
Automatic Resource Management in Multi-site Mobile Computing (Invited Paper)

Qinghong Shang†*, Munehiro Fukuda‡, Michael B. Dillencourt* and Lubomir Bic*
† School of Computer Science & Engineering

University of Electronic Science and Technology of China, Chengdu, Sichuan, China, 610054
‡Computing and Software Systems, University of Washington, Bothell, WA 98011, USA

mfukuda@u.washington.edu
*Donald Bren School of Information & Computer Sciences

University of California, Irvine, CA 92697, USA
 {qshang, dillenco, bic}@ics.uci.edu

ABSTRACT

This paper focuses on automatic resource management in
mobile computations that span multiple sites. We extend an
existing static resource management system to a dynamic
management system by providing a five-layer resource
management mechanism. This mechanism is designed to
support a Navigational Programming system called JaMes,
which is a Java-based programming system based on self-
migrating threads. The top two layers provide a top-down
mechanism which allows JaMes to request resources based
on performance criteria specified by the application
programmer. The bottom three layers provide a self-
organizing bottom-up mechanism that provides current
information about the available systems resources. We
illustrate the utility of this multilayer architecture with a
classical matrix multiplication example executing in a
multisite environment.

Keywords: Distributed parallel computing, mobile agents,
multi-site resource discovery, resource based migration,
Java-based programming systems.

1 INTRODUCTION
 There are two approaches to dynamic resource allocation
currently used in grid computing and cloud computing: (1)
the top-down self-adaptive approach and (2) the bottom-up
self-organizing approach [1]. SASO 2007 defined them as
follows: self-adaptive systems evaluate their own global
behavior and change it when the evaluation indicates that
they are not accomplishing what they were intended to do.
In contrast, self-organizing systems are composed of a large
number of components that interact according to simple and
local rules [2] to present a higher-level view of the
resources.
 This paper presents a five-layer approach to dynamic
resource management for JaMes[3]. JaMes, short for Java
MESSENGERS, is a Java-based programming system for
Navigational Programming (NavP) [5,9]. Using JaMes
programmers can invoke functions on remote nodes and also
communicate (by ship and receive) with other nodes. JaMes
applications operate within a logical network. JaMes only
supports a static mapping of this logical network to the
underlying physical network. To provide for dynamic
resource allocation/management, we provide a five-layer
support system that can take advantage of a dynamically

changing resource environment. With this extension JaMes
can request and utilize the set of resources best suited to its
current needs according to criteria specified by the
application programmer.
 The five-layer model described in this paper represents a
hybrid between the top-down and bottom-up approaches.
The model is loosely based on the field-based routing
concept described in [4], where each client message hops to
a desired server along the steepest gradient of a service
potential field in the same manner of an electrical potential
field in physics that moves an electron, (i.e. a message in
field-based routing) toward the electrically steepest gradient.
Analogous to field-based routing, a sentinel agent can
determine the desired computing nodes by following the
steepest gradient of a potential field corresponding to the
current status of the available computing resources. To
create this field, an agent on each node monitors its local
computing resources and broadcasts its resource information
to its neighbors, so that the information is disseminated
throughout the network in a heartbeat fashion.
 After presenting an overview of JaMes in Section 2, we
describe the five-layer model in detail in Section 3. Section
4 describes how the top-down and bottom-up portions of the
model interact to provide a hybrid system. Section 5
illustrates the model using matrix multiplication in a multi-
site environment. We then discuss some related work and
provide some conclusions.

2 RESOURCE MANAGEMENT IN JAMES
 JaMes[3] is a Java-based parallel programming that
incorporates the principles of Navigational Programming
(NavP). The advantages of NavP over Message Passing
(MP) and Distributed Shared Memory (DSM) have been
discussed in previous work [5,6,9]. In essence, MP can be
difficult to use and DSM does not scale well.

2.1 Basic features of JaMes
 JaMes applications are Java programs that can take
advantage of the following additional features provided by
the JaMes runtime environment.

Self-migration: Methods may be invoked remotely and
asynchronously, meaning that the called method does not
return a value and the caller does not wait for the called

method to complete. This provides the basis for migration.
If the caller dies, this corresponds to a hop operation. If the
caller continues, this corresponds to a clone operation.

Send/receive: JaMes incorporates sending and receiving of
data while remaining faithful to the principles of
Navigational Programming. The basic mechanism uses a
ticket. When data is sent, the sender specifies the destination
node and a ticket name. To receive data, a process specifies
the ticket name, rather than the identity of the sender. This
may be done either synchronously or asynchronously: the
receiver may either block until a shipment with the given
ticket name is received, or periodically check for the
shipment.

Non-preemptive scheduling: JaMes uses a non-preemptive
discipline, so that programmers do not need to worry about
synchronization. On each node, there is only one executing
thread running at any time. An executing thread cannot be
preempted: the only way it can be blocked is when it blocks
itself by issuing specific commands such as wait(), yield(),
or a blocking receive request. Non-preemptive scheduling
eliminates the need for explicit critical sections when
accessing shared variables and reduces context-switching
overhead.

Priority-based scheduling: JaMes supports priority-based
scheduling. Since JaMes uses its own scheduler rather than
the Java thread scheduler, the number of priority levels does
not depend on the underlying operating system. The
priority can be used to control both the order of
computations that hop from another node and the choice of
threads to be run when another thread gives up the CPU.

Logical-to-physical node mapping: JaMes applications are
written to a fully-connected logical network, the size of
which is defined by the application. Each node is
referenced by its rank. This permits the application to be
written in a manner independent of any specific hardware
configuration.

2.2 Support for Dynamic Resource
Management
 JaMes is currently supported by only a static
configuration scheme as shown in Figure 1(a). The
mapping of logical nodes to physical nodes is set when
JaMes starts up and cannot be changed. Specifically, a
startup program is run on a set of nodes consisting of a
master node and a statically designated set of individual
nodes, listed in a configuration file. When a node registers
with the master node, it is assigned a logical rank number by
the master node. The rank number is nondeterministic as it
depends on the order in which the UDP messages arrive at
the master node.
 This static approach can be improved in three
fundamental ways:

1. Application-specific mapping: The logical-to-physical

mapping for a particular application should be set when
the application starts up rather than when the JaMes

system starts up. This permits different applications
running under the same instance of JaMes to use
different mappings.

2. Dynamic resource availability: When the logical-to-
physical binding is delayed until the application starts
up, the mapping can take advance of the most recent
status of the system. For example, nodes with the
lowest CPU utilization or the largest amount of
available memory may be chosen.

3. Multi-segment network: Since JaMes assumes a fully
connected network, additional support is necessary to
allow applications to run in multi-segment networks
where the only connections between segments are the
gateways.

 Figure 1(b) illustrates the dynamic configuration
management scheme, using the 5-layer architecture
described in the following section.

Figure1 (a) Static mapping mechanism (b) Dynamic

mapping mechanism for JaMes

3 DYNAMIC RESOURCE MANAGER
ARCHITECTURE

 The 5-layer model shown in Figure 2 facilitates the
dynamic mapping and resource based migration on multi-
site environment.

3.1 TCP-Link-Assisted Inter-Segment UDP-
Broadcast Space
 The lowest layer is a TCP-link-assisted inter-segment
UDP-broadcast space. Since UDP broadcast is normally
limited to within a single segment, additional administrative
support, such as IGMP, is necessary to allow broadcasting
across multiple segments. Our implementation facilitates
application-level inter-segment UDP by establishing a TCP-
link between representative nodes of each segment which

allow relaying intra-segment UDP-broadcast messages
among the segments. This layer is established as follows:
1. Each network segment chooses a representative node that
runs a UDP-relay daemon locally.
2. Each UDP-relay daemon contacts a shared rendezvous
point, (e.g., a common FTP server) to upload its IP address,
to download the IP addresses of all other remote segment
representatives, and to establish a TCP link (through a ssh
tunnel) to each remote representative.
3. The UDP-relay snoops all intra-segment UDP-broadcast
messages and relays them on each of the emanating TCP
links to the remote representatives, while receiving
messages from these representatives and broadcasting them
to the local network segment.

3.2 UWAgents
 The second layer is the UWAgents mobile-agent
execution platform. A separate daemon process runs at each
node. Its role is to exchange agents with other nodes and to
run their code. Details about the UWAgents system can be
found in [7].

3.3 Potential Field Agents
 The third layer consists of Potential Field Agents
(PFAgent). One PFAgent is launched at each node. Each
PFAgent periodically measures the latest performance of its
local computing resources including CPU power, memory
space, disk size, network bandwidth, and their current
availability. All of these are recorded in each PFAgent's
internal resource table and are broadcast in a UDP message
within the local network segment and relayed to remote

segments. Each performance measure forms its own
potential field. In response to a resource request from a user
process, each PFAgent uses the specified field to find the
nodes that best suit the needs of the process.
3.4 Sentinel Agent

 The fourth layer is the sentinel agent. The sentinel agent
is launched by the configuration management layer (layer 5)
on the node where the JaMes application is running. The
sentinel agent finds the best currently available nodes, based
on criteria passed down to it from the configuration
management layer. It does this by querying the PFAgent on
the same node. The PFAgent is responsible for monitoring
performance measures such as CPU utilization, memory
usage, and CPU power and disk size. In addition, the
PFAgent may specify more specialized criteria, such as the
availability of certain libraries or software tools. Given the
multitude and unpredictability of such possible queries, it is
not practical to maintain a complete up-to-date list.
Therefore, the PFAgent gathers such information only when
prompted by requests from the sentinel agent.

3.5 Configuration Management
 The fifth layer is the configuration management layer,
which is responsible for mapping logical nodes to physical
nodes dynamically and automatically. Because all node
information is transparent to programmers and applications,
only logical rank numbers are used in the code as the
destinations for computation migration and data exchange.
The logical numbers are bound to physical nodes at run time

Figure2 Execution layers used for field-based process dispatch and migration

according to different conditions. Figure 3 shows an
example where the dynamic configuration management
layer binds the six logical nodes requested by JaMes to six
physical nodes provided by the sentinel agent and
distributed over two different sites.

Figure 3 Dynamically mapping physical nodes to logical

nodes

3.6 JaMes
 JaMes is a distributed parallel programming model that
operates within a logical network. It provides basic
mechanisms for thread migration and data communication
within this network. Each logical node is assigned an
arbitrary number (a rank) by the application. Migrating and
communication commands use rank numbers to specify
their targets. An executing thread can determine its current
location by calling JaMes.getRank(), which is a basic
function provided by JaMes. Ranks are mapped to physical
nodes by the five levels described above when the JaMes
application starts.

4. DYNAMIC RESOURCE MANAGER
OPERATION

4.1 Bottom-up Resource Supply
 Our model supports dynamic resource management using
a hybrid top-down/bottom-up approach. In the bottom-up
view it constructs a self-organizing network, which supplies
a global resource view over multiple segments. Nodes can
join and quit the system dynamically as described later in
this section.

4.1.1 Information flow within the system
 All nodes within a segment need to broadcast their local
resource messages to all other nodes within the segment and
receive reciprocal information. In addition, each
representative node broadcasts information about all nodes
in its segment to all other representative nodes and also
broadcasts information received from other representative
nodes to the other nodes in its segment.
 All the above communication is bidirectional, so all nodes
maintain resource information about the entire system. This
allows the sentinel agent to query only its own local
PFAgent, avoiding the potential bottleneck that would arise

if all status requests had to be funneled through the
representative nodes.

4.1.2 Joining the system
 When a new node joins the system, the processing and
communication sequence depends on whether the node is
part of an existing segment. Figure 4 illustrates the different
communication paths.

 If the new node is not part of an existing segment, we
have to perform the following initial step

a) The node must first register itself with the rendezvous

point and establish a tcp-link to all other segments
already registered with the rendezvous point. The node
becomes the representative node for the system. As
part of the registration process, this node receives
information about the current status of all nodes on all
other registered segments.

 If the node is a member of an already-registered segment,
or once step a) is complete, we start up the PFAgent on the
node, which in turn starts up the UWAgent. The following
communication then occurs.

b) The PFAgent on the new node broadcasts its hardware

and software information to all the PFAgents on nodes
within the same segment. It also receives the reciprocal
information from other nodes on the same segment.

c) The representative node for the segment broadcasts the
potential field information for all nodes in this segment
to the representative nodes of all other registered
segments.

d) The representative node on every other segment
broadcasts the updated potential field information to all
other nodes in its segment.

Figure 4 Dynamic nodes management

4.1.3 Quitting the system
 If a node crashes or terminates, thus becoming
detached from the computing-resource potential field, it

stops broadcasting and hence is removed from the potential
field on its segment. Similarly, if the representative node of
a segment crashes or terminates all nodes in this segment are
removed from the system.

4.2 Top-down Resource Demand
 A user can inject an application at any node in the system,
using the following command line syntax:

inject app arguments #nodes criteria

 This causes the following steps to occur, as illustrated in
Figure 5.

a) JaMes calls the configuration manager, passing it the

number of nodes and the node selection criteria.
b) The configuration manager spawns the local sentinel

agent and passes it the number of nodes and the node
selection criteria.

c) The local sentinel agent queries the local PFagent. The
PFagent returns information about all nodes on all
segments.

d) The local sentinel agent chooses the appropriate number
of nodes according to the requested criteria.

e) The local sentinel agent sends a command including the
application name and its arguments to all the chosen
nodes. There are two situations, depending on the
locations of the chosen nodes. For nodes chosen from
the same site as the sentinel agent, all inter-process
communication is done through sockets. For nodes on
remote segments, the interprocess communicating is
relayed through the representative nodes on the two
segments, which communicate through the TCP link.

Figure 5 Resource selection by sentinel agent

5. APPLICATION EXAMPLE
 In this section a matrix multiplication example is
presented to show the usability of our five-layer model. All
performance data in this paper was obtained from two
campuses: University of California, Irvine (UCI) and

University of Washington, Bothell (UWB). The UCI nodes
are i686 Intel Pentium 4 CPU’s, 3.00GHz, 1GB main
memory, and 100Mbps of Ethernet connection. The
operating system is Linux version 2.6.22 and the JDK
version is JDK 1.6.0. The UWB nodes are Intel Xeon
CPU’s, 3.2GHz, 512MB main memory, and 1Gbps of
Ethernet connection. The operating system is Linux version
2.6.9 and the JDK version is JDK 1.5.0.

5.1 Matrix Multiplication based on JaMes
 Matrix multiplication is very important in scientific
computing and it is also a classic benchmark for parallel
programming. Our solution is based on Gentleman’s
algorithm [8-9], a classical SPMD algorithm for parallel
matrix multiplication. In this algorithm, both matrices A and
B migrate as shown by the arrows in Figure 6, while the
result matrix C is stationary. In this example we define the
grid size to be 3, which divides all matrices into 9 blocks,
each held by a separate node. As a result, there are 9 threads
on each node, each responsible for the computation of one
block.
 There are two ways for different nodes to communicate
with each other in JaMes. One is by hopping to another node
carrying the data, and the other one is shipping data directly
to the destination. In this example, we think of the threads as
containing blocks of matrix A which they move among
nodes as they hop. The data from B is sent using ship
statements to be available for the corresponding
computation thread. Figure 7 shows the pseudocode for this
implementation of Gentleman’s algorithm. We can
summarize the computation performed by each thread as:
(1) receive the B data, (2) compute A*B, (3) ship the B data,
(4) hop to the next node. The two statements

JaMes.getSurrogate(left node);
x.process(a,step+1)

essentially constitute a hop to the left neighbor, carrying A
with it. The neighbor computation is based strictly on node
number. The actual binding to the physical node is
performed at run time by the configuration manager.
Similarly, the ship statement causes B to be sent to the node
immediately above the current node and the receive
statement causes B to be received from the node below the
node where the statement is executed. This is specified
based on node number, and the binding to physical node is
left to the configuration manager.

Figure 6. Gentleman’s Algorithm.

Function process(data, step)
 if (step < gridSize – 1)
 JaMes.receive(b, down node, ticket)
 C += A * B
 JaMes.ship(b, up node,ticket)
 x = JaMes.getSurrogate(left node)
 x.process(a, step+1)
 end if
end function

Figure 7. Pseudocode for JaMes solution.

5.2 Global Resources Discovery and Allocation
 According to our model, the representative node is
chosen manually for each campus. We choose godzilla on
UCI and medusa on UWB as the representatives. Since
godzilla and medusa cannot directly establish a TCP
connection, we need to create an ssh tunnel. Then for the
purposes of this example, we choose 8 nodes, four on each
campus, as the resource nodes: hermod0 through hermod3
on UCI and mnode10 through mnode13 on UWB. These
nodes collectively form the potential field from which the
sentinel agent can make its selection. After all information
has been exchanged among the PFAgents at the eight nodes,
each PFAgent will contain the same global resource
information, which is shown in Figure 8.

PFagent.commandReceiver(): 'show' received from
(medusa.uwb.edu)

UCI campus UWB campus

###hermod0.ics.uci.edu###
disk = 5364
cores = 1
users = 1
os = Linux
arch = i686
memory_free = 101
cpu_load = 0.00
processes = 50
cpu_speed = 2994.975
cpus = 1
memory_total = 1010

###mnode10.uwb.edu###
disk = 927
cores = 1
users = 1
os = Linux
arch = i686
memory_free = 12
cpu_load = 0.00
processes = 56
cpu_speed = 3200.682
cpus = 1
memory_total = 503

###hermod1.ics.uci.edu###
disk = 5365
cores = 1
users = 2
os = Linux
arch = i686
memory_free = 19
cpu_load = 0.00
processes = 56
cpu_speed = 2994.988
cpus = 1
memory_total = 1010

###mnode11.uwb.edu###
disk = 927
cores = 1
users = 1
os = Linux
arch = i686
memory_free = 13
cpu_load = 0.00
processes = 56
cpu_speed = 3200.537
cpus = 1
memory_total = 503

###hermod2.ics.uci.edu###
disk = 5364
cores = 1

###mnode12.uwb.edu###
disk = 927
cores = 1

users = 1
os = Linux
arch = i686
memory_free = 127
cpu_load = 0.00
processes = 53
cpu_speed = 2995.062
cpus = 1
memory_total = 1010

users = 1
os = Linux
arch = i686
memory_free = 11
cpu_load = 0.00
processes = 59
cpu_speed = 3200.673
cpus = 1
memory_total = 503

###hermod3.ics.uci.edu###
disk = 5364
cores = 1
users = 2
os = Linux
arch = i686
memory_free = 57
cpu_load = 0.00
processes = 56
cpu_speed = 2994.995
cpus = 1
memory_total = 1010

###mnode13.uwb.edu###
disk = 927
cores = 1
users = 1
os = Linux
arch = i686
memory_free = 69
cpu_load = 0.16
processes = 56
cpu_speed = 3200.546
cpus = 1
memory_total = 503

Figure 8 Resource information on UCI and UWB campus

 Table 1 shows, for different combinations of selection
criteria, the physical nodes that will be chosen. For
example, specifying CPU speed as the criterion and UCI as
the location, the system would choose hermod2, hermod3,
and hermod1 to be bound to logical nodes 0, 1, and 2,
respectively. The reason for this selection can be seen in
Figure 6, where the three chosen nodes are the nodes at UCI
with the highest CPU speed. If no performance criteria are
specified the system nondeterministically chooses a
collection of physical nodes at the requested location based
on the order of arrival of UDP messages. One such possible
choice is binding hermod0, hermod2, and hermod1 to
logical nodes 0, 1, and 2 as shown in the table in the column
labeled “random.” After the sentinel agent returns the
selection, the configuration manager binds these physical
nodes to logical rank numbers.

Table 1 Resource table on UCI and UWB

Candidate hermod0 – hermod3, mnode10 – mnode13

Condition cpu_speed memory_
free random logical

rank

UCI
hermod2
hermod3
hermod1

hermod2
hermod0
hermod3

hermod0
hermod2
hermod1

0
1
2

UWB
mnode10
mnode12
mnode13

mnode13
mnode11
mnode10

mnode10
mnode12
mnode13

0
1
2

6. RELATED WORK
 One focus of this paper is a hybrid mechanism for finding
and allocating the most suitable computational resources for
an application in a dynamically changing environment.
Previous research most closely related to this problem is
computing-resource search. Existing literature discusses and

classifies two approaches: broker-based search and
brokerless search [10].
 The best-known grid-computing middleware systems use
broker-base search models [11-12]. In these systems, all
computing nodes register their resources with a central
broker, and the broker sends to the requesting process the
computing resources best suited to to its job requirements.
In contrast, in the brokerless-type search model the
requester multicasts a resource-search query to servers in its
vicinity. These requests may be relayed by the servers to
their neighbors, thus implementing a flooding algorithm.
This process repeats until suitable resources are found and
returned to the requester.
 Our hybrid resource management approach can be viewed
as a brokerless-type search model. The task performed by
the sentinel agent is roughly analogous to spawning to a
resource-search query. The crucial difference is that our
queries do not need to be propagated through the network.
Instead, the potential field agents provide the necessary
information, which they maintain up-to-date. In essence,
they are serving as a cache for global available resource
information.

7. CONCLUSION
 We have described a method for dynamically mapping
logical nodes in JaMes applications to physical nodes. After
starting JaMes on each node, a full TCP connection is set up
among all processors with their own UDP and TCP
addresses. One of the processors is explicitly selected as the
master to collect IP name/port pairs and distribute them to
all the other processors. Then an application thread can be
injected on the logical node with rank 0.
 JaMes applications specify all destinations of
computation, migration, and communication in the code,
using only rank numbers The rank number for each
processor is stationary and unchangeable. Programmers
cannot determine the physical destination of migration or
communication. The five execution layers can choose the
best available hardware and software for the given
application. In the bottom-up view layers 0 through 3
construct a self-organizing multi-campus network, which
the participated node can join in and quit dynamically.
Layers 4 through 6 provide a top-down dynamic mapping
mechanism, through which the system can map physical
nodes to logical nodes according to different selection
criteria.
 One advantage of our approach is the flexibility that
allows the application to specify its needs in hardware-
independent manner using performance and location
constraints. Another advantage is the speed with which
resource requests can be satisfied. This is due to the
monitoring and caching of global performance data carried
out by the potential field agents at layer 3 of our model.
 In this paper we have only partially addressed the issue of
fault-tolerance. In Section 4 we described how nodes can
enter and leave the system and how these changes are
handled by the PFAgents layer in a transparent manner. As
a result the bottom-up portion of our hybrid model is fault-
tolerant. However, if a node used by a currently running
JaMes program crashes, at present the only alternative is to

restart the application. Providing a more graceful recovery
scheme for the top down portion of our model, and hence
for the JaMes system, is part of our future work.

REFERENCES

[1]. Task Force on Autonomous and Autonomic Systems.
First ieee international zconference on self- adaptive
and self-organizing systems: Home page
http://www.labunix.uqam.ca/ jpmf/saso2007/, 2007.

[2]. Stephan Dudler and Theus Hossmann. Design and
implementation of an intra-compartment routing
scheme. Fp6-ist-28489, ana deliverable 2.9, ETHZ,
September 2008.

[3]. Q. Shang, M. Fukuda, M. B. Dillencourt, L. F. Bic,
JaMes: A Java-based System for Navigational
Programming. In preparation.

[4]. Ghazi Bouabene, Christophe Jelger, and Ariane Keller.
Ana core documentation. Fp6-ist- 27489/wp1/d.1.10,
University of Basel, June 2008.

[5]. L. Pan, M. Lai, K. Noguchi, J. J. Huseynov, L. F. Bic,
M. B. Dillencourt, Distributed Parallel Computing
Using Navigational Programming, International Journal
of Parallel Programming, Vol. 32, No. 1, Feb. 2004

[6]. L. Pan, L. F. Bic, and M. B. Dillencourt, Distributed
Sequential Computing Using Mobile Code: Moving
Computation to Data, L. M. Ni and M. Valero (eds.),
Proceedings of the 2001 International Conference on
Parallel Processing (ICPP 2001), IEEE Computer
Society, Los Alamitos, California, pp. 77–84
(September 2001).

[7]. Munehiro Fukuda, Duncan Smith, "UWAgents: A
Mobile Agent System Optimized for Grid Computing",
In Proc. of the 2006 International Conference on Grid
Computing and Applications, Las Vegas, NV, pages
107-113, June 26-29, 2006.

[8]. W. M. Gentleman. Some complexity results for matrix
computations on parallel computers. Journal of the
ACM, 25(1):112–115, Jan. 1978.

[9]. L. Pan, W. Zhang, A. Asuncion, M. Lai, M. B.
Dillencourt, L. F. Bic, Incremental Parallelization
Using Navigational Programming: A Case Study,
International Conference on Parallel Processing (ICPP-
2005), Oslo, Norway, June 2005.

[10]. Tsutomu Inaba, Takuro Okawa, Yoshitomo Murata,
Hiroyuki Takizawa, and Hiroaki Kobayashi. Design
and implementation of an efficient search mechanism
based on the hybrid p2p model for ubiquitous
computing systems. In Proc. of the 2006 Symposium on
Applications and the Internet (SAINT’06), pages 45–53,
Phoenix, AZ, January 2006.

[11]. Ian Foster and Carl Kesselman. The Globus Project: A
Status Report. In Proc. IPPS/SPDP’98 Heterogeneous
Computing Workshop, pages 4–18, 1998.

[12]. Andrew Grimshaw, Adam Ferrari, Frederick
Knabe, and Marty Humphrey. Wide-area computing:
Resource sharing on a large scale. IEEE Computer,
Vol.32(No.5):29–37, May 1999.

