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ABSTRACT

This paper focuses on automatic resource management in 
mobile computations that span multiple sites. We extend an 
existing static resource management system to a dynamic 
management system by providing a five-layer resource 
management mechanism.  This mechanism is designed to 
support a Navigational Programming system called JaMes, 
which is a Java-based programming system based on self-
migrating threads. The top two layers provide a top-down 
mechanism which allows JaMes to request resources based 
on performance criteria specified by the application 
programmer.  The bottom three layers provide a self-
organizing bottom-up mechanism that provides current 
information about the available systems resources.    We 
illustrate the utility of this multilayer architecture with a 
classical matrix multiplication example executing in a 
multisite environment. 
 
Keywords: Distributed parallel computing, mobile agents, 
multi-site resource discovery, resource based migration, 
Java-based programming systems. 
 

1 INTRODUCTION 
    There are two approaches to dynamic resource allocation 
currently used in grid computing and cloud computing: (1) 
the top-down self-adaptive approach and (2) the bottom-up 
self-organizing approach [1]. SASO 2007 defined them as 
follows: self-adaptive systems evaluate their own global 
behavior and change it when the evaluation indicates that 
they are not accomplishing what they were intended to do.   
In contrast, self-organizing systems are composed of a large 
number of components that interact according to simple and 
local rules [2] to present a higher-level view of the 
resources.  
    This paper presents a five-layer approach to dynamic 
resource management for JaMes[3].  JaMes, short for Java 
MESSENGERS, is a Java-based programming system for 
Navigational Programming (NavP) [5,9].  Using JaMes 
programmers can invoke functions on remote nodes and also 
communicate (by ship and receive) with other nodes.  JaMes 
applications operate within a logical network.  JaMes only 
supports a static mapping of this logical network to the 
underlying physical network.  To provide for dynamic 
resource allocation/management, we provide a five-layer 
support system that can take advantage of a dynamically 

changing resource environment. With this extension JaMes 
can request and utilize the set of resources best suited to its 
current needs according to criteria specified by the 
application programmer.   
    The five-layer model described in this paper represents a 
hybrid between the top-down and bottom-up approaches.  
The model is loosely based on the field-based routing 
concept described in [4], where each client message hops to 
a desired server along the steepest gradient of a service 
potential field in the same manner of an electrical potential 
field in physics that moves an electron, (i.e. a message in 
field-based routing) toward the electrically steepest gradient.  
Analogous to field-based routing, a sentinel agent can 
determine the desired computing nodes by following the 
steepest gradient of a potential field corresponding to the 
current status of the available computing resources. To 
create this field, an agent on each node monitors its local 
computing resources and broadcasts its resource information 
to its neighbors, so that the information is disseminated 
throughout the network in a heartbeat fashion.  
    After presenting an overview of JaMes in Section 2, we 
describe the five-layer model in detail in Section 3. Section 
4 describes how the top-down and bottom-up portions of the 
model interact to provide a hybrid system. Section 5 
illustrates the model using matrix multiplication in a multi-
site environment. We then discuss some related work and 
provide some conclusions. 

2 RESOURCE MANAGEMENT IN JAMES  
    JaMes[3] is a Java-based parallel programming that 
incorporates the principles of Navigational Programming 
(NavP). The advantages of NavP over Message Passing 
(MP) and Distributed Shared Memory (DSM) have been 
discussed in previous work [5,6,9]. In essence, MP can be 
difficult to use and DSM does not scale well. 

2.1 Basic features of JaMes 
    JaMes applications are Java programs that can take 
advantage of the following additional features provided by 
the JaMes runtime environment. 
 
Self-migration: Methods may be invoked remotely and 
asynchronously, meaning that the called method does not 
return a value and the caller does not wait for the called 



method to complete.  This provides the basis for migration.  
If the caller dies, this corresponds to a hop operation. If the 
caller continues, this corresponds to a clone operation. 
 
Send/receive: JaMes incorporates sending and receiving of 
data while remaining faithful to the principles of 
Navigational Programming. The basic mechanism uses a 
ticket. When data is sent, the sender specifies the destination 
node and a ticket name.  To receive data, a process specifies 
the ticket name, rather than the identity of the sender.  This 
may be done either synchronously or asynchronously: the 
receiver may either block until a shipment with the given 
ticket name is received, or periodically check for the 
shipment.   
 
Non-preemptive scheduling: JaMes uses a non-preemptive 
discipline, so that programmers do not need to worry about 
synchronization. On each node, there is only one executing 
thread running at any time. An executing thread cannot be 
preempted: the only way it can be blocked is when it blocks 
itself by issuing specific commands such as wait(), yield(), 
or a blocking receive request.  Non-preemptive scheduling 
eliminates the need for explicit critical sections when 
accessing shared variables and reduces context-switching 
overhead. 
 
Priority-based scheduling:  JaMes supports priority-based 
scheduling.  Since JaMes uses its own scheduler rather than 
the Java thread scheduler, the number of priority levels does 
not depend on the underlying operating system.   The 
priority can be used to control both the order of 
computations that hop from another node and the choice of 
threads to be run when another thread gives up the CPU.  
 
Logical-to-physical node mapping: JaMes applications are 
written to a fully-connected logical network, the size of 
which is defined by the application.  Each node is 
referenced by its rank.  This permits the application to be 
written in a manner independent of any specific hardware 
configuration.  

2.2 Support for Dynamic Resource 
Management 
    JaMes is currently supported by only a static 
configuration scheme as shown in Figure 1(a).  The 
mapping of logical nodes to physical nodes is set when 
JaMes starts up and cannot be changed.  Specifically, a 
startup program is run on a set of nodes consisting of a 
master node and a statically designated set of individual 
nodes, listed in a configuration file.  When a node registers 
with the master node, it is assigned a logical rank number by 
the master node.  The rank number is nondeterministic as it 
depends on the order in which the UDP messages arrive at 
the master node.   
    This static approach can be improved in three 
fundamental ways:  
 
1. Application-specific mapping: The logical-to-physical 

mapping for a particular application should be set when 
the application starts up rather than when the JaMes 

system starts up.  This permits different applications 
running under the same instance of JaMes to use 
different mappings.   

2. Dynamic resource availability: When the logical-to-
physical binding is delayed until the application starts 
up, the mapping can take advance of the most recent 
status of the system.  For example, nodes with the 
lowest CPU utilization or the largest amount of 
available memory may be chosen. 

3. Multi-segment network: Since JaMes assumes a fully 
connected network, additional support is necessary to 
allow applications to run in multi-segment networks 
where the only connections between segments are the 
gateways. 

 
    Figure 1(b) illustrates the dynamic configuration 
management scheme, using the 5-layer architecture 
described in the following section. 
 

   
Figure1 (a) Static mapping mechanism (b) Dynamic 

mapping mechanism for JaMes   

3 DYNAMIC RESOURCE MANAGER 
ARCHITECTURE 

    The 5-layer model shown in Figure 2 facilitates the 
dynamic mapping and resource based migration on multi-
site environment.   

3.1 TCP-Link-Assisted Inter-Segment UDP-
Broadcast Space 
    The lowest layer is a TCP-link-assisted inter-segment 
UDP-broadcast space. Since UDP broadcast is normally 
limited to within a single segment, additional administrative 
support, such as IGMP, is necessary to allow broadcasting 
across multiple segments. Our implementation facilitates 
application-level inter-segment UDP by establishing a TCP-
link between representative nodes of each segment which 



allow relaying intra-segment UDP-broadcast messages 
among the segments. This layer is established as follows: 
1. Each network segment chooses a representative node that 
runs a UDP-relay daemon locally. 
2. Each UDP-relay daemon contacts a shared rendezvous 
point, (e.g., a common FTP server) to upload its IP address, 
to download the IP addresses of all other remote segment 
representatives, and to establish a TCP link (through a ssh 
tunnel) to each remote representative. 
3. The UDP-relay snoops all intra-segment UDP-broadcast 
messages and relays them on each of the emanating TCP 
links to the remote representatives, while receiving 
messages from these representatives and broadcasting them 
to the local network segment. 

3.2 UWAgents  
    The second layer is the UWAgents mobile-agent 
execution platform.  A separate daemon process runs at each 
node.  Its role is to exchange agents with other nodes and to 
run their code. Details about the UWAgents system can be 
found in [7]. 

3.3 Potential Field Agents 
    The third layer consists of Potential Field Agents 
(PFAgent).   One PFAgent is launched at each node. Each 
PFAgent periodically measures the latest performance of its 
local computing resources including CPU power, memory 
space, disk size, network bandwidth, and their current 
availability. All of these are recorded in each PFAgent's 
internal resource table and are broadcast in a UDP message 
within the local network segment and relayed to remote 

segments. Each performance measure forms its own 
potential field.  In response to a resource request from a user 
process, each PFAgent uses the specified field to find the 
nodes that best suit the needs of the process.   
3.4 Sentinel Agent 

    The fourth layer is the sentinel agent. The sentinel agent 
is launched by the configuration management layer (layer 5) 
on the node where the JaMes application is running.  The 
sentinel agent finds the best currently available nodes, based 
on criteria passed down to it from the configuration 
management layer.   It does this by querying the PFAgent on 
the same node.  The PFAgent is responsible for monitoring 
performance measures such as CPU utilization, memory 
usage, and CPU power and disk size.  In addition, the 
PFAgent may specify more specialized criteria, such as the 
availability of certain libraries or software tools.  Given the 
multitude and unpredictability of such possible queries, it is 
not practical to maintain a complete up-to-date list.  
Therefore, the PFAgent gathers such information only when 
prompted by requests from the sentinel agent.     

3.5 Configuration Management 
    The fifth layer is the configuration management layer, 
which is responsible for mapping logical nodes to physical 
nodes dynamically and automatically. Because all node 
information is transparent to programmers and applications, 
only logical rank numbers are used in the code as the 
destinations for computation migration and data exchange. 
The logical numbers are bound to physical nodes at run time

  

 
Figure2 Execution layers used for field-based process dispatch and migration 



 
according to different conditions. Figure 3 shows an 
example where the dynamic configuration management 
layer binds the six logical nodes requested by JaMes to six 
physical nodes provided by the sentinel agent and 
distributed over two different sites.    
 

 
Figure 3 Dynamically mapping physical nodes to logical 

nodes 

3.6 JaMes 
    JaMes is a distributed parallel programming model that 
operates within a logical network.  It provides basic 
mechanisms for thread migration and data communication 
within this network.  Each logical node is assigned an 
arbitrary number (a rank) by the application.  Migrating and 
communication commands use rank numbers to specify 
their targets.  An executing thread can determine its current 
location by calling JaMes.getRank(), which is a basic 
function provided by JaMes. Ranks are mapped to physical 
nodes by the five levels described above when the JaMes 
application starts.   

4. DYNAMIC RESOURCE MANAGER 
OPERATION 

4.1 Bottom-up Resource Supply 
     Our model supports dynamic resource management using 
a hybrid top-down/bottom-up approach. In the bottom-up 
view it constructs a self-organizing network, which supplies 
a global resource view over multiple segments. Nodes can 
join and quit the system dynamically as described later in 
this section. 

4.1.1 Information flow within the system  
    All nodes within a segment need to broadcast their local 
resource messages to all other nodes within the segment and 
receive reciprocal information.  In addition, each 
representative node broadcasts information about all nodes 
in its segment to all other representative nodes and also 
broadcasts information received from other representative 
nodes to the other nodes in its segment.  
    All the above communication is bidirectional, so all nodes 
maintain resource information about the entire system. This 
allows the sentinel agent to query only its own local 
PFAgent, avoiding the potential bottleneck that would arise 

if all status requests had to be funneled through the 
representative nodes. 

4.1.2 Joining the system 
    When a new node joins the system, the processing and 
communication sequence depends on whether the node is 
part of an existing segment.  Figure 4 illustrates the different 
communication paths.   
 
    If the new node is not part of an existing segment, we 
have to perform the following initial step 
 
a) The node must first register itself with the rendezvous 

point and establish a tcp-link to all other segments 
already registered with the rendezvous point.  The node 
becomes the representative node for the system.  As 
part of the registration process, this node receives 
information about the current status of all nodes on all 
other registered segments. 

 
    If the node is a member of an already-registered segment, 
or once step a) is complete, we start up the PFAgent on the 
node, which in turn starts up the UWAgent.  The following 
communication then occurs. 
 
b) The PFAgent on the new node broadcasts its hardware 

and software information to all the PFAgents on nodes 
within the same segment.  It also receives the reciprocal 
information from other nodes on the same segment. 

c) The representative node for the segment broadcasts the 
potential field information for all nodes in this segment 
to the representative nodes of all other registered 
segments.  

d) The representative node on every other segment 
broadcasts the updated potential field information to all 
other nodes in its segment. 
 

 
Figure 4 Dynamic nodes management 

4.1.3 Quitting the system 
    If a node crashes or terminates, thus becoming 
detached from the computing-resource potential field, it 



stops broadcasting and hence is removed from the potential 
field on its segment.  Similarly, if the representative node of 
a segment crashes or terminates all nodes in this segment are 
removed from the system.   

4.2 Top-down Resource Demand 
    A user can inject an application at any node in the system, 
using the following command line syntax: 
 

inject app arguments  #nodes criteria 
 
    This causes the following steps to occur, as illustrated in 
Figure 5. 
 
a) JaMes calls the configuration manager, passing it the 

number of nodes and the node selection criteria. 
b) The configuration manager spawns the local sentinel 

agent and passes it the number of nodes and the node 
selection criteria. 

c) The local sentinel agent queries the local PFagent. The 
PFagent returns information about all nodes on all 
segments.   

d) The local sentinel agent chooses the appropriate number 
of nodes according to the requested criteria. 

e) The local sentinel agent sends a command including the 
application name and its arguments to all the chosen 
nodes. There are two situations, depending on the 
locations of the chosen nodes. For nodes chosen from 
the same site as the sentinel agent, all inter-process 
communication is done through sockets. For nodes on 
remote segments, the interprocess communicating is 
relayed through the representative nodes on the two 
segments, which communicate through the TCP link.   

 

  
Figure 5 Resource selection by sentinel agent 

5. APPLICATION EXAMPLE 
    In this section a matrix multiplication example is 
presented to show the usability of our five-layer model. All 
performance data in this paper was obtained from two 
campuses: University of California, Irvine (UCI) and 

University of Washington, Bothell (UWB).  The UCI nodes 
are i686 Intel Pentium 4 CPU’s, 3.00GHz, 1GB main 
memory, and 100Mbps of Ethernet connection. The 
operating system is Linux version 2.6.22 and the JDK 
version is JDK 1.6.0. The UWB nodes are Intel Xeon 
CPU’s, 3.2GHz, 512MB main memory, and 1Gbps of 
Ethernet connection. The operating system is Linux version 
2.6.9 and the JDK version is JDK 1.5.0. 

5.1 Matrix Multiplication based on JaMes 
    Matrix multiplication is very important in scientific 
computing and it is also a classic benchmark for parallel 
programming. Our solution is based on Gentleman’s 
algorithm [8-9], a classical SPMD algorithm for parallel 
matrix multiplication. In this algorithm, both matrices A and 
B migrate as shown by the arrows in Figure 6, while the 
result matrix C is stationary. In this example we define the 
grid size to be 3, which divides all matrices into 9 blocks, 
each held by a separate node. As a result, there are 9 threads 
on each node, each responsible for the computation of one 
block.  
    There are two ways for different nodes to communicate 
with each other in JaMes. One is by hopping to another node 
carrying the data, and the other one is shipping data directly 
to the destination. In this example, we think of the threads as 
containing blocks of matrix A which they move among 
nodes as they hop.  The data from B is sent using ship 
statements to be available for the corresponding 
computation thread.  Figure 7 shows the pseudocode for this 
implementation of Gentleman’s algorithm. We can 
summarize the computation performed by each thread as: 
(1) receive the B data, (2) compute A*B, (3) ship the B data, 
(4) hop to the next node. The two statements 

JaMes.getSurrogate(left node); 
x.process(a,step+1) 
 

essentially constitute a hop to the left neighbor, carrying A 
with it. The neighbor computation is based strictly on node 
number. The actual binding to the physical node is 
performed at run time by the configuration manager.  
Similarly, the ship statement causes B to be sent to the node 
immediately above the current node and the receive 
statement causes B to be received from the node below the 
node where the statement is executed. This is specified 
based on node number, and the binding to physical node is 
left to the configuration manager.   

Figure 6. Gentleman’s Algorithm. 



Function process(data, step) 
   if  (step < gridSize – 1 ) 
      JaMes.receive(b, down node, ticket) 
      C +=  A * B 
      JaMes.ship(b, up node,ticket) 
      x = JaMes.getSurrogate(left node) 
      x.process(a, step+1) 
   end if 
end function 
 

Figure 7. Pseudocode for JaMes solution. 

5.2 Global Resources Discovery and Allocation 
    According to our model, the representative node is 
chosen manually for each campus. We choose godzilla on 
UCI and medusa on UWB as the representatives. Since 
godzilla and medusa cannot directly establish a TCP 
connection, we need to create an ssh tunnel. Then for the 
purposes of this example, we choose 8 nodes, four on each 
campus, as the resource nodes: hermod0 through hermod3 
on UCI and mnode10 through mnode13 on UWB.  These 
nodes collectively form the potential field from which the 
sentinel agent can make its selection. After all information 
has been exchanged among the PFAgents at the eight nodes, 
each PFAgent will contain the same global resource 
information, which is shown in Figure 8. 

PFagent.commandReceiver(): 'show' received from 
(medusa.uwb.edu) 

UCI campus UWB campus 

###hermod0.ics.uci.edu### 
disk = 5364 
cores = 1 
users =   1  
os = Linux 
arch = i686 
memory_free = 101 
cpu_load = 0.00 
processes = 50 
cpu_speed =  2994.975 
cpus = 1 
memory_total = 1010 

###mnode10.uwb.edu### 
disk = 927 
cores = 1 
users =   1  
os = Linux 
arch = i686 
memory_free = 12 
cpu_load = 0.00 
processes = 56 
cpu_speed =  3200.682 
cpus = 1 
memory_total = 503 

###hermod1.ics.uci.edu### 
disk = 5365 
cores = 1 
users =   2  
os = Linux 
arch = i686 
memory_free = 19 
cpu_load = 0.00 
processes = 56 
cpu_speed =  2994.988 
cpus = 1 
memory_total = 1010 

###mnode11.uwb.edu### 
disk = 927 
cores = 1 
users =   1  
os = Linux 
arch = i686 
memory_free = 13 
cpu_load = 0.00 
processes = 56 
cpu_speed =  3200.537 
cpus = 1 
memory_total = 503 

###hermod2.ics.uci.edu### 
disk = 5364 
cores = 1 

###mnode12.uwb.edu### 
disk = 927 
cores = 1 

users =   1  
os = Linux 
arch = i686 
memory_free = 127 
cpu_load = 0.00 
processes = 53 
cpu_speed =  2995.062 
cpus = 1 
memory_total = 1010 

users =   1 
os = Linux 
arch = i686 
memory_free = 11 
cpu_load = 0.00 
processes = 59 
cpu_speed =  3200.673 
cpus = 1 
memory_total = 503 

###hermod3.ics.uci.edu### 
disk = 5364 
cores = 1 
users =   2  
os = Linux 
arch = i686 
memory_free = 57 
cpu_load = 0.00 
processes = 56 
cpu_speed =  2994.995 
cpus = 1 
memory_total = 1010 

###mnode13.uwb.edu### 
disk = 927 
cores = 1 
users =   1  
os = Linux 
arch = i686 
memory_free = 69 
cpu_load = 0.16 
processes = 56 
cpu_speed =  3200.546 
cpus = 1 
memory_total = 503 

Figure 8 Resource information on UCI and UWB campus 
 
     Table 1 shows, for different combinations of selection 
criteria, the physical nodes that will be chosen.  For 
example, specifying CPU speed as the criterion and UCI as 
the location, the system would choose hermod2, hermod3, 
and hermod1 to be bound to logical nodes 0, 1, and 2, 
respectively.  The reason for this selection can be seen in 
Figure 6, where the three chosen nodes are the nodes at UCI 
with the highest CPU speed. If no performance criteria are 
specified the system nondeterministically chooses a 
collection of physical nodes at the requested location based 
on the order of arrival of UDP messages.  One such possible 
choice is binding hermod0, hermod2, and hermod1 to 
logical nodes 0, 1, and 2 as shown in the table in the column 
labeled “random.” After the sentinel agent returns the 
selection, the configuration manager binds these physical 
nodes to logical rank numbers.  

Table 1 Resource table on UCI and UWB 

Candidate hermod0 – hermod3, mnode10 – mnode13 

Condition cpu_speed memory_
free random logical 

rank 

UCI 
hermod2 
hermod3 
hermod1 

hermod2 
hermod0 
hermod3 

hermod0 
hermod2 
hermod1 

0 
1 
2 

UWB 
mnode10
mnode12
mnode13 

mnode13 
mnode11 
mnode10 

mnode10 
mnode12 
mnode13 

0 
1 
2 

 

6. RELATED WORK 
    One focus of this paper is a hybrid mechanism for finding 
and allocating the most suitable computational resources for 
an application in a dynamically changing environment.   
Previous research most closely related to this problem is 
computing-resource search. Existing literature discusses and 



classifies two approaches: broker-based search and 
brokerless search [10].   
    The best-known grid-computing middleware systems use 
broker-base search models [11-12].  In these systems, all 
computing nodes register their resources with a central 
broker, and the broker sends to the requesting process the 
computing resources best suited to to its job requirements. 
In contrast, in the brokerless-type search model the 
requester multicasts a resource-search query to servers in its 
vicinity.  These requests may be relayed by the servers to 
their neighbors, thus implementing a flooding algorithm.  
This process repeats until suitable resources are found and 
returned to the requester. 
    Our hybrid resource management approach can be viewed 
as a brokerless-type search model. The task performed by 
the sentinel agent is roughly analogous to spawning to a 
resource-search query. The crucial difference is that our 
queries do not need to be propagated through the network.  
Instead, the potential field agents provide the necessary 
information, which they maintain up-to-date.  In essence, 
they are serving as a cache for global available resource 
information.   

7. CONCLUSION 
    We have described a method for dynamically mapping 
logical nodes in JaMes applications to physical nodes.  After 
starting JaMes on each node, a full TCP connection is set up 
among all processors with their own UDP and TCP 
addresses. One of the processors is explicitly selected as the 
master to collect IP name/port pairs and distribute them to 
all the other processors. Then an application thread can be 
injected on the logical node with rank 0.  
    JaMes applications specify all destinations of 
computation, migration, and communication in the code, 
using only rank numbers The rank number for each 
processor is stationary and unchangeable. Programmers 
cannot determine the physical destination of migration or 
communication. The five execution layers can choose the 
best available hardware and software for the given 
application. In the bottom-up view layers 0 through 3 
construct a self-organizing multi-campus network, which 
the participated node can join in and quit dynamically. 
Layers 4 through 6 provide a top-down dynamic mapping 
mechanism, through which the system can map physical 
nodes to logical nodes according to different selection 
criteria. 
    One advantage of our approach is the flexibility that 
allows the application to specify its needs in hardware-
independent manner using performance and location 
constraints.  Another advantage is the speed with which 
resource requests can be satisfied.  This is due to the 
monitoring and caching of global performance data carried 
out by the potential field agents at layer 3 of our model. 
    In this paper we have only partially addressed the issue of 
fault-tolerance. In Section 4 we described how nodes can 
enter and leave the system and how these changes are 
handled by the PFAgents layer in a transparent manner.  As 
a result the bottom-up portion of our hybrid model is fault-
tolerant.  However, if a node used by a currently running  
JaMes program crashes, at present the only alternative is to 

restart the application.  Providing a more graceful recovery 
scheme for the top down portion of our model, and hence 
for the JaMes system, is part of our future work.  
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