
Mobile-Agent-Based Middleware for Distributed Job Coordination

RUI: Mobile-Agent-Based Middleware for Distributed Job
Coordination

Munehiro Fukuda

May 14, 2004

1 Introduction

In spite of targeting broader user domains, grid computing still benefits only those who are privileged by gigantic
institutions/companies and are free to forage for their organizational supercomputers or large-scaled cluster systems.
Suited for these users, most commercial middleware systems so far have based their architecture on the master-worker
model that prepares a central server to manage all computing resources, to accept user jobs, and to dispatch them
to best-fitted computing nodes [10]. This is because their architecture could achieve the best performance, provided
only a handful number of users invoke a bag of tasks, each embarrassingly parallel, which utilizes as many computing
nodes as possible.

There is, on the other hand, another type of users who wish to remotely and mutually offer their own computing
resources for their time-critical needs. For instance, researchers/professors in the same joint project may wish to
conduct simulations by sharing their own workstations or cluster machines that are distributed over different campuses.
Students in the same course may compete for least-loaded institutional computers from their homes. Remote desktop
computer owners may wish to run multi-user game on their computers. They could generally agree to form a closed
computational community, using a public Internet group, FTP, or HTTP server that however disallows them to run any
user-level processes and thus does not work as a central job-administrative server. Furthermore, as seen in the above
examples, their applications are not always fitted to the master-worker model. It is our ultimate goal to provide such
computer owners’ groups with a decentralized middleware environment that matches their computational needs.

For the last decade, mobile agents have been highlighted as a prospective infrastructure of decentralized systems
used for information retrieval, e-commerce, and network management. In fact, several systems have been proposed to
use mobile agents as their grid-computing infrastructure [11, 22, 2], claiming the following merits of mobile agents:
their navigational autonomy contributes to resource search; their state-capturing eases user job migration; their migra-
tion reduces communication overhead incurred between their client and server machines; and their inherent parallelism
utilizes idle computers. Regardless of these merits, mobile-agent-based systems have not yet outperformed other com-
mercial grid-computing middleware systems. There are several conceivable reasons: they aim at the same user domain
as commercial systems; they are based on the master-worker computation where communication takes place only at
the beginning and the end of each spawned task; they funnel all mobile agents through a central administrative server
that thus neutralizes their inherent parallelism; and they carry user jobs, based on weak migration that resumes the jobs
from a different function rather than where they have been suspended. Therefore, it appears that mobile agents could
not give more than just an alternative approach to grid middleware implementation unless they switch their target to
new user domains and computational models different from other commercial systems.

Based on the above background, we have focused on a community of ordinary computer owners as our user
domain, and are implementing the AgentTeamwork middleware system that applies mobile agents to the decentralized
coordination of user jobs not necessarily fitted to the master-worker model. When a community user submits a job,
AgentTeamwork deploys acommanderagent that spawns as manysentinelagents as user processes engaged in the job.
Each sentinel migrates to a different computing node where it launches and monitors a user process. The commander

UW Bothell Distributed Systems Laboratory 1

Mobile-Agent-Based Middleware for Distributed Job Coordination

also spawns severalbookkeeperagents as requested by the user. Each bookkeeper maintains a process snapshot
received from sentinels, and retrieves the latest copy if other agents are accidentally killed. All agents autonomously
migrate to another node if the current node no longer satisfies their resource requirements. Facilitated between a
sentinel and a user process is a user program wrapper that periodically takes a process snapshot through its check-
pointing functions. These functions also take a consistent cut of messages in transit between any two processes. For
this purpose, a user program is preprocessed with JavaCC [13] or ANTLR [1] to automatically include check-pointing
functions before its execution. Our preprocessing technique uses strong migration, guaranteeing to resume a user
process where it has been suspended.

Since January 2003, the PI has carried out this project with undergraduate students of University of Washington,
Bothell and his collaborators of Ehime University, Japan. We have implemented a Java-based mobile agent execution
platform, the basic behaviors of agents running on top of the platform, and a user program wrapper, while we still
need to develop a language preprocessor. To study its feasibility, we have also measured the preliminary performance
using three Java Grande MPJ benchmark programs [21]. This proposal gives the overview, the technical merits, and
the competitive performance of AgentTeamwork as well as the next three-year plan to carry out our RUI-type project.

2 Issues and Related Work

We assume that a computational community, agreed on by remote desktop/cluster owners, has the following charac-
teristics: the community can share a central resource database in its Internet discussion group, FTP, or HTTP server,
while no user processes are allowed in that server; a community user is required to download an agent execution
platform and all agent programs when joining to the community; any owner may power off his/her computer or kill
processes dispatched from the other owners without any advance notice; some computers such as cluster nodes may
reside behind a gateway; applications will be coded in C/C++ or Java; and a user job may spawn multiple processes,
each communicating with any other processes, (i.e., not limited to the master-worker model.) Given these assump-
tions, we discuss issues and existing solutions to have mobile agents capture process execution, maintain execution
snapshots, schedule jobs, and enforce system security.

2.1 Snapshot of Communicating Processes

Various snapshot algorithms have been developed in process migration. Condor is the most well-known system to
dump a process memory image to a file, (e.g., a core-dump file in Unix) and to retrieve the process from that file at
its new location [6]. The major problem is inter-process communication. Upon a process migration, some software or
user assistance is necessary to reestablish previous TCP connections without losing in-transit messages. The Condor
MW project has focused on the master-worker model where the MW library in a master process keeps track of and
retrieves connections to all its worker processes [5]. However, inter-worker communication is not retrievable due to
the lack of snapshots taken at each worker.

Rock/Rack has facilitated reliable TCP connections by wrapping actual socket connections and buffering in-transit
data in a user address space [24]. Using Rock/Rack, a user process can reestablish a new TCP connection to its
“migrating” peer process, provided it is called back from its peer and receives that peer’s IP address. Although any
communication among migrating processes can be technically reconnected by combining Condor and Rock/Rack,
users are forced to develop mobile-aware applications, (which periodically check occurrences of migration and call
back a new IP address to a peer process.) In addition, this solution does not work if a peer process migrates over
gateways.

Another snapshot problem lies in Java. If applications are coded in Java, it is impossible to capture their program
counter from the Java virtual machine without modifying it. This is why most Java-based mobile agents follow weak
migration in that they have to resume their execution from the top of a given function rather than where they have been
suspended. The CIA project enabled strong migration in Java-based mobile agents with its language preprocessor [12].
Its technique inserts anif and anelseclause in every function that includes a migration statement. During its initial

UW Bothell Distributed Systems Laboratory 2

Mobile-Agent-Based Middleware for Distributed Job Coordination

execution, a mobile agent executes theif clause that takes a snapshot of local variables in the current function. Upon
a migration, the agent chooses theelseclause to restore the variables. This technique could be applied for resuming
ordinary Java applications from where their execution has been captured, however it needs external support to save a
stack of all function variables.

In AgentTeamwork, we use a language preprocessor for process check-pointing. Our preprocessing technique is
an extension of the UCI Messengers’ compiler that divides a user program into two different functions before and after
migration, (i.e., process check-pointing) [23]. Thus, a user program is converted into a series of functions, between
any two of which a user program wrapper captures the execution state. Recursions are possible by accumulating each
function’s local variables to the snapshot, thus emulating a function stack. Similar to Rock/Rack, in-transit messages
in TCP connections are logged by a user program wrapper. The difference is that our mobile agents take care of
automatic TCP re-connections over gateways, so that applications are completely relieved from mobile awareness.

2.2 Backup

The next issue is where to back up execution snapshots in preparation for future process retrieval. Catalina assigns to
an application an application-delegated manager (ADM) that deploystaskagents, each managing a process execution
at a different machine [11]. ADM works as a central backup manager of all process snapshots, which would thus
suffer from its performance and scalability problem. In J-SEAL2, a client user contacts anoperator, a job-coordinating
server that dispatches his/her job with adeploymentagent to availabledonatorsites where amediatorprocess launches,
monitors, suspends, and resumes a user process [2]. This indicates that process snapshots are taken and maintained
locally. While snapshots are distributed over differentdonatorsites, it is still zero fault-tolerant to each process.

The availability of process snapshots can be generally enhanced using some replica-management algorithms:
primary-copy, active-copy, and quorum-based protocols [18]. The primary-copy algorithm centralizes all snapshots
into a primary server that thereafter distributes theses copies to secondary servers, which obviously suffers from
performance bottleneck at the primary server. The active-copy and quorum-based protocols allow snapshots to be
directly distributed to available backup servers, thus addressing performance bottleneck. However, when it comes to
our AgentTeamwork system, each sentinel agent needs to keep track of all bookkeeper agents that may repeat their
migration. In addition, any bookkeepers may fail in receiving process snapshots during their migration or suspension,
because of which sentinels are responsible to locate their latest process snapshot.

As used in LFS [17], we could also chronologically log the difference between the latest and its previous snapshot
at each bookkeeper agent. In order to prevent each bookkeeper from exhausting its local disk space, this scheme,
however, requires periodical communication among all bookkeepers to identify garbage-collective old logs. While
various communication strategies have been studied for this purpose, we need to tune up the communication frequency
and the order of messages exchanged among bookkeepers every time they migrate to another node and thus change
their communication topology.

Our snapshot maintenance in AgentTeamwork decides one-to-one mapping from a sentinel to a bookkeeper agent.
Using round robin, a bookkeeper forwards to another bookkeeper every new snapshot received from the corresponding
sentinel. This scheme avoids performance bottleneck as in Catalina and the primary-copy protocol, snapshot broadcast
as in the active-copy protocol, and garbage-collection as in LFS. The drawback is that the latest snapshot may not be
retrieved if a crashed bookkeeper has maintained it. However, givenN bookkeepers, at least the (N − 1)th previous
snapshot is guaranteed for a retrieval. We anticipate that crashes are not repeated so frequently during a job execution,
(although the occurrences depend on each job size), and therefore such a penalty would be still acceptable.

2.3 Job Scheduling

Centralized job scheduling collects all distributed resource information at a central scheduler that allocates appropriate
resources to each job. On the other hand, decentralized job scheduling has no focal point in resource scheduling and
can be, for instance, implemented by a local and a meta-scheduler at each computing node as in [19]. Jobs are locally

UW Bothell Distributed Systems Laboratory 3

Mobile-Agent-Based Middleware for Distributed Job Coordination

submitted to a meta-scheduler that exchanges load information with other nodes, are dispatched to a remote node
considered of as being light-loaded, and are scheduled by its local scheduler. The main drawback of decentralized
scheduling is heavy communication among these meta-schedulers, because of which its performance may become
even worse than centralized scheduling. One improvement is to communicate with only K remote mete-schedulers
rather than all. In any cases, each computing node must repeat initiating its active contact with other nodes, which
may not be accepted to all computer owners in our target community.

Condor uses a hybrid of centralized and decentralized scheduling. A central manager maintains a collection of
computers as its Condor pool. The manager periodically receives a new recourse advertisement from each of these
computers and returns to a user the advertisements matching his/her resource request. If there are no appropriate
advertisements, the manager forwards the user’s request to another Condor pool using its gateway flocking mechanism.
Or, if a user belongs to multiple pools, he/she can query each manager of these pools through the Condor’s direct
flocking. While this scheme accurately performs gang-scheduling of idle nodes, it still needs a central manager which
could not be applied to our user groups whose central server is only available for passively maintaining resource
information.

In AgentTeamwork, we will use a priority-based decentralized job scheduling that does not require periodical
inter-node communication or a central manager. A commander agent prioritizes its user job according to the amount
of resources requested by the user. The less resources the higher priority a job receives, (i.e., the more resources the
lower priority.) With this job priority, a sentinel agent migrates to a computing node listed in its itinerary, where it
preempts the current job and starts its own job as far as it has a higher priority than the current job. If the sentinel’s job
has a lower priority, it decides to migrate to another node or wait until the priority becomes higher than all the other
jobs. A job priority is incremented every migration, while it is decremented every execution check-pointing. This way
allows each job to eventually acquire resources it has requested.

Our scheduling algorithm could be compared with a special case of the computational-economy model where
providers offer priced computational services and users choose services affordable within their budget [3]. The differ-
ence is that we delay a large service long instead of pricing it high, so that any users in a computational community
will eventually acquire their requested resources.

2.4 System Security

The following five problems must be addressed when implementing AgentTeamwork:

1. Authorizing a user to a computational community: We are assuming that a computational community has a
central resource database in its Internet group, FTP, or HTTP server to which a user’s commander agent must
authorize itself at least once when using the database.

2. Authorizing agents to a computing node and vise versa:We use private/public key cryptography. All agents
are encrypted with a community moderator’s private key and decrypted with the corresponding public key in
prior to their execution at a new node. On the other hand, each agent includes the agent execution platform’s
checksum with which it authorizes the platform to itself.

3. Securing inter-process communication:This can be supported bysshandSSL.

4. Protecting an agent from other agents:We disallow communication among agents injected by a different user.
However, an agent injected from theshell can recursively spawn its descendants, all allowed to communicate
with each other within their same hierarchy termed anagent domain. Using this idea, a commander, sentinels,
and bookkeepers engaged in the same user job will form an agent domain for their interaction, but do not
interfere against those working on a different job.

5. Protecting computing node from a user process and vise versa:Most grid-computing systems wrap a user
process, monitor all its system calls, and reject high-risk resource requests, which is also applicable to Agent-
Teamwork. Of importance is how to secure a user program from an eavesdropped node in particular during
its execution. Since our language preprocessor divides a user program into check-pointed functions, we could

UW Bothell Distributed Systems Laboratory 4

Mobile-Agent-Based Middleware for Distributed Job Coordination

deceive eavesdroppers by shuffling those functions or even inserting dummy functions as maintaining the data
flow. We term this ideaexecution cryptography.

In summary, we will implement two security algorithms such as domain-based agent interaction and execution
cryptography, while applying existing techniques to all the other security concerns.

3 System Model

Figure 1 shows the architectural overview of AgentTeamwork. The system targets a computational community that
is agreed on by remote desktop/cluster computer owners, is formed with an Internet discussion group, FTP, or HTTP
server, and is moderated by a community leader. Each user uploads his/her XML-formatted account and computing
resource information to the server, and downloads the AgentTeamwork software kit including a mobile-agent execution
platform, all encrypted agents, and a Xindice XML database manager [20]. The user runs at least this agent execution
platform and Xindice in background. The execution platform needs to download updated account/resource information
from the community server upon its initialization or as its daily routine work. Of all AgentTeamwork features, this is
only the one that inevitably follows a centralized scheme.

Prior to a job invocation, the program must be preprocessed and enabled for process check-pointing and migration.
A new commander agent is allocated to every new job and starts on the local execution platform. It spawns a resource
agent that accesses its local Xindice database to plan an itinerary of computing nodes satisfying the job resource
requirements. Receiving a node itinerary, the commander deploys the same number of sentinel agents as that of user
processes engaged in the job. It also deploys as many bookkeeper agents as required by the job.

Each sentinel migrates to a different computing node where it launches a user program wrapper that starts a
user process, monitors it, and collects its results. The sentinel periodically sends the latest process snapshot to its
corresponding bookkeeper agent. At a different node, each bookkeeper waits for and forwards a new snapshot to
another bookkeeper, using round robin. Each agent monitors the local resource conditions and migrates to another
computing node listed in its itinerary, once the current node no longer satisfies its resource requirements.

The commander agent takes care of resuming any sentinel/bookkeeper agent that has been terminated during
its computation. To maximize the decentralized feature of AgentTeamwork, the commander monitors only one of
its spawned bookkeepers. All the other agents are monitored in a distributed fashion where any pair of sentinel
and bookkeeper confirms each other’s existence by repeatedly receiving the latest snapshot and its corresponding
acknowledgment. If a crashed agent is a sentinel, the commander resumes it from the latest log retrieved through
bookkeepers. If it is a bookkeeper, it is simply re-started with an empty log. If a sentinel is migrated or resumed at a
new node different from where it used to work, it reestablishes all TCP connections to and from its user process by
reinitializing its user program wrapper.

The commander agent itself may be crashed, which is then detected by the bookkeeper communicating with the
commander. To be worse, this bookkeeper may be crashed, which is however discovered by any other bookkeepers
that eventually forward snapshots to this crashed bookkeeper, using round robin. Therefore, any agent crashes are
detectable.

Finally, standard-output results are all returned as a string array to the commander that then prints them out to its
client’s computer display, which is our current implementation. Since the commander may migrate away from the
client computer, we need to provide sentinels with other output options: sending results to the client by email, printing
out results directly to the client display if possible, and exchanging data files with the client.

4 Implementation Techniques

Based on our survey on technical issues, we are currently implementing AgentTeamwork. Its software tool kit consists
of (1) the underlying mobile-agent execution platform, named UWAgents, (2) commander/resource/sentinel/bookkeeper

UW Bothell Distributed Systems Laboratory 5

Mobile-Agent-Based Middleware for Distributed Job Coordination

Snapshot
Methods

GridTcp

User program wrapper

Snapshot
Methods

GridTcp

User program wrapper

Internet group
ftp/http
Server

snapshot snapshotsnapshot

snapshotsnapshot

Sentinel Agent Sentinel Agent

Resource
AgentAgent

Commander

Sentinel Agent

Resource
Agent Agent

Commander

Bookkeepr Agent Bookkeepr Agent

User A User B

User program wrapper

Methods
SnapshotGridTcp

TCP
Communication

User A’s
Process

User A’s
Process

User B’s
Process

Figure 1: The Overview of AgentTeamwork.

agents running on top of UWAgents, (3) a user program wrapper, (4) a mobile-unaware TCP communication library
named GridTcp, and (5) the Xindice database manager made available from the Apache XML project. In the follow-
ing, we will explain each of these components.

4.1 UWAgents Execution Platform

UWAgents is a Java-based mobile-agent execution platform developed for AgentTeamwork. Each computing node
executes UWPlace.class that exchanges mobile agents with other nodes. An agent is extended from UWAgent.class,
is instantiated as an independent Java thread, starts with init(), and migrates with hop(). The hop() method is based
on weak migration and implemented with RMI. It serializes the calling agent into a byte array, sends the array with
the agent class files to the destination, and resumes the agent from a given function. The major restrictions include:
(1) local I/O is not forwarded to migrating agents; (2) agents are responsible to restart Java threads by calling start()
if they have instantiated these threads internally; and (3) they can spawn no more than 1000 child agents.

An agent submitted from theshell, (using the UWInject command,) forms a new agent domain identified with a
pair of an IP address and a time stamp that describes where and when it has been formed. This agent is treated as a
domain root, given an agent ID 0, and capable of spawning up to 999 children. All agents spawned from the same
root belong to the same agent domain, receive a domain-unique positive integer as their agent ID, and are allowed to
spawn 1000 children, each identified with the parent agent ID× 1000+ a different sequential number from 0 through
to 999. For instance, agent #1 can spawn agents with ID 1000 through to 1999. This identification scheme needs no
global name server. Furthermore, two communicating agents in the same domain can locate each other by traversing
their agent ID tree. For this purpose, each agent keeps track of where its parent and children have migrated. (In other
words, an agent must inform its parent and children of its new position upon migration.)

The talk() method implements such inter-agent communication. It allows a string and/or a hash table to be sent
from one to another agent. A new message must be fowarded along an agent ID tree to its destination. For better
performance, the destination IP address is returned to and cached in the source agent. The consecutive messages are
therefore sent directly to the destination agent as far as it stays at the same location. For instance, if agent #1 needs

UW Bothell Distributed Systems Laboratory 6

Mobile-Agent-Based Middleware for Distributed Job Coordination

to communicate with agent #2001, its message is forwarded first to agent #0, then to agent #2, and finally to agent
#2001. If it needs to communicate with agent #2001002, its message is directly passed to agent #2001 and thereafter
delivered to agent #2001002. However, this implementation has a problem where children may not communicate with
their siblings or grandparent if their parent has finished its execution, which could be solved by adapting these children
to the grandparent before allowing the parent to be terminated.

We have implemented UWAgents’ basic migration and communication features described above. The next step
in our UWAgent implementation includes the prioritized agent execution and security features we have considered in
section 2.

4.2 User Program Wrapper

AgentTeamwork must preprocess C++ and Java applications to let them include check-pointing functions that periodi-
cally take their execution snapshot. We will use the following preprocessing techniques in our ANTLR/JavaCC-based
compiler design.

For C++ applications, we convert each of them into a mobile thread, termed an M++ thread, which we have
developed in our M++ multi-agent system [9]. This thread is then inserted hop() functions, each migrating the
calling thread to a remote computing node specified as its argument. Without any arguments, a hop() function simply
captures and resumes the calling thread’s execution state such as its CPU register contents and class data members,
which is internally implemented with Unix setjmp and longjmp functions. All function calls inside an M++ thread are
inline-expanded at compilation time, so that the thread does not have to carry its growing stack with it. However, our
preprocessing technique has two limitations: no recursive calls and no dynamic object instantiations in a thread.

For Java applications, we convert each of them in a hierarchy of objects, all serializable from the very first object
instantiated by a user program wrapper. Using this Java object serialization, all data members defined in each applica-
tion are serialized into and de-serialized from a stream-oriented snapshot. The problem is that Java object serialization
does not capture a program counter and a stack. To address this problem, we extend the UCI Messengers’ compiler
technique that converts a user program into a series of functions, between any two of which a user program wrapper
captures not only its data members but also the index of the next function to execute. Figure 2 shows the simplest
check-pointing example where nine sequential statements are grouped into three functions, named func1, func 2, and
func 3, each returning the index of the next function to call. The user program wrapper saves this index value as well
as all the user data members, and then calls the indexed function. Upon a process crash, the wrapper retrieves the
last index from the corresponding snapshot and resumes the process from the indexed function. The preprocessing
technique for more complicated programs is described in [23].

4.3 Grid TCP Class

Upon its initialization, a user program wrapper instantiates an object from the GridTcp class that provides a user
program with ordinary Java socket classes, as keeping track of all TCP connections established within that program.
Similar to thessh’s port tunneling and forwarding, GridTcp funnels all TCP connections in one connection and relays
them to a third computing node.

The difference fromsshis GridTcp’s message routing capability. AgentTeamwork dispatches a sentinel agent to
and launches a user program wrapper at all gateway nodes between any two communicating user processes, where
GridTcp repeatedly forwards all TCP messages to their next gateway or their final destination. For this purpose, all
computing nodes involved in the same job receive a different processor rank and associate their IP address with this
rank. A sentinel agent passes its user program wrapper all pairs of a rank and the corresponding IP address. With
this information, the user program wrapper constructs a routing table to relay incoming messages to its neighbors.
Resumed at a new node, the wrapper must receive updates in rank/IP address pairs from its sentinel agent and reflect
them to its routing table entries, so that previous connections are reestablished to and from this new node.

UW Bothell Distributed Systems Laboratory 7

Mobile-Agent-Based Middleware for Distributed Job Coordination

statement_1;
statement_2;
statement_3;
check_point();
statement_4;
statement_5;
statement_6;
check_point();
statement_7;
statement_8;
statement_9;
check_point();

Source Code
func_1() {
 statement_1;
 statement_2;
 statement_3;
 return 2;
}
func_2() {
 statement_4;
 statement_5;
 statement_6;
 return 3;
}
func_3() {
 statement_7;
 statement_8;
 statement_9;
 return −2;
}

 switch(func_id)) {
 case 1: func_id = func_1();
 case 2: func_id = func_2();
 case 3: func_id = func_3();
 }
 check_point();
}
check_point() {
 // save this object including
 // func_id into a file
}

int func_id = 1;
while (func_id == −2) {

User Program Wrapper

Preprocessing

Figure 2: Source program preprocessing.

A user process may lose in-transit messages during its migration or suspension. To prevent this message drop-off,
GridTcp saves each connection’s incoming and outgoing messages in its internal queues. The queues are captured in
a process snapshot, and thus retrieved every process migration or resumption. GridTcp garbage-collects its history of
these in-transit messages by exchanging a commitment message with its neighboring nodes. Our current implementa-
tion sends a commitment whenever a user program wrapper takes a new snapshot.

Figure 3 gives an example where two processes are involved in the same job, running at n1.uwb.edu and n2.uwb.edu,
and identified with rank 1 and 2 respectively. When a user process migrates from n2.uwb.edu to n3.uwb.edu, their TCP
connection is broken, which thus asserts an exception to their sentinel agents. The sentinel with rank 1 receives a new
IP address from the one with rank 2, (i.e., n3.uwb.edu.) Thereafter, these two sentinels pass the rank2/n3.uwb.edu pair
to their user program wrapper that restores in-transit messages from the latest snapshot file, updates its routing table,
and reestablishes the previous TCP connection.

In summary, a user program can run multiple processes that communicate among one another using their rank,
while it has no need to be aware of migration or to be based on the master-worker model.

4.4 Agent Behavioral Design

A commander agent represents each user job. In our current implementation, a commander agent and a new job
must be submitted together through the UWInject command typed from theshellprompt. UWInject receives a job file
name, arguments passed to it, and resource requirements for this job execution: the number of CPUs, CPU architecture,
memory size and hard disk capacity.

Upon a job submission, the commander spawns a resource agent and sends the resource requirements to it in
the form of a hash table. The resource agent starts a Xindice XML database manager if it has not yet been started,
converts the hash table into a series of queries, passes them to Xindice, and returns an itinerary to the commander. The
itinerary is a series of destination groups, each including the same number of computing nodes required by a job. For
a parallel application, the top groups include cluster nodes so as to reduce communication overhead, while the lower
groups consist of other individual desktop computers. All nodes in the same destination group are distinguished with
a processor rank.

Given an itinerary, the commander agent deploys sentinel agents. Each sentinel receives this itinerary as well
as a different processor rank. It traverses computing nodes with the same rank enumerated from top to down in its

UW Bothell Distributed Systems Laboratory 8

Mobile-Agent-Based Middleware for Distributed Job Coordination

rank
1
2

ip
n1.uwb.edu
n2.uwb.edu

outgoing queue

incoming queue Program
User

User Program Wrapper

n2.uwb.edu

TCP

outgoing queue

incoming queue Program
User

incoming queue

outgoing queue

rank
1
2

ip
n1.uwb.edu
n2.uwb.edu

Program
User

snapshot

User Program Wrapper

n3.uwb.edu

TCP

TCP

User Program Wrapper

n1.uwb.edu

rank
1
2

ip
n1.uwb.edu
n3.uwb.edu

n3.uwb.edu

After Migration

Before Migration

capture

resume

Figure 3: TCP maintenance upon migration.

itinerary until it finds the first node that can actually satisfy the resource requirements. The sentinel then launches a
user program wrapper and keeps calling its receiveSnashot() function for the purpose of receiving from the wrapper
and sending to its corresponding bookkeeper a hash table that maintains a pair of a version number and a process
snapshot.

The commander also spawns bookkeeper agents, each maintaining execution snapshots received from a different
sentinel, as described in section 3. The bookkeepers use the same itinerary as sentinels do for their migration, however
they will not select the same destination as their corresponding sentinels. This is to prevent a pair of sentinel and
bookkeeper from being killed simultaneously.

When detecting a sentinel crashed, the commander sends a snapshot retrieval query to the corresponding book-
keeper. If this bookkeeper has forwarded the latest snapshot to another agent using round robin, the retrieval query
must be rerouted to the bookkeeper that actually maintains the latest version. In any cases, the commander can retrieve
the latest snapshot in at most two repetitions of query forwarding.

For scalability, sentinels and bookkeepers could be spawned in a hierarchy. We actually applied this hierarchical
generation to bookkeepers. However, the problem is how to resume crashed agents that used to reside in a middle of
this agent hierarchy. We need to enhance the UWAgent platform so that resumed agents can automatically inform their
parent and children of its new IP address.

5 Preliminary Performance

As of May 2004, we have implemented the basic features of the UWAgent execution platform, GridTcp, a user pro-
gram wrapper, and mobile agents such as the commander, the resource, the sentinel and the bookkeeper. However,
we have not yet implemented a JavaCC/ANTLR-based preprocessor, because of which applications must be manu-
ally converted into the version executable with the user program wrapper, (termed the AgentTeamwork version.) To

UW Bothell Distributed Systems Laboratory 9

Mobile-Agent-Based Middleware for Distributed Job Coordination

evaluate AgentTeamwork’s preliminary performance, we have converted the following three Java Grande MPJ bench-
mark programs into the ones using ordinary Java sockets (termed the Java version) and further translated them into the
AgentTeamwork version: (1) PingPong: point-to-point communication, (2) Crypt: IDEA encryption, and (3): Mol-
Dyn: molecular dynamics simulation. For our performance evaluation, we used a Myrinet-2000 cluster of eight DELL
workstations, each with 2.8GHz Pentium-4 Xeon processor, 512MB memory, and 60GB SCSI hard disk.

5.1 Process Communication

PingPong measures point-to-point communication performance by sending a message back and forth between two dif-
ferent computing nodes as increasing the message size from 8K to 512K bytes. We ran both Java and AgentTeamwork
versions on two different cluster nodes to evaluate the actual communication bandwidth. For the AgentTeamwork
version, we added two more different test conditions: (1) inserting another cluster node as a gateway that relays all
messages exchanged between two nodes, and (2) inserting two cluster nodes as gateways where all messages must be
relayed twice before delivered to the final destination.

As shown in Figure 4, the Java version’s network bandwidth approached to the ideal performance as we increased
the message size. On the other hand, the corresponding AgentTeamwork version showed its peak performance in its
64K-byte message transfer but marked only20 ∼ 23% of the Java version in 256K-byte or larger message transfers.
GridTcp not only funnels all Java socket connections into one but also uses one additional Java thread that reads
incoming TCP messages into its buffer whenever a user program’s main thread is blocked to write large messages.
Frequent context switches between the user and GridTcp threads incur such communication overhead especially for
large message transfers.

In terms of the message-relaying performance, one gateway insertion gave only a small impact to the bandwidth,
while it displayed slower performance than the version without any gateways in small message transfers. The main
reason is that large messages are pipelined and thus continuously delivered to the destination, which hides the gateway
overhead and highlights only the thread context switch overhead we have discussed above. Two gateway insertions
gave a larger performance drawback that however stayed in 20% slow-down of the bandwidth using one gateway.

Since our evaluation was conducted over 2Gbps Myrinet, we feel that the results were based on the worst-case
scenario, and thus expect that some types of applications will show their reasonable performance on AgentTeamwork
especially if we improve GridTcp by reducing its thread context switches.

5.2 User Program Wrapper

We have evaluated the combined performance of the user program wrapper and GridTcp by manually invoking a
wrapper at a different cluster node. Each user program wrapper constructs a message routing table, instantiates a
GridTcp object, and thereafter invokes the Crypt or the MolDyn benchmark program.

Crypt performs IDEA encryption and decryption on an array ofN bytes, based on the master-worker model. Given
P computing nodes, the master node divides the array inN/P -byte sub-arrays, each distributed to a different worker.
(Note that the master also works as a worker.) Each worker node encrypts its sub-array, then decrypts it, and finally
returns the result to the master. The master collects and compares all the results with the original array for validation.

Figure 5 compares the results between the Java and the AgentTeamwork versions that have been executed on 1 to
8 cluster nodes. The both versions did not show a dramatic performance improvement when using two nodes. This
is because a half ofN bytes had to be exchanged with a worker at once, which obviously neutralized the benefit of
parallel execution. The AgentTeamwork version even performed worse in particular for 10M-byte encryption, since
GridTcp’s bandwidth is only 20% of Java socket. However, as increasing the number of computing nodes toward
eight, both Java and AgentTeamwork improved their performance by overlapping communication with computation.
The peak performance of Java and AgentTeamwork, (using eight machines) was respectively3.7 ∼ 4.4 and2.5 ∼ 3.1
times better than their single execution for all data sizes. Although AgentTeamwork inevitably performs slower than
the Java version, its performance penalty can be reduced by scaling up both data size and the number of nodes. In fact,

UW Bothell Distributed Systems Laboratory 10

Mobile-Agent-Based Middleware for Distributed Job Coordination

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 200 300 400 500

ba
nd

w
id

th
 (

M
bp

s)

size (Kbytes)

Java
GridTcp (no gateway)
GridTcp (1 gateway)

GridTcp (2 gateways)

Figure 4: Communication bandwidth.

when we used eight nodes, the ratio of AgentTeamwork to Java in execution time was improved from 1.46 to 1.23 as
increasing the data size from 1.25M to 10M bytes.

MolDyn is a molecular dynamics simulation that modelsN particles interacting under the Lennard-Jones potential
in a cubic space. All participating computing nodes repeatedly exchange intermediate results among one another, thus
not based on the master-worker model. To be specific, the force on a particle is calculated in a pair wise manner for
each of 50 simulation cycles using two nested loops: the outer loop goes over all particles and the inner loop ranges
the current particle number to the total number of particles. GivenP computing nodes, the outer loop is partitioned
in N/P iterations, each calculated by a different computing node. Each node has a copy of all particle data and
maintains its consistency with other copies by calling the MPI allreduce() function every simulation cycle. This
consistency maintenance however accumulates errors in the cubic space as increasing the number of computing nodes,
and thus the original MPJ program is designed to indicate errors in validation. We have observed this behavior by
running it on our two different cluster systems.

Figure 6 shows the performance results when simulating 2048 and 8788 particles. In the figure, the run time is
referred to as the time elapsed for 50-cycle particle simulation only, whereas the total time includes data initialization,
distribution, and validation. The AgentTeamwork version partitioned the original program into six functions, each
captured in a snapshot file at its end. In terms of 2048-particle simulation, the Java version showed its scalability
from 1 to 8 computing nodes, while AgentTeamwork did not demonstrate its competitive performance. Although the
computational granularity is diminished with more computing nodes, the exchanged data size is constant. This gave
a larger communication penalty to AgentTeamwork. In terms of 8788-particle simulation, both Java and AgentTeam-
work demonstrated its scalable performance. Due to MolDyn’s pair wise particle computation, increasing particle size
exponentially enlarges its computational granularity, which has mitigated AgentTeamwork’s performance penalty. An-
other notable point is that the total time of Java and AgentTeamwork versions is2 ∼ 3% and5 ∼ 15% larger than their
run time respectively. This difference is considered of as overhead incurred by AgentTeamwork’s execution snapshots.

UW Bothell Distributed Systems Laboratory 11

Mobile-Agent-Based Middleware for Distributed Job Coordination

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

tim
e

(m
se

c)

#cpus

Java 1.25*10^6
java 2.5*10^6
java 5.0*10^6

java 10.0*10^6
Wrapper 1.25*10^6
Wrapper 2.5*10^6
Wrapper 5.0*10^6

Wrapper 10.0*10^6

Figure 5: Parallel IDEA encryption.

 5

 10

 20

 40

 60

 80

 100

 1 2 4 8

tim
e

(s
ec

)

#cpus

Java N=2048 (runtime)
Java N=2048 (total)

Wrapper N=2048 (runtime)
Wrapper N=2048 (totoal)

Java N=8788 (runtime)
Java N=8788 (total)

Wrapper N=8788 (runtime)
Wrapper N=8788 (totoal)

Figure 6: Molecular dynamics performance.

UW Bothell Distributed Systems Laboratory 12

Mobile-Agent-Based Middleware for Distributed Job Coordination

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

tim
e

(s
ec

)

#cpus

Crypt (without bookkeepers)
Crypt (with bookkeeprs)

Crypt (wrapper 1.25*10^6)
MolDyn (without bookkeepers)

MolDyn (with bookkeepers)
MolDyn (wrapper total N=8788)

Figure 7: Round-trip performance.

5.3 Round-Trip Performance

We have measured the round-trip time elapsed from a commander agent’s invocation to sentinels’ termination in
AgentTeamwork, using Crypt (1.25M-byte data) and MolDyn (8788 particles). Figure 7 shows the average round-trip
time when running these two applications on 1 to 8 cluster nodes five times. In this experiment, a commander agent
spawns the same number of sentinels as that of CPUs. To evaluate the overhead incurred by bookkeeper generation,
we prepared two test cases: one spawning no bookkeepers and the other with the same number of bookkeepers as that
of sentinels. However, our results showed little difference between these two cases. The main reason is hierarchical
instantiation of bookkeepers that mitigates the commander’s agent-deployment work.

Figure 7 also compares job execution with and without sentinel agents. For the MolDyn program, such difference
in the elapsed time increases as proportional to the number of computing nodes: job execution with agents was 1.581,
4.609, and 10.908 seconds slower than direct execution when using 2, 4, and 8 nodes respectively. One of the reasons
is the we have not yet modified the sentinel agent to be spawned hierarchically. Furthermore, a commander agent must
synchronize with all its sentinels at the end of job execution. These costs depend on the number of sentinels. It is our
next task to generate and terminate sentinel agents hierarchically.

From the above results, we feel that AgentTeamwork could demonstrate its competitive performance in both
master-worker and non master-worker models, while parallelism and size of each application need to be coarse-grained
and large enough to compensate GridTcp and mobile agents’ overhead.

UW Bothell Distributed Systems Laboratory 13

Mobile-Agent-Based Middleware for Distributed Job Coordination

6 General Project Management

6.1 Achievements in Year 2003-2004

The PI started the AgentTeamwork project in parallel of his proposal submission to the last year’s NSF middleware
initiative. He has supervised seven undergraduate students who have been engaged in the AgentTeamwork imple-
mentation. This project is constantly attracting top students who have taken any of three senior-level courses the PI
is teaching: Operating Systems, Distributed Computing Systems, and Network Design. In fact, three more students
will join the project this summer. The following summarizes the undergraduate research achievements with regard to
AgentTeamwork.

Period(mo/yr-mo/yr) Students Undergraduate research work
01/03 - 06/03 Hyon Kim designed UWAgent’s agent migration.
04/03 - 09/03 Eric Nelson enhanced UWAgent’s agent communication.
04/03 - 06/03 Jon Hagen designed a computing-resource database.
07/03 - 03/04 Ryan Liu designed a Xindice interface and the resource agent.
06/03 - 09/03 Doug Kim designed the sentinel agent’s job launching feature.
03/04 - 06/04 Vivian Chan is porting Java Grande benchmark to AgentTeamwork.
03/04 - 06/04 Tae Suzuki is re-engineering and documenting all mobile agent code.
06/04 - 09/04 Donya Shirzad will port MPI applications to AgentTeamwork.
06/04 - 09/04 Shane Rai will enhance resource-commander agent communication.
06/04 - 12/04 Jon Hendrich will design a language preprocessor.

The PI has also advised a graduate student who visited from Ehime University, Japan in accordance with its
academic exchange program with University of Washington, Bothell. He has played an important role in the system
implementation. With his assistance, the PI has prototyped the system and accomplished the preliminary performance
evaluation within a year.

6.2 Next Three-Year Plan

To complete the system in three years, the PI is planning the following four task phases: (1) algorithm development,
(2) system development, (3) applications development, and (4) dissemination and evaluation. In phase 1, we will
design the details of the priority-based distributed scheduling and the execution cryptography proposed in section 2.
Phase 2 implements these algorithms in UWAgent and mobile agents running on top of it. We also need to design
a language preprocessor. Phase 3 ports onto AgentTeamwork all Java Grande MPJ benchmark programs and several
MPI applications developed in the PI’s preceding research [9]. Phase 4 conducts the complete evaluation of Agent-
Teamwork and releases the system as freeware. The PI carries out these phases in collaboration with his research
partners of Computer Science Department at Ehime University, Japan, listed below:

1. Mr. Koichi Kashiwagi: He was the visiting graduate student from Ehime University. Although he has returned
to Ehime and obtained an RA position, we have agreed that we will continue working on this co-project until he
obtains a Ph.D., which will take approximately three years.

2. Prof. Shinya Kobayashi: Prof. Kobayashi is Mr. Kashiwagi’s formal Ph.D. adviser. He brought up the idea of
execution cryptography. He has agreed that he will collaborate with me to implement execution cryptography
in AgentTeamwork.

3. Mr. Eric Nelson: He was one of the UWB undergraduate students working on AgentTeamwork. From this
October, he will advance to Ehime University’s graduate program and work on execution cryptography under
Prof. Kobayashi’s supervision.

These collaborators are all self-supported. Therefore, this proposal asks support for the PI’s undergraduate students
and PI himself. The following summarizes our task assignment and schedule.

UW Bothell Distributed Systems Laboratory 14

Mobile-Agent-Based Middleware for Distributed Job Coordination

Year 1 Year 2 Year 3
2005 2005 2005 2005 2006 2006 2006 2006 2007 2007 2007 2007

Tasks Win Spr Sum Fall Win Spr Sum Fall Win Spr Sum Fall

Algorithm Development
State capture (Fukuda) X
Snapshot maint. (Kashiwagi) X
Tcp emulation (Fukuda) X
Scheduling (Fukuda/Kashiwagi) X X X X
Security (Nelson/Kobayashi) X X X X X X X X
System Development
Agent platform (UW ugrad) X X X X X X X X
GUI (UW ugrad) X X X
Commander & resource agents
design (Fukuda) X X X X X X X X
Sentinel & bookkeeper agents
design (Kashiwagi) X X X X X X X X
Wrapper/Preprocessor (UW ugrad) X X X X X X
Applications Development
Applications (UW ugrad) X X X X X
Validation, refinement and results
(Fukuda/Kashiwagi) X X X X
Dissemination/evaluations
Seminars and lab work in
classes (Fukuda/Kobayashi) X X X X X X
Paper submissions (Fukuda/Kashiwagi) X X X X X X
Annual report (Fukuda) X X
Final project report (Fukuda) X

6.3 Methods of Evaluation and Dissemination of Results

Results will be exchanged and disseminated through the following methods.

• Exchanges and presentations in research group meetings at UW Bothell and Ehime University.
• Exchanges in the form of presentation and/or demonstrations at the University of Washington’s three campuses

(Bothell, Seattle, and Tacoma).
• Exchanges, presentations, and pilot use of AgentTeamwork in classes.
• Exchanges, presentations, and demonstrations through involvement in NSF Middleware Initiative, Global Grid

Forum (GGF), and IEEE Task Force on Cluster Computing (TFCC)
• Conference papers, presentations and demonstrations with involved undergraduate students as co-authors. Our

target conferences include Cluster Computing, CC-Grid (Cluster Computing and the Grid), HPDC (High-
Performance Distributed Computing), and MA (Mobile Agents).

• Release of the middleware to the public domain.

7 Summary

This proposal focuses on a group of individual computer owners who wish to mutually offer their own computing
resources for their time-critical needs. This type of groups would prefer to a decentralized job management for which
we believe mobile agents could serve as an infrastructure. AgentTeamwork deploys commander, resource, sentinel,
and bookkeeper agents to orchestrate a user job execution. The PI has prototyped the system with his undergraduate
students and collaborators of Ehime University. Our preliminary performance evaluation showed that AgentTeamwork
could demonstrate its competitive performance in both master-worker and non master-worker models. The proposal
asks support for the PI’s undergraduate students and the PI himself to complete the implementation, the evaluation,
and the dissemination of AgentTeamwork in the next three years.

UW Bothell Distributed Systems Laboratory 15

