
A Design of Flexible Data Channels for Sensor-Cloud Integration∗

Jose Melchor
Computing & Software Systems

University of Washington Bothell
Bothell, WA 98052, U.S.A.

Email: pepemel@u.washington.edu

Munehiro Fukuda†

Computing & Software Systems
University of Washington Bothell

Bothell, WA 98052, U.S.A.
Email: mfukuda@u.washington.edu

Abstract—The recent popularity of sensor networks and
cloud computing has brought new opportunities of sensor-cloud
integration that facilitates users to immediately forecast the
future status of what they are observing. The main challenge is
how to establish a series of elastic data channels from sensors
to mobile users through data-analyzing jobs running in the
cloud. The variation of network protocols, the dynamism of
cloud-computing resources, and even user mobility result in
the following three design problems. Data-analyzing programs
must: (1) deal with the major sensor and cloud communication
protocols; (2) include hard-coded sensor manipulation and
data retrieval operations; and (3) handle job/user migration
in dynamic cloud environments, which needs the recovery of
broken data connections. To address these problems, we are
developing theConnectorsoftware tool kit that provides cloud
jobs with uniform data channels, allows them to exchange
standard input/output as well as graphics with remote users,
and re-establishes their data channels upon a job or user
migration. This paper presents Connector’s system overview,
implementation, and performance consideration.

Keywords-data channels; cloud computing; sensor-data anal-
ysis; fault tolerance; middleware tools;

I. I NTRODUCTION

The emergent dissemination of sensor networks and
cloud-computing services has brought new opportunities of
sensor-cloud integration [1] that will facilitate users not
only to monitor their objects of interest through sensors
but also to analyze future status of these objects on the
fly by using cloud services. For instance in agriculture,
crop growers need to monitor real-time orchard temperature
for frost protection purposes as well as to forecast the
overnight temperature transition by applying sensor data
to temperature-prediction models. This type of on-the-fly
analysis demands a substantial amount of computing power
and storage only in frost-critical seasons, particularly at
night, which is therefore fitted to cloud services.

One of the biggest challenges in such sensor-cloud in-
tegration is how to establish a series of data channels
from sensors to mobile users through data-analyzing jobs
running in the cloud. The variation of network protocols,

∗This research is being conducted with partial support from UW Provost
International Grants, Faculty-led Program

†Corresponding author. Email: mfukuda@u.washington.edu, Phone: 1-
425-352-3459, Fax: 1-425-352-5216

the dynamism of cloud-computing resources, and even user
mobility result in the following three design problems. Data-
analyzing programs must: (1) deal with the major sensor and
cloud communication protocols (such as UDP, SNMP, FTP,
and HTTP); (2) include hard-coded sensor manipulation
and data retrieval operations (such as packet filtering and
web-portal checking); and (3) handle job migration for
performance and resource-availability reasons, which needs
the recovery of broken data connections.

In general, data-analyzing model designers and users are
not well skilled in various network protocols and distributed
job coordination. Therefore, to address these problems, we
are developing theConnectordata-channel software tools:
Connector-API, Connector-GUI, Web Server, and Sensor
Server. Connector-API gives cloud applications Java FileIn-
putStream/OutputStream as uniform data channels to be
connected to sensors, cloud resources and mobile users, by
hiding all underlying network protocols and defining hard-
coded parameters into an independent configuration file.
Connector-GUI runs on a mobile user side to serve as a
portal to data-analyzing jobs in the cloud, which exchanges
standard input, output, and graphics between the user and
the jobs. Web Server facilitates an alternative GUI to a user
if her/his mobile device is not capable of working as a TCP
or an X server. Sensor Server runs on a wireless network’s
master node to (de-)activate each sensor device, to filter
sensor data, and to deliver them to cloud jobs. These tools
work independently in accordance with each user’s needs but
also handle job migration and user mobility collaboratively
by resuming broken data channels.

This paper presents the Connector software tool kit’s
contribution to sensor-cloud integration from the viewpoints
of functionality and execution performance. The rest of the
paper is organized as follows: Section I reviews related
work and points out features necessary for sensor-cloud
integration; Section III gives an overview of the system
model and specification; Section IV explains the implemen-
tation techniques; Section V considers the performance; and
Section VI concludes our discussions.

II. RELATED WORK

This section discusses the current technologies available
for sensor-data analysis with cloud computing in terms of
(1) data retrieval, (2) data storage, and (3) channel recovery
and redirection.

A. Sensor-Data Retrieval

Bare wireless networks use thepush-based data-retrieval
model, where each data item is placed into a UDP or an
SNMP packet, and thereafter forwarded through the network
master node to designated user sites. Users are responsible
to filter all incoming packets to detect only those of their
interest. On the other hand, thepull-based model is available
in more sophisticated wireless networks such as sensor
databases [2] and commercialized sensor portals, where
users initiate a data retrieval query or an HTTP request to a
sensor network or a web portal. The problem is that these
models require user programs to be hard-coded for filtering
packets and sending database queries or HTTP requests.

B. Sensor-Data Storage

For future reuse, users need to maintain past sensor data in
provider-specific cloud storage such as Tripod FTP, Amazon
S3, and Hadoop. There are many Java packages available to
take advantage of these storage: Commons Net 2.2 API [3],
Amazon S3 JetS3t [4], and Hadoop API [5]. Although
these packages are all designed to return very common
JavaDataInput/OutputStreams to user programs, the users
must still understand the respective storage concept and
connection set-up procedures. For instance in Amazon S3,
a user is supposed to first locate the bucket including a
given file, then retrieve theS3Objectfile wrapper, and finally
obtain itsDataInputStream.

Open Data Kit [6] is another promising software that eases
the data storage design, mobile device GUI definition, and
automated file uploading/downloading operations. However
this tool focuses on the easiness of GUI-level data manipu-
lation rather than that of code-level data transfer.

C. Data-Channel Recovery and Redirection

Job migration and user mobility should be dealt with in
the dynamic computing environment in the cloud. These
features need support for recovering and redirecting ex-
isting data channels to new locations where the job and
the user reside. Condor (which is supported in Amazon
EC2) runs a user-side shadow process that keeps track of
a remote job and delivers all I/O data from it to the local
user [7]. Rocks/Racks adds snapshot-maintenance features
to the standard UDP/TCP protocols, so that it re-delivers
lost packets and messages to a migrating job as well as re-
establishes broken TCP connections [8].

However, on-the-fly sensor-data analyses do not always
require all sensor data to be re-delivered to them. In fact, it
is even common that some sensor devices are out of battery

or that packets are dropped during wireless communication.
Therefore, of importance is to keep applications and users
unaware of their migration by simply recovering and redi-
recting data channels to their new location.

In summary, we need the following three features when
integrating sensor networks and cloud services: (1) hiding
underlying different network/storage protocols from appli-
cations, (2) separating connection set-up and data-sampling
operations from applications, and (3) supporting location
unawareness with automatic data-channel recovery and redi-
rection.

III. SYSTEM MODEL AND SPECIFICATION

This section defines our system model used in sensor-
cloud integration, clarifies the design principles of the
Connector data-channel software tool, and introduces its
specification.

A. Design Principles

Figure 1 illustrates the sensor-cloud integrated system that
we assume. Launched somewhere in the cloud, each sensor-
data analyzing program runs as a client of various network
protocols, retrieves data from sensor networks, stores results
to remote storages, and interacts with its mobile user. To
cover these features, we are designing theConnector data-
channel software tool kit: (1)Connector-API: a program-
side I/O and graphics package, (2)Connector-GUI: a user-
side GUI, (3) Web Server: a web-based GUI, and (4)
Sensor Server:a sensor-side data publisher. We are based
on the following three design principles: (1) facilitating Java
FileInput/OutputStream-based uniform channels by hiding
all underlying network protocol; (2) separating connection
set-up and data-sampling work from user code into an
independent configuration file; and (3) automating channel
recovery and redirection upon a job/user migration.

B. Specification

Connector-API allows a cloud job to behave as various
protocol clients (including FTP, HTTP, and X windows) to
access remote data through the major Java classes such as
FileInput/OutputStream, Frame, and Graphics. File-to-URL
mapping is no longer hard-coded in a user program but is
rather specified in a file map, using a quadratic notation of:
(name, URL[, interval, extract]), where each parameter
represents (1) a filenameused in a user program, (2) the
correspondingURL including a user account and password,
(3) a repetitive access to a given Web site everyinterval sec-
onds, and (4) only text dataextracted from the Web. Figure 2
shows an example of file-to-URL mapping. The three files:
sensor1, file2.txt, and file3.txt, all named in a user program,
are respectively retrieved from the corresponding sensor,
FTP, and HTTP servers. In particular, file3.txt provides the
user program with data items that are repeatedly read from
the same website every 5 seconds. Since an application needs

A mix of WiFi/900MHz sensor network

418/900MHz sensor network

Sink point

SNMT
SSH Tunnel

SSH Tunnel

SSH Tunnel
File 3 Storage

User

TCP client

Rank0 tracker to forward:
stdin, stdout, and X

Sensor sever

HTTP server

FTP ServerFTP Client

SSH Tun
ne

l

stdin, stdout, and X

cluster A

rank 0 2 31

rank 0 2 31

cluster B

HTTP client

File 1

File 2

Job invocation or migration

Apple orchard

Grape orchard

Access point

Figure 1. Redirectable Stream-Oriented Channels

to communicate with a remote user or a web server, this
file-to-URL mapping allows a user to specify her/his mobile
device or a given web server with-i ip addressand-p port
options.

-i ip address
-p port
sensor1 sftp://account:password@hercules.uwb.edu/sensor1
file2.txt ftp://account:password@ftp.tripod.com/temperature.txt
file3.txt http://www.weather.com/today/Bothell+WA+98011 5 extract

Figure 2. File-to-URL mapping in Connector.jar

Figure 3 is an example user program that takes the
file map shown in Figure 2. It first starts a Connector
daemon thread (line 6). While the user program writes to
the standard output, readssensor1, and writesfile2 locally, in
background the daemon forwards “Recording...” to a remote
user’s console (line 8), connects tohercules.uwb.edu/sensor1
(line 10), contacts withftp.tripod.comas an FTP client (line
13), and transfers data from the sensor to the ftp server (lines
15-17). The Connector daemon is capable of behaving as a
(secure) FTP, HTTP, and X client.

Connector-GUI runs on a user-local machine to facili-
tate GUI by forwarding keyboard/mouse inputs to and by
receiving standard outputs from a remote user program.
It is also capable of transferring files between user-local
disks and each user program. To provide these features,
the GUI runs as a TCP server to keep track of a nomadic
user program by accepting its connection request upon a
migration; scrutinizes each message for its data delivery;
and also works as an X proxy client to display graphics.

Web Serverfacilitates an alternative GUI to a mobile user
if her/his mobile device is not capable of working as an TCP

1 import Connector.*; // Import Connector package
2 import java.util.Scanner;
3 public class TemperatureRecording {
4 public static void main(String[] args) {
5 // Initialize a Connector daemon thread
6 Connector System = new Connector("file.map");
7 // forward the message to a remote user
8 System.out("Recording...");
9 // Connect to an orchard sensor
10 FileInputStream in=new FileInputStream("sensor1");
11 Scanner input=new Scanner(in);
12 // Connect to ftp.tripod.com
13 FileOutputStream out=new FileOutputStream("file2");
14 DataOutputStream output=new DataOutputStream(out);
15 while(input.hasNextLine()) {
16 // Transfer data from the orchard sensor to ftp.tripod.com
17 output.writeUTF(input.nextLine());
18 }
19 System.close(); // Terminate the Connector daemon
20 } }

Figure 3. A user program importing Connector-API

server or an X server. This server acts as Connector-GUI by
presenting the same GUI menu to a user’s web browser,
allowing a remote cloud job to establish TCP connections
with the web server, forwarding the user’s menu inputs to
the remote job as the standard input, and relaying this job’s
standard and graphical outputs back to the web browser as
an HTTP response.

Sensor Serverruns on a sensor-network master node in
charge of (1) managing all its sensor devices, (2) behaving as
an FTP server to make all sensor devices accessible as files
from applications, (3) detecting changes in sampled data,
and (4) handing off active connections to nomadic jobs. For
these purposes, it reads from Connector-GUI, Web Server, or
a given configuration file several commands to add, delete,
and change a sensor’s IP address, MAC24 address, and name
as well as to detect data-sampling conditions, as shown in
Figure 4.

add 192.168.15.21 sensor1
add 0x082be4 sensor2
detect sensor2<= 33.6 absolute

Figure 4. Sensor-to-File mapping in Connector Server

IV. COMPONENT IMPLEMENTATION

A. Connector-API

Connector-API creates a daemon thread in the background
when a user program instantiates a Connector object. As
illustrated in Figure 5, the daemon connects to a remote
Connector-GUI that is waiting at the IP address and port
defined in its file map. (See the first two lines in Figure 2.)
It then allows the user program to exchange standard in-
put/output data and graphics with the GUI. If no GUI exists
on the specific site, the daemon thread simply disables any
functions that rely on the GUI.

The daemon thread possesses multi-threaded capabilities.
Whenever it detects a new instance of Connector-API sup-
ported classes, (i.e., FileInput/OutputStreams, Frame, and

Figure 5. Daemon life cycle

Graphics), the daemon spawns a new child thread that
behaves as an FTP, HTTP, or X client to exchange data
with a remote file, Web or X server.

B. GUI

As shown in Figure 6, Connector-GUI uses two channels
of communication to deal with data coming from a remote
user job: one used for handling standard input/output and
the other for graphics, both using the same single port. Upon
an initialization, Connector-GUI prompts the user to choose
a port for accepting connections from a remote job, and
thereafter enters a listening state. Interaction begins once
a remote job successfully connects to the GUI. When an
application finishes, the GUI goes into a listening state once
again.

User jobs interacting with the GUI may migrate to a
different computing node at any time. Therefore, Connector-
GUI has the ability to sense a job migration by sending back
heartbeat messages to the job. Once a remote job settles
on a new computing node and then requests connections
to the GUI, it resumes the communication and continues
performing tasks.

Connector-GUI has two techniques to retrieve graphics
from a remote application. One uses the GUI as an X proxy
client and the other involves retrieving JPEG images sent
from the application. As an X proxy client, the GUI reads
RMI-like messages (of an object reference, a method name,
and arguments) from applications, and calls the correspond-
ing methods locally on actual Java Frame and Graphics

Figure 6. GUI and Web Server

objects to display graphics. On the other hand, every time the
GUI receives a new JPEG image, it repackages and displays
the image locally on a Java Frame.

C. Web Server

Web Server allows mobile users to access cloud-based
data-analyzing jobs from web browsers (in case their mobile
devices are not capable of running Connector-GUI, in other
words, unable to act as a TCP and X server). It supports
all the Connector-GUI’s features: monitoring and interacting
with remote sensors, exchanging standard input/output data
between a user and cloud jobs, and delivering graphics from
jobs to her/him. In order to start a session, the very first
web menu requires a user to specify a port number that
Web Server uses for accepting a TCP connection from a
job. Once a connection is established, the first servlet stores
a pair of this user’s session id and the corresponding socket
in the server-internal hash table, and returns to her/him a
new HTML page that displays standard input/output fields
as well as buttons to disconnect or retrieve remote data. As
far as incoming HTTP requests have the same session id.
the subsequent servlets use the same socket to relay data
between this user and her/his job.

D. Sensor Server

Sensor Server provides two types of channels to allow
interactions between users and sensors. One is a data channel
used for a remote application to retrieve sensor data through
Connector-API as if it read data from local files. The other
is a control channel for a remote user to manage sensors
through Connector-GUI.

Figure 7 illustrates a sensor server’s interaction with an
application and two GUIs. Invoked on a wireless network
master node, a sensor server itself uses Connector-API to
download a sensor-to-file map, exampled in Figure 4, which
may be located somewhere else such as in a remote FTP
server. It then sets up the accessibility of sensor devices
with that map.

Once a sensor server completes reading a sensor-to-file
map, it starts behaving as a multi-threaded FTP server
to accept all FTP-GET requests from remote applications
and to provide them with sensor data of their interest,
using an independent child thread. (Note that such a child

Figure 7. Visualization of Sensor Server

thread is a non-permanent instance, as shown shaded in
Figure 7.) Applications simply read sensor data through
Connector-API’s FileInputStream that conveniently resumes
them whenever new data items are available, thus keeping
the jobs unaware of the underlying FTP transactions

When managing sensors through Connector-GUI, a sensor
server spawns a new thread that establishes Connector-
API FileInput/OutputStream as a control channel to receive
instructions from the GUI. When changes are made to the
sensor configuration, the sensor server updates its sensor-to-
file map.

V. PERFORMANCECONSIDERATION

We measured the performance of forwarding graphics to
GUI and sensor data to a remote user job.

A. Graphics Forwarding

Graphics forwarding was evaluated with Wave2D (a two-
dimensional wave simulation program) in terms of its 20-
repetitive execution time measured from a graphics gener-
ation in Wave2D to its pop-out on a GUI. Figure 8 shows
the average forwarding time over 1Gbps network of four
different test cases: case 1 displays a graphics locally where
Wave2D runs; case 2 forwards a graphics to a remote X
server through SSH; case 3 uses Connector-GUI as an X
client proxy; and case 4 forwards a JPEG to the GUI. The
results demonstrated the efficiency of JPEG transfers.

B. Sensor-Data Forwarding

Sensor-data forwarding was evaluated with a simple test
program that repeat reading sensor data 18 - 20 times
from a remote sensor server through Connector-API’s Java
FileInputStream. We measured the time elapsed for FileIn-
puStream.read() to send an FTP-GET to the sensor server

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5

tr
an

sf
er

 ti
m

e
(s

ec
s)

local
ssh

x-proxy
jpeg

Figure 8. Performance of graphics forwarding

 5

 4.5

 4

 3.5

 3

 2.5

 2

 1.5

 1

 0.5

 0
 20 15 10 5 0

tr
an

sf
er

 ti
m

e
(s

ec
)

trails

master
slave

Figure 9. Performance of sensor-data forwarding

and thereafter to receive new sensor data. Figure 9 compares
the performance of data retrieval from the master sensor
(where a sensor server runs) and that from a slave sensor
located 45 feet away from the master node. The average time
of data retrieval from the master and the slave is 0.473 and
0.970 seconds respectively, which means that a sensor server
is capable of handling at least 61.85 sensors per minute.

VI. CONCLUSIONS

We have designed theConnectordata-channel tool kit
intended for use in sensor-cloud integration. It provides
file-based elastic data-transfer channels from sensors to
cloud jobs as well as from cloud jobs to mobile users
and/or remote file storages. The prototype demonstrated
its competitive performance of forwarding graphics over
network and capability of handling 60+ sensors per minute.
Our next plan is to complete the initial version by adding

Connector-Web Serverto the tool set and to use it in
sensor-data analyzing applications such as on-the-fly orchard
temperature prediction.

ACKNOWLEDGMENT

The authors would like to thank Mr. Stephen Dame
(AgComm), Mr. Todd Elliod (Valhalla Wireless), and Mr.
Josh Larios (UW Bothell) for their continuous advice on
the installation and management of our temperature sensor
network in our laboratory.

REFERENCES

[1] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of
sensor-cloud integration opportunities and challenges,” inProc.
of the 3rd International Conference on Ubiquitous Information
Management and Communication. Suwon, Korea: ACM,
January 2009, pp. 618–626.

[2] TinyDB: A Declarative Database for Sensor Networks,
“http://telegraph.cs.berkeley.edu/tinydb/.”

[3] Commons Net 2.2 API,
“http://commons.apache.org/net/api/index.html.”

[4] Amazon JetS3t Toolkit,
“http://jets3t.s3.amazonaws.com/toolkit/toolkit.html.”

[5] Apache Hadoop, “http://hadoop.apache.org/.”

[6] C. Hartung, Y. Anokwa, W. Bruentte, A. Lerer, C. Tseng,
and G. Borriello, “Open Data Kit: Tools to build information
services for developing regions,” inProc. of Int’l Conf. on In-
formation and Communication Technologies and Development
- ICTD 2010, London, U.K., December 2010.

[7] Condor Project, “http://www.cs.wisc.edu/condor/.”

[8] V. C. Zandy and B. P. Miller, “Reliable network connections,”
in Proc. of the 8th Annual International Conference on Mobile
Computing and Networking – MOBICOM’02. Atlanta, GA:
ACM Press, September 2002, pp. 95–106.

