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Abstract—This paper presents dynamic load balancing in a
parallelizing library for multi-agent spatial simulation (named
MASS). Our load-balancing algorithms calculate per-thread CPU
load right after every function call and adjust a data size to
be passed to each thread for the next function call. We imple-
mented three different thread-based load-balancing algorithms,
each using (1) an entire history, (2) a recent time window
and (3) a slope of the CPU loads. The paper presents our
implementation of these three algorithms in MASS as well as
performance evaluation with two multithreaded applications:
Wave2D and SugarScape. Furthermore, to demonstrate the slope-
based algorithm’s superiority to the other two, we compared them
over a cluster of computing nodes.

I. INTRODUCTION

It is more than 20 years that agent-based modeling received
a popularity for simulating an emergent collective behavior of
social and biological agents since Swarm was released from
Santa Fe Institute [1]. Because most researchers are not com-
puting specialists, their paramount focus has been placed on
how to model their applications. However, the more precision
of simulation pursued, the larger problem size required. This
in turn means that simulations must handle a mega number of
agents, which quickly exceeds computing resources provided
by a single computer and thus needs parallelization. MASS, a
parallelizing library for multi-agent spatial simulation is one
of the tools to parallelize agent-based models (ABMs). The
library composes a user application of multi-agents running
on a distributed array that is mapped over a cluster system.
Agents can migrate from one to another array element, which
results in actual agent migration to a remote cluster node.

Of importance is how to map a distributed array over
cluster nodes and CPU cores at each node. Unless agents mi-
grate uniformly over such a distributed array, some particular
elements may unreasonably receive more agents. Therefore,
parallelization of ABMs needs some dynamic load-balancing
(DLB) mechanism. Remapping a given array over a cluster
system requires computing nodes to exchange array elements,
whose cost may be more expensive than imbalanced compu-
tation. Based on this assumption, we first focused on DLB
among CPU cores or threads. This is achieved by calculating
the CPU load of each thread and comparing it with the other
threads in their computation pool. Threads with the higher
load then transfer their excessive amount of computation to
those with the lower load. A load-balancing algorithm kicks
in either periodically or when it senses load imbalance. There
is a very critical tradeoff between the complexity of the DLB

algorithms and the weight of the CPU loads that should be
balanced. If a given DLB computation is heavier than an
actual application load, it neutralizes merits brought by load
balancing. In periodic load balancing, if the algorithm kicks in
too frequently, it poses an overhead on the application itself.
On the other hand, if the algorithm kicks in less frequently, the
application runs into the risk of a prolonged imbalanced state
and the resources utilization is deteriorated. In order to avoid
these problems, DLB algorithms should be light in nature so
that their execution cost is negligible.

This paper compares three thread-level load-balancing al-
gorithms, each based on (1) an entire history, (2) a recent time
window and (3) the latest-slope of CPU loads. In the following
discussions, we simply call each algorithm the history-based,
the window-based and the slope-based algorithm respectively.
We have implemented these three algorithms in the MASS
library where threads work on their respective slice of a given
distributed array and dynamically move their slice boundaries
for better load balancing. This paper demonstrates that, among
these three algorithms, the slope-based algorithm works best
due to its light-weight computation and lower complexity.

The rest of the paper is organized as follows: Section 2
reviews the conventional DLB algorithms and proposes a
very simple slope-based algorithm; Section 3 explains our
implementation of DLB algorithms both at the application
and the MASS library levels; Section 4 compares the slope-
based algorithm with the others; and Section 5 concludes our
discussions.

II. DYNAMIC LOAD BALANCING ALGORITHMS

This section first reviews two conventional dynamic load-
balancing (DLB) algorithms such as the entire history and the
recent time window algorithms, and thereafter proposes the
slope-based algorithm as a light-weight form of load balancing.

A. Conventional Algorithms

Most conventional algorithms are based on polynomial
regression. It is defined as a form of liner regression in which
the relationship between the independent variable x and y is
modeled as an nth-order polynomial as shown below:

y = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n (1)

The goal of regression analysis is to determine the best
coefficients a0 through an of the polynomial so that it projects



Fig. 1. An illustration of polynomial regression

the curve closest to a given history of (x, y) values (see Fig. 1).
The polynomial is then used to estimate the value of y when
a future value of x is given. In load balancing, variable x
represents time t and variable y corresponds to the computation
amount, (or more specifically thread computation) at time t.
Polynomial regression is computed by expressing these (t, y)
values into a matrix form and thereafter performing the Gauss-
Jordan elimination.

1) History-based algorithm and prediction: The history-
based algorithm takes into consideration a complete history
of all previous (t, y) pairs from the launch of each thread.
The algorithm measures each thread’s CPU load y at each
time t, adds it to the per-thread list of (t, y) pairs, recomputes
coefficients a0 through an, and finally estimates a new CPU
load at time t+1. When agents move over a distributed array
as we implemented in the MASS library, each thread takes
care of agents on a different slice of the array. The larger slice
the more computation. Therefore, a checkpoint will take place
periodically to compare each thread with its neighbors in their
CPU loads and to adjust their slice boundaries, so that the
most loaded thread will get a narrower slice. Once a boundary
adjustment is complete, the algorithm predicts the future CPU
loads of all the threads. The prediction is calculated based on
the complete previous history of CPU loads. After a prediction
is made, thread slices are re-adjusted proactively for the thread
with the highest predicted CPU load.

The history-based algorithm uses polynomial regression of
4th degree to predict the future load [2]. Since the algorithm
keeps adding a new load value to the data matrix used for the
polynomial regression, its computation overhead gets increased
monotonously.

2) Windows-based algorithm and prediction: The window-
based algorithm is similar to the history-based algorithm

except it works on a sliding window of history data [3].
The sliding window can have the last N number of thread-
load captures to predict the next load value y for the future
time-series candidate t. The algorithm uses the same 4th-level
polynomial regression adapted to the history-based algorithm.

Here is an example to describe how the window-based
algorithm works: Let us assume that the load pool for thread
t1 has the following values: (5, 2, 5.4, 3.3, 9.8, 10, and
7) for time series values (5, 10, 15, 20, 25, 30, and 35)
respectively. In order to predict the future load value for time-
series candidate 40, a sliding window of last N elements is
chosen and a polynomial fitting is performed. If N = 3, the
sliding window values would be (9.8, 10, and 7). Polynomial
regression is performed on this window of data to get the
4th-degree polynomial equation. This equation is then used
to predict the future value y for time-series candidate 40.

Since the window-based algorithm uses the last N -element
sliding window such that N < the total number of history
elements, the prediction will be less accurate than the history-
based algorithm, however the algorithm works faster and its
execution cost remains constant.

B. Proposed Algorithm

To address the problems with the conventional algorithms,
we propose an algorithm called the slope-based algorithm. The
following describes and differentiates our algorithm from the
related work.

1) Slope-based algorithm and prediction: As the name sug-
gests, our slope-based algorithm uses the line slope between
two load values y1 and y2 on a graph, corresponding to time
t1 and t2 where t1 < t2:

slope =
y2 − y1
t2 − t1

(2)

If we assume that the slope remains constant in the near
future, we can predict the next load value y3 at time t3, using
the following formula:

y3 = (slope× (t3 − t2)) + y2 (3)

Fig 2 illustrates our algorithm. Focusing on slope C be-
tween time = 3 and 4, C1 is the predicted CPU load at time
= 4.5. In similar to the history and widow-based algorithms,
the slope-based algorithm periodically compares each thread
with its neighbors in their CPU load to adjust their boundaries.
Thereafter, all the threads’ CPU loads are predicted using the
above formula, and thread slices are re-adjusted for the most
loaded thread.

2) Other slope-based algorithms: The rate-of-change load-
balancing algorithm [4] considers several load-balancing
phases such as when to initiate task migration, where to send
tasks, how many tasks to migrate, and which tasks to migrate
to different nodes over the network. The algorithm maintains
a per-node load table whose information is collected through
message exchanges among all nodes. It uses a slope-based
design where loads are plotted on a graph and a line is drawn
to connect two adjacent load values. The algorithm considers



Fig. 2. Slope-based algorithm

transferring a task to another node if the next predicted value
is going down below a pre-determined low threshold value.
The algorithm looks at a slope that is going in a negative
trend. A node below the low threshold (called a sink) sends
a message to one of remote nodes that are listed in the load
table as overloaded nodes (called sources). Then, the source
node sends tasks to the sink node. After the task transfer is
complete, the algorithm updates the corresponding load tables
that maintain tasks to process as well as source nodes to send
a message to in the future.

In contrast to the rate-of-change algorithm, our slope-
based algorithm has the following advantages: load imbalance
is adjusted between all neighboring threads by moving their
slice boundaries; such adjustments are made proactively using
predicted CPU loads; and our algorithm does not have to
maintain any load tables.

III. IMPLEMENTATION

We have implemented the three DLB algorithms: (1) the
history-based, (2) the window-based, and (3) our slope-based
algorithms at both application and MASS library levels. We
used the following two applications to measure their execution
performance.

A. Applications

1) Wave2D: simulates wave dissemination using
Schrödinger’s wave equation. The simulation starts with
dropping a bucket of water onto the center of water surface
in a larger square container. As illustrated in Fig. 3, waves
propagate toward the walls, and thereafter repeat bouncing
and interfering with each other.

2) SugarScape: observes social dynamics of artificial lives
(modelled as agents) roaming over a two-dimensional space
with two sugar mountains that attract these agents. Agents
have some attributes such as their own metabolic rate, visibility
range, and ability to consume sugar. Fig. 4 shows agents in
search for sugar to survive through a simulation.

Fig. 3. Wave2D simulation in action

Fig. 4. SugarScape simulation using multi-agents

B. Application-Level Load Balancing

Both Wave2D and SugarScape use two-dimensional or N×
N arrays. In wave2D, a wave height at element (x, y) at time
t is computed from these heights at (x, y) and (x±1, y±1) at
time t−1 and t−2. Therefore, Wave2D actually distinguishes
three N ×N arrays, each at time t, t− 1, and t− 2. On the
other hand in SugarScape, each array element (x, y) maintains
the current amount of sugar and accepts at most one agent. If
two agents try to move to the same cell, the agent with a
lower identifier gets a preference to migrate to this location,
which incurs more communication between (x, y) and (x ±
visibility, y ± visibility) elements.

To distribute such N×N arrays over a collection of threads,
we divide them into vertical slices so that each of P threads
receives a slice of N/P × N elements. For instance, if we
distribute an N ×N simulation space over four threads, each
thread covers a slice of 25×100×3 in Wave2D and 25×100
in SugarScape respectively. If the space is not divisible by the
number of threads, which thus results in R remainders, each
remainder is allocated to the first R threads. A simulation takes
a form of repetitive updates of each array element. In each
simulation cycle at time t, threads update the status of their
own respective array slices by traversing their slice from the
top to bottom rows, each scanning elements from left to right.

At the end of each simulation cycle, DLB algorithms are
invoked to calculate the CPU time spent for each thread to pro-
cess its own slice. For this purpose, we use the ThreadMXBean
class that provides various APIs to measure JAVA thread
performance. The getCurrentThreadCpuTime() API provides
the time spend by a particular thread running on the CPU



Fig. 5. The MASS library

in nanoseconds. A JAVA virtual machine (JVM) may disable
CPU time measurement by default. The isThreadCpuTimeEn-
abled() and setThreadCpuTimeEnabled(Boolean) methods can
be used to test if CPU time measurement is enabled and to
enable/disable this measurement respectively.

To adjust the slice boundaries between neighboring threads,
all the threads are set into the wait mode at the end of each
simulation cycle. The main thread then adjusts slice boundaries
based on a given DLB algorithm, and thereafter notifies all the
other threads of newly adjusted slices.

C. System-Level Load Balancing

As a system-level implementation, we have integrated all
the three DLB algorithms in MASS: a parallelizing library
for multi-agent spatial simulation. The library supports multi-
threaded multi-process parallel simulation. As illustrated in
Fig. 5, Places and Agents are the key elements of the MASS
library. Places is a multi-dimensional array of elements that
are dynamically allocated over a cluster of multi-core com-
puting nodes. Each element is called Place, is pointed to by
a set of network-independent array indices, and is capable
of exchanging information with any other Place elements.
Agents is a set of mobile objects that can reside on a Place,
migrate to any other Places with array indices (thus duplicating
themselves), and interact with other Agents through the local
Place [5]. Parallelization with the MASS library uses a set of
multi-threaded communicating processes that are forked over
a cluster of multi-core computing nodes and are connected
to each other through JSCH-tunneled TCP links. The library
spawns the same number of threads as that of CPU cores
per node. Those threads take charge of method call and
information exchange among Places and Agents in parallel.

In MASS, threads at each node take care of their respective
slice of Place elements. DLB algorithms can be implemented
in MASS in the similar strategies as the application-level
implementation. More specifically, each thread adjusts its own
slice boundary in negotiation with its neighboring threads,
based on their CPU load. In the following, we consider the
single-node and the multi-node DLBs in the MASS library.

1) Single-Node DLB in MASS: The MASS library is de-
signed to run on a multithreaded single node or a cluster of
multithreaded computing nodes. In an single-node execution,
a MASS process is launched to execute multiple threads on
a user-local node. The MASS library has two main functions:
callAll and exchangeAll. The former executes the computation
component in each of Place and Agent objects, whereas the
latter transfers data between each Place and its neighboring
objects. In general, Wave2D and SugarScape can be imple-
mented in repetitive invocations of callAll and exchangeAll.

The DLB algorithms are implemented in such a way that
the MASS library maintains a counter to keep track of how
many times callAll and exchangeAll have been called. A
consecutive call of callAll and exchangeAll increments this
counter twice. A user-selected DLB algorithm is set to kick in
when the counter reaches a predetermined value. (The value is
configurable when the MASS library gets started.) The MASS
library suspends all but the main thread that calculates the
CPU time for all the threads and adjusts their slice boundaries.
Thereafter, the main thread resets the counter to 0 and resumes
the suspended threads.

2) Multi-Node DLB in MASS: In a multi-node execution,
a user-local node starts the master process that then launches
slave processes remotely via JSCH. A simulation space, (i.e.,
Places) is then distributed over the master and slave processes.
Each process further divides its own slice into sub-slices,
each allocated to a different thread. The main function of
a simulation program always runs within the main process
and initiates callAll or exchangeAll that is propagated to the
slaves and thus to all the threads over the system. This in
turn means that each call of callAll or exchangeAll is invoked
synchronously among all the threads.

In a multi-node execution, each process counts the number
of callAll and exchangeAll invocations. Since their invocations
are all synchronized, all processes agree with when to activate
a user-selected DLB algorithm. However, each process exe-
cutes the DLB algorithm independently by adjusting only its
own thread boundaries. Note that boundaries are not adjusted
across the processes. In other words, our multi-node DLB does
not exchange any data, (i.e., Places or Agents) among multiple
nodes.

IV. PERFORMANCE EVALUATION

We have compared the slope-based algorithm with the
history-based and window-based DLB algorithms for their
application and system-level execution. Our evaluation used
the following computing resources:

Mode Cores CPU Clock Memory Network
Single node 8 cores 1600MHz 5GB N/A
Multi nodes 4 cores 1800MHz 2GB Giga Ethernet

A. Application-Level Load Balancing Performance

The total time to execute Wave2D and SugarScape was
recorded as changing the number of threads from 2 through
8 for each of all the three DLB algorithms. To compare the
results with the baseline performance, we also recorded the
execution time of these applications without activating any
DLB algorithms.



Fig. 6. Comparison of three DLB algorithms when running Wave2D

Fig. 7. Window-based with size 5 versus slope-based algorithms

Fig. 6 compares all the history-based, window-based, and
slope-based DLB algorithms in Wave2D execution. Using 2
through 8 threads, the slope-based algorithm performed 0.9%
through 2.4% better than the window-based DLB (where the
window size = 3) and 4 through 28.5 times better than the
history-based DLB.

Fig. 7 focuses on performance comparison between the
sloped-based DLB and the window-based DLB where the
window size = 5. The slope-based DLB ran 1.8 through 3.3
times faster than the window-based DLB with 2 through 8
threads.

Fig. 8 compares all the three DLB algorithms in Sug-
arScape execution. Again, the slope-based DLB performed
best, actually 5.3% through 32.6% better than the windows-
based DLB as well as 5.5 through 11.3 times better than the
history-based DLB in most cases. However, we must note
that SugarScape execution without using any DLB algorithms
actually ran fastest. This is because SugarScape is compu-
tationally lighter than Wave2D and cannot compensate any

Fig. 8. Comparison of three DLB algorithms when running SugarScape

DLB overheads. It is of utmost importance to understand that
a DLB algorithm will introduce certain amount of overhead
and should be used for only applications that are computation
intensive.

B. System-Level Load Balancing Performance

In a single-node execution, we used two to eight threads. In
a multi-node execution, we recorded the execution of Wave2D
and SugarScape over two cluster nodes, each using three and
four threads. Figure 9 shows the performance of the three DLB
algorithms that were integrated into the MASS library when
we ran Wave2D with a single computing node. The slope-
based algorithm performed best in most cases. It ran up to
13.0% faster than the window-based algorithm and up to 9.4%
faster than the history-based algorithm. However with 6 and 8
threads, the slope-based algorithm was 3% to 4% slower than
the other two. This is because a per-thread slice became too
small to distinguish DLB algorithms and was effected by more
thread management overheads.

In a multi-node execution, we used two computing nodes,
each with two dual-core CPUs thus capable of running up to
4 threads. Fig. 10 shows the performance of the three MASS-
integrated DLB algorithms when we ran Wave2D. The slope-
based algorithm ran 23.0% and 15.8% faster than the window-
based DLB with three and four threads per node respectively.
It was 30.4% and 11.2% better than the history-based DLB
under the same conditions.

C. Performance Summary

The history-based algorithm was unremarkable as com-
pared to the other two. This is because of its increasing history
data. Its overhead gets larger in proportion to the simulation
time and neutralizes effects brought by DLB. When conducting
our performance evaluation, we did not use any secondary
storage to save the history data, which would be however
required for a longer simulation run and further deteriorate
the entire performance.



Fig. 9. Comparison of three DLB algorithms on a MASS single-node
execution

Fig. 10. Comparison of three DLB algorithms on a MASS multi-node
execution

The window-based algorithm is quite competitive to our
slope-based algorithm when it runs with its window size =
3. However, if its window size is increased to 5 for pursuing
more accuracy of CPU load prediction, the logic itself gets too
costly to maintain good execution performance.

The slope-based algorithm uses only the latest two load
values and thus performs fastest. Although it is not so accurate
for future load predictions as compared to the other two
algorithms, its computational complexity is quite light and fits
best to fine-grain parallel programs such as Wave2D.

V. CONCLUSIONS

Our main focus in this research was to develop a thread-
level load balancing algorithm that is more efficient than
the conventional DLB techniques. We compared the pro-
posed slope-based DLB algorithm with the history-based and
window-based algorithms for their execution performance.

Our analysis has demonstrated that the slope-based algorithm
performed best both at the application-level and the MASS
library levels. Moreover, the slope-based algorithm worked
81% faster than the history-based algorithm and is 24% faster
than the window-based algorithm with the MASS multi-node
library when running Wave2D.

Currently the thread-level load-balancing is implemented
in MASS Java, using its thread-management package APIs.
This makes the algorithm restricted only to applications that
use Java and JVM. To widely increase the usage of the DLB
algorithms we discussed, we will port them both to MASS
C++ and GPU, and examine their execution performance. We
will also apply our DLB algorithm to more computation-
intensive applications such as thermodynamics, fluid dynamics,
and transport simulations.
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