if necessary.

2. Uw1-320 first: is the opposite allocation ofmedusa first. In other words, it uses upuw1-320first
and thereaftermedusa.

3. Breath first: allocates bothmedusa’s anduw1-320’s computing nodes evenly to a job.
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Figure 5: Job deployment effect by cluster node allocation.

4. Mpirun: deploys a job tomedusafirst and thereafteruw1-320directly using mpirun. (Note that
uw1-320’s computing nodes are given a public IP address as well.)

Figure 5 compares their performance. Focusing on job deployment insidemedusa, mpirun per-
formed faster than AgentTeamwork’smedusa firstin most cases but indicated a linear increase of its
job deployment overhead due to its repetitiversh invocations. In contrast, AgentTeamwork gradually
reduced a growth rate of its job deployment overhead and won againstmpirunwhen using all 32 com-
puting nodes inmedusa.

After using up allmedusa’s nodes,mpirunescalated a slope of itsO(N)-bounded overheads. This
is because eachrsh request touw1-320’s computing node had to be forwarded through the 100Mbps
campus backbone and thus received additional communication overheads. To be worse,mpirunsuffered
from frequent timeouts by Kerberosrshwhen using more than 40 computing nodes at a time. (Note that,
due to this defect, Figure 5 plotted an estimated performance ofmpirun for over 40 computing nodes.)
Similarly, themedusa firstscenario has increased its overhead growth rate towardbreath first’s perfor-
mance when usinguw1-320as well asmedusa. However, as discussed in Section 3.1.1,breath firstitself
alleviates its overhead growth in a logarithmic order. Therefore, we can estimate that AgentTeamwork
is more node-scalable thanmpirun.

Excludingmpirunfrom comparison, it is obvious thatmedusa firstperformed fastest for job deploy-
ment to the first 32 nodes;breath firstwas the next; anduw1-320 firstyielded the slowest performance
in accordance with the number of computing nodes used in the faster cluster, (i.e.,medusa). However,
once all these scenarios used bothmedusaanduw1-320, breath firstadmitted the slowest performance.
The main reason is thatbreath firstincurred more communication between two cluster systems than the
other scenarios by involving the two cluster’s nodes evenly in a job.

In summary, our performance evaluation has revealed the following three facts: (1) AgentTeam-
work’s job deployment in a logarithmic order, (2) the performance contribution of direct snapshot
transfer to and distributed maintenance at bookkeeper agents, and (3) the importance of cluster node
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allocation in a depth first strategy.

3.2 File Transfer in an Agent Hierarchy

We used 24 computing nodes of themedusacluster to evaluate the performance of AgentTeamwork’s file
transfer. (See Table 1 for the specification.) The following two subsections compare AgentTeamwork
with Sun NFS in their file transfer speed and evaluate the effect of AgentTeamwork’s file fragmentation
and pipelined transfer.

3.2.1 Comparison between AgentTeamwork and Sun NFS

We used a test case that allows each user process to access the same file whose size varies from 8M to
256M bytes. In AgentTeamwork, its file transfer time has been measured from a commander agent’s
injection to termination. This sequence includes (1) a commander reads a given file from its local
disk; (2) the file is forwarded, duplicated, and delivered to 24 sentinels through the agent hierarchy; (3)
each user process reads the file; and (4) all agents acknowledge to the commander. In Sun NFS, we
have coded the corresponding mpiJava program that makes all 24 ranks read the same file and send a
“complication” signal to rank 0.

Figure 6 compares AgentTeamwork and Sun NFS for their file transfer speed. AgentTeamwork
performed 1.7 times faster than Sun NFS when transferring a 256M-byte file. Obviously, this large
difference resulted from their file duplication schemes. AgentTeamwork accesses disk only one time
and duplicates a file in each agent’s memory space while relaying it through the agent hierarchy. On
the other hand, Sun NFS accesses disk in response to each remote user process, which makes 24 disk
accesses. However, for a smaller file with 2M through to 8M bytes, AgentTeamwork performed slower.
This is because each disk access time is negligible as compared to a file relay from one to another agent
in AgentTeamwork.

Figure 6 also indicates that AgentTeamwork’s file-transfer speed has slowed down when increasing
the data size from 128M to 256M bytes. The main reason is that each agent must relay an entire file at
once, allocate more memory to maintain the file, and postpone a launch of its user application until it
completely receives the file. This is our motivation to packetize a file and to transfer file data in pipeline.

3.2.2 Effect of File Fragmentation and Pipelined Transfer

Figure 7 shows the effect of file fragmentation and pipelined transfer. The legends such as 1-, 2-, and
4-splits mean that we have fragmented a given file into one, two, and four smaller packets respectively,
each relayed from one to another agent through their hierarchy in a pipelined manner.

The evaluation highlighted that AgentTeamwork’s file fragmentation performed 4.5 times faster than
non-fragmentation and 7.7 times better than Sun NFS when sending a 256M-byte file. The results has
also revealed: (1) file fragmentation does not work at all for too small files with less than 64M bytes;
(2) two fragments per file perform best for 64M- and 128M-byte transfer; and (3) more fragments are
necessary to transfer 256M-byte (or larger) files. Obviously, the larger file the more fragments work out
to.

4 Student Supervision

Through this AgentTeamwork project, the PI supervised eight students in 2006. Their research and
programming work is summarized in the table below and more detailed in the following list. The student
types shown in the table indicate: (R) an undergraduate research assistant hired with the NSF grant; (E)
an Ehime Univ. or UW Bothell exchange student; and (G) an Ehime Univ. graduate student.
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Figure 6: File transfer performance of AgentTeamwork and NFS.

Figure 7: Effect of file fragmentation and pipelined transfer.
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Period(mo/yr-mo/yr) Students Type Research work

01/06 - 03/06 Duncan Smith R co-authored a GCA conference paper.
01/06 - 03/06 Jeremy Hall E worked on method-based cryptography.
01/06 - 03/06 Jun Morisaki E implemented AgentTeamwork’s sensor agent.
01/06 - 07/03 Jumpei Miyauchi EG is implementing GUI and parallel file transfer.
01/06 - 09/06 Emory Horvath R implemented inter-cluster job coordination.
04/06 - 09/06 Cuong Ngo R implemented an XML-based resource database.
06/06 - 03/07 Solomon Lane R coded applications and is evaluating the system.
10/06 - 03/07 Joshua Phillips ER is enhancing AgentTeamwork’s language support.

1. UWAgents
Duncan Smith, an undergraduate research assistant extended his involvement in this research
project till March 2006 to co-author a conference paper on UWAgents with the PI.

2. Security
Jeremy Hall, a UWB exchange student worked at Ehime University on method-based cryptogra-
phy of a user application. We used Javassist [4] to manipulate byte code of a given user application
so as to encrypt each method at a job submission and decrypt it on demand at a remote site.

3. Sensor Agents
Jun Morisaki, an Ehime Univ. exchange student implemented AgentTeamwork’s resource moni-
toring feature in sensor agents that are hierarchically dispatched to unused remote computers so
as to report their resource status through the tree up to the resource agent.

Cuong Ngo, an undergraduate research assistant enhanced the sensor agent’s deployment fea-
ture that enabled agents to migrate over computing nodes of multiple clusters and to check their
resource status.

4. GUI and File Transfer
Jumpei Miyauchi, an Ehime Univ. exchange student has prototyped AgentTeamwork’s GUI with
Java applets and implemented parallel transfers of user files through an agent hierarchy between
a user and each remote process. Admitted to Ehime University’s graduate school, he is remotely
working on parallel transfer of and consistency maintenance on random access files for Agent-
Teamwork as well as revising its GUI.

5. Inter-Cluster Job Coordination
Emory Horvath, an undergraduate research assistant implemented inter-cluster job deployment,
check-pointing, and resumption in a hierarchy of sentinel agents as detailed in Section 2.2.1. He
also identified the code common to all the agents and shaped it up in one utility class.

Solomon Lane, another undergraduate research assistant installed Globus, OpenPBS, and MPI-G
over two 32-node clusters, (i.e.,medusaanduw1-320clusters) to compare AgentTeamwork with
these common middleware tools in terms of job deployment.

6. Resource Database
Cuong Ngo, an undergraduate research assistant has designed an XML-based resource database
manager from scratch, extended its function so as to maintain the resource information of clusters
and their internal computing nodes, and implemented an applet-based GUI to the database. He
also enhanced the resource agent to pass a list of available clusters as well as single desktops to a
commander agent.

7. Applications
Solomon Lane, an undergraduate research assistant coded two scientific applications such as
Molecular Dynamics and Schroedinger Equation in mpiJava and ported them as well as a par-
allelized Mandelbrot program to AgentTeamwork’s mpiJava-A. He is currently evaluating the
performance of AgentTeamwork’s inter-cluster job coordination with these applications.
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8. Language Environment
Joshua Phillips, an undergraduate research assistant enhanced GridTcp to temporarily save com-
munication snapshots in disk for memory-saving purposes, implemented the Ateam class to allow
user-initiated execution check-pointing, and shaped up the user program wrapper and mpiJava-A
to handle these modifications. He is currently assisting Jumpei Miyauchi at Ehime University in
implementing parallel transfer of random access files.

5 Dissemination

We have presented one conference paper in June 2006, (and have published one journal paper in October
2006 as reported in our annual report for year 2005). The PI has also presented his project status at
University of Washington, Bothell and University of California, Irvine in May and June respectively.

5.1 Publications

1. Munehiro Fukuda, Duncan Smith, “UW Agents: A Mobile Agent System Optimized for Grid
Computing”, In Proc. of the 2006 International Conference on Grid Computing and Applications
in conjunction with PDPTA06, Las Vega, NV, pages 107-113, June 26-29, 2006

2. Munehiro Fukuda, Koichi Kashiwagi, Shinya Kobayashi, “AgentTeamwork: Coordinating Grid-
Computing Jobs with Mobile Agents”, In Special Issue on Agent-Based Grid Computing, Inter-
national Journal of Applied Intelligence, Vol.25 No.2 pages 181-198, October 2006

5.2 Colloquia

1. “Parallel Job Deployment and Monitoring in a Hierarchy of Mobile Agents”, CSS Speaker Series
Colloquium, Computing and Software Systems, University of Washington, Bothell, May 25, 2006

2. “Parallel Job Deployment and Monitoring in a Hierarchy of Mobile Agents”, Workshop Pre-
sentation in Messenger’s Research Group, Department of ICS, University of California, Irvine
University, June 23, 2006

6 Budget Activities

This section reports the PI’s budget activities in terms of his salary for course release, student salary, and
expenses for his trips to Irvine, CA and Las Vegas, NV.

6.1 PI’s Salary

As shown in the following table, the PI used his research salary for two times of course release, so that
his teaching responsibility was reduced to one course per each quarter through academic year 2006.
(Note that the course release in autumn 06 will be soon reflected to the UW’s budget #61-1059.)

Quarters course releases Salaries

Winter 06 One unspecified CSS course $12,982.50
Autumn 06 CSS430: Operating Systems (to be reflected)$13,501.50
Total $26,484.00
Carried-over amount from year 2005 -$987.00
Alloted amount for 2006 $25,460.00
Difference -$2011.00

UW Bothell Distributed Systems Laboratory 15



NSF SCI #0438193: Annual Report for Year 2006

6.2 Student Salary

The PI has hired four undergraduate students for their full research commitment to and one more student
for his partial involvement in the AgentTeamwork project.

Name Research Item Hourly Working hours Salaries

Duncan Smith UWAgents $14.00 40hrs in wi06 $560.00
Emory Horvath Job deployment $14.00 165, 145, & 68hrs in 3 quarters $5292.00
Cuong Ngo Resource database$14.00 192hrs in sp06, 208hrs in su06 $5600.00
Solomon Lane Performance $14.00 120hrs in au06 $1680.00
Joshua Phillips Language & files $14.00 248.55hrs in au06 $3479.00
Total $16,611.00
Carried-over amount from year 2005 $574.00
Alloted amount for year 2006 $17,472.00
Difference $1,435.00

6.3 Travels

The PI has traveled to Irvine, CA and Las Vega, NV for a research talk at UC Irvine and a paper
presentation at International Conference on Grid Computing and Applications respectively.

Trip (dates) Tasks Amount

A research talk at UC Irvine Flight from SEA to SNA $242.30
(6/23/06–6/24/06) Car rental (one day) $46.02

Encumbered per diem (one night) $106.23
A paper presentation at GCA 07Registration fee $495.00
(8/25/05–8/27/05) Flight from SNA through LAS to SEA $236.10

Local transportations $15.00
Encumbered per diem (two nights) $212.47

Total $1,353.12
Carried-over amount from year 2005 $55.66
Alloted amount for year 2006 $2,500.00
Difference $1,202.54

7 Plan for Year 2007

Year 2007 is the final year to make available to the public all system components and tools of the Agent-
Teamwork system. For this purpose, the PI is planning to hire three undergraduate research assistants,
to supervise an Ehime Univ. graduate student, and to disclose the entire system to his research collabo-
rators. For this year’s paper submission, we are targeting three conferences such as GCA in conjunction
with PDPTA, PacRim, and Cluster07.

1. Random Access File and GUI
Since September 2006, we have been implementing a parallel version of Java 2 Ed5’s RandomAc-
cessFile.java so that AgentTeamwork’s application programmers can use it based on the specifi-
cation of MPI/IO’s file-view features. We will complete its implementation in the first half of
year 2007. In addition, we will modify AgentTeamwork’s GUI so as to allow users to map a file
portion to a different sentinel agent, (i.e, a different MPI rank).

2. Dynamic Job Scheduling
We have so far made available AgentTeamwork’s dynamic job resumption over available clusters
and single desktop computers. The remaining task is to have the sentinel agent share the resource
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agent’s resource-sensing functions, query the resource database repetitively, and actively migrate
to another site upon detecting the busy status on its current site. We are planning to complete this
task in the first half of year 2007.

3. System Validation and Refinement
We have independently validated and evaluated all system components except AgentTeamwork’s
random access file and dynamic job scheduling. As detailed above, those two components will
be finished by June. Thereafter we will concentrate on the total validation and the system-wide
performance evaluation in the last half year. If our time allows, we would like to implement
AgentTeamwork’s interface to C/C++ applications, which may be of our collaborators’ interests.

4. Dissemination
We will get prepared for and revise a user manual and a design note for each system component
including UWAgents, GridTcp, mpiJava-A, AgentTeamwork’s resource database, and all Agent-
Teamwork’s mobile agents. We will make the system available to our collaborators at Ehime
University as well as researches at UC Irvine, Tokyo University of Technology, and Technical
University of Lisbon with whom the PI has interacted, as seeking for any possibility of applying
AgentTeamwork’s technology and knowledge to their applications.

8 Final Comments

Our project work for year 2006 has pursued the system development and implementation as planned in
the previous year’s annual report [1]. As described in Section 3, our work obtained two major findings,
each in inter-cluster job coordination and parallel file transfers respectively in an agent hierarchy, which
we will soon summarize in conference papers. While we still need to implement and modify a few sys-
tem features such as random access files and dynamic job scheduling, we expect that we will complete
them in the first half of year 2007 and devote ourselves to the knowledge and system dissemination in
the last half year.
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