A Multi-Agent Parallel Approach to Analyzing
Large Climate Data Sets

Jason Woodring*, Matthew Sell*, Munehiro Fukuda*, Hazeline Asuncion® and Eric Salathéf
* Division of Computing and Software Systems
t Division of Physical Sciences
University of Washington Bothell
18115 NE Campus Way, Bothell, WA 98011
{jman5000, mrsell, mfukuda, hazeline, salathe}@uw.edu

Abstract—

Despite various cloud technologies that have parallelized and
scaled up big data analysis, they target data mostly in texts
which are easy to partition and thus easy to map over a cluster
system. Therefore, their parallelization do not necessarily cover
scientific structured data such as NetCDF or need additional,
user-provided tools to convert the original data into specific for-
mats. To facilitate user-intuitive parallelization of such scientific
data analysis, this paper presents an agent-based approach that
instantiates distributed arrays over a cluster system, maintains
structured scientific data in these arrays, deploys many mobile
agents over the arrays to perform computational actions on data,
and collects necessary results. To demonstrate the practicability
of our agent-based approach, we focused on climate change re-
search and implemented a web-interfaced climate analysis, using
the MASS (multi-agent spatial simulation) library. In this paper,
we show practical advantages of, performance improvements by,
and challenges for our agent-based approach in structured data
analysis.

I. INTRODUCTION

While most open-source software used in cloud computing
such as MapReduce [1], Spark [2], and Storm [3] facilitates
data-processing power on text data such as key/value pairs,
CVS, and SQL schemas, some applications in scientific data
analysis need to analyze binary or multi-dimensional struc-
tured data such as NetCDF [4]. Three approaches to addressing
this requirement can be considered: (1) relying on utilities
customized for data analysis such as CDO and NCL [5],
(2) using platform-aware libraries for parallelization such as
MPI [6] and GlobalArray [7], and (3) converting structured
data into MapReduce/Spark-readable formats and feeding
them to SciHadoop [8] and SciSpark [9]. Of importance is that
they are not necessarily computing specialists who understand
underlying parallel-programming techniques and distributed-
computing architectures. Therefore, these customized software
tools, parallelization-aware libraries, or user-provided data
conversion can be still programming barriers to scientists.

To ease parallelization of scientific data analysis, we take
an agent-based approach that maintains scientific data in
distributed arrays over a cluster system, deploys many mobile
agents over the arrays to perform arithmetic actions on data,
and lets them collect computational results. We have applied
to this approach our parallelization library for multi-agent
spatial simulation (MASS) [10]. To demonstrate the MASS

library’s practicability in data analysis, we focused on climate
change research that has been conducted at University of
Washington [11]. The analysis handles a collection of NetCDF
files and examines the time series of climate data, which per-
forms repetitive iterations of computation over such resilient
distributed datasets. The analysis includes discoveries of the
future time of emergence (ToE) [12].

The contribution of this paper is two-fold: (1) demonstrating
the practicability of agent-based approach to scientific data
analysis, in particular focusing on structured data and (2)
confirming performance improvements of data analysis using
different agent migration algorithms. The rest of the paper
is organized as follows: Section II identifies computational
and programming requirements in climate analysis and pro-
poses the use of the MASS library for this data analysis;
Section III explains the UWCA (University of Washington
Climate Analysis) system that implements a web-interfaced
climate analysis with MASS; Section IV demonstrates the
MASS library’s practicability in climate analysis; Section V
discusses the performance improvements by and challenges for
our agent-based approach to climate analysis; and section VI
states our conclusions and future work.

II. BACKGROUND

This section first identifies computational and programming
requirements in climate analysis, thereafter introduces the
MASS library as our agent-based data-analyzing tool, and
differentiates MASS from related work.

A. Requirements in Climate Analysis

In an effort to understand the coming climate changes and
to warn humanity, climate scientists have taken measures to
predict the future state of the earth’s climate. Several different
climate models are produced by climate science facilities
in the form of common data sets such as NetCDF files
which contain grid-like data suitable for analysis. Unidata has
several different software packages available for working with
NetCDF data from different software environments such as
C++ and Java [4].

A calculation of interest for climate scientists is Time of
Emergence (ToE). ToE is the time at which certain climate
properties become apparent. In other words, when a certain

climate attribute such as temperature starts consistently rising
above a certain threshold, then it could be considered ToE
for that property [12]. ToE is important to predict, because
it is the perceived indicator that could be a warning that
extreme weather events could be increasing in frequency, such
as storms or floods.

There are challenges with analyzing this climate model data
however. The amount of data can be very large and consist of
several files. Any given climate model may include up to half
a dozen files of 5 - 10GB size. Special computing hardware
and advanced computer science concepts may sometimes be
necessary to process and analyze the data without significant
performance problems. Some of the techniques employed to
speed up reading and processing of this data may include
distributed file reading, incremental reading and processing
of data on a single computing node, or potentially distributed
computing clusters to keep the entire data set in memory dur-
ing analysis. While large climate science facilities may have
special computing resources to perform these analyses, many
climate researchers are without these resources or skills [13].
For these reasons, climate scientists tend to rely on tools which
are familiar to them and have a lower barrier to entry such
as the NCAR Command Language (NCL) / Climate Data
Operators (CDO) [5]. Often climate scientists will create one-
time use scripts which have problems of their own. Because
climate scientists are not necessarily software-focused, they
will often create NCL code which may suit a particular
purpose for one time use, rather than solving a problem in
a more re-usable software workflow format [13]. Also the
NCL scripting language has limitations of its own such as
not being able to take advantage of distributed systems or
multi-threaded mechanisms which more modern programming
languages enjoy for performance improvement.

B. MASS Library

We use MASS: a parallel-computing library for multi-
agent spatial simulation to parallelize climate analysis. MASS
abstracts out many difficult computer science concepts such as
parallelization and distributed computing. With MASS, users
can easily declare a large-size grid data structure that will be
distributed out among many computing nodes. The users can
then deploy many agents onto the distributed data structure for
applying computational operations to the data and computing
necessary results.

As shown in Fig. 1, the MASS library forms a collection
of communicating multithreaded processes, each maintain-
ing a different portion of distributed arrays and exchanging
mobile agents with other processes. The library hides such
underlying parallelization and computing platforms from the
user’s viewpoint. Users are given the MASS programming
framework that abstracts distributed arrays and mobile agents
with Places and Agents. Each Place element is automatically
mapped to one of computing nodes, is located with a logical
array index, and is capable of invoking a given function in
parallel as well as exchanging data with other elements. On the
other hand, each Agent object can autonomously migrate from

s
Y-axis |

A Bag of Agents
. Agents . Agents
00°8" 0°% o

E__:\:::_

Places

R 1.
B 1.1

8 1.
SR L K axis

L ._._1._._.

C =

\,

=2 =
o

CEL
SES FS
> > ==

Process Rank 0 Process Rank 2

1111

Compunng Node 2

Process Ranif1

_—
Computing| Node 1 LAN

—
Computing| Node 0

Fig. 1. The MASS architecture

one to another place, spawn children, and interact with the
current place where it resides. A user designs a data-analyzing
program by extending the Place and Agent base classes and
specifying some behavior. Actual computation is performed
between MASS.init() and MASS .finish(), using the following
major methods, each performed in parallel.

Places Class

public Places(int handle, String className, int size...)

instantiates a shared array with size from className.

public Object[] callAll(int functionld, Object[] arguments)

calls the method specified with functionld of all elements as passing
arguments[i] to element[i], and receives a return value into Object/i].
public void exchangeAll(int handle, int functionld, Vector<int[]>
destinations)

calls from each element to a given method of all neighbors, each
indexed with a Vector element, and exchanges data among the elements.
Place Class

private size[]; private index[]

maintains the size of the shared array that each element belongs to and
the index of each array element.

Agents Class

public Agents(int handle, String className, Places places)

populates agents from className onto a given places.

public Object callAll(int functionld, Object[] arguments)

is the same as Places.callAll().

public void manageAll()

updates each agent’s status, based on its latest calls of migrate(),
spawn(), and kill(). These methods are invoked within callAll().

Agent Class

migrate(int[] index...); spawn(int nChildren); kill()

moves a calling Agent to a place specified with index, spawns children,
and terminates the agent respectively.

C. Other Potential Parallelization Tools

Table I compares the MASS library with the major software
libraries that have enabled cloud-based or cluster-based data
analysis: MapReduce [1], Spark [2], Storm [3], GlobalAr-
ray [7], and mobile agents [14]. Note that Table I also shows
how SciHadoop [8] and SciSpark [9] address manipulations
of structured data on top of Hadoop and Spark respectively.

MapReduce [1] provides users with a simple programming
framework of map() and reduce(): the former performs parallel

computation onto each data item of distributed files and the
latter then collects results from the computation. In the lambda
architecture [15], MapReduce serves at the batch layer to
create various batch views in expectation of their future uses
by the service layer, and therefore its main goal is background
processing rather than high-speed analysis.

Spark [2] serves at both batch and speed layers not only to
create batch views but also to incorporate new data into real
time views, and thus focuses on high-speed analysis. Spark
reads a dataset into a cluster system’s distributed memory
using micro-batch streaming, transforms data into another re-
silient distributed dataset, and performs computational actions
to the in-memory data using various parallel-commutating
primitives. Although Spark implements flexible data analysis
with lambda expressions, it does not introduce or dynamically
link new programs to the runtime data analysis.

Storm [3] facilitates a real-time data streaming framework
based on a directed acyclic graph that can be described with
its topology builder’s setSpout() and setBolt() methods and
executed with a fault-tolerant queue-worker model. This actu-
ally means that Storm can apply multiple different programs
to multiple data (MPMD), whereas MapReduce and Spark
apply the same single program to multiple data (SPMD). It
supports cumulative computation as guaranteeing at-least-once
semantics. However, due to its FIFO-based nature of data
analysis, it cannot reverse data streaming or roll back data that
have already been processed, which is not suitable to spatial
analysis.

Focusing on distributed transparency, all of MapReduce,
Spark, and Storm are based on only interpretive language
platforms such as Java, Python, and/or Scala. They support
holistic data measurement. One of their drawbacks is in
handling an entire dataset as a collection of uniform primitive
elements. To address this problem, SciHadoop [8] automat-
ically partitions a structured file (e.g., NetCDF) into small
chunks and groups them such that MapReduce can process
structured data as unstructured partitioned blocks. However,
they do not construct the original data structures in memory,
have difficulty in understanding spatial relationships and pat-
terns, and do not keep track of particular data items during
the course of their analysis. Similarly, SciSpark [9] converts
structured files (including not only NetCDF but also HDF) into
a collection of Spark-readable data frames named sciTensors,
each including key/value pairs and array data. Therefore, Spark
can repetitively manipulate multiple array datasets at runtime.
Needless to say, such data conversion must be materialized by
user-provided partitioning and file-loader functions.

GlobalArray facilitates a native-mode data analysis that
instantiates distributed arrays on top of MPIL The library
provides one-sided access to data and parallel math operations.
Although GlobalArray would be the fastest execution environ-
ment to support multi-dimensional structured datasets, users
must have a substantial knowledge of parallel programming,
(e.g. data synchronization) and be aware of their underlying
platforms such as MPI ranks.

Another approach to scientific data analysis is to use a

Features MASS MapReduce Spark
(SciHadoop) | (SciSpark)
Data streaming Parallel /tmp Hadoop [17] | Micro-batch
accesses streaming
File format Structured: Text, Text, CSV,
e.g. NetCDF key/value key/value
(Struct data (Struct data
flattened) converted to
sciTensor)
Data structure Arrays Key/value SQL
Data processing Batch, Batch Micro-batch,
Runtime Runtime
Execution model | MPMD, SPMD SPMD
reactive agents | map/reduce master-workers
Major functions callAll(), map(), count(),
exchangeAll(), reduce(), reduce(),
manageAll() join(), map()
Runtime analysis | Dynamic No Lambda
linking expression
Platforms Java, Java Java,
C++, Python,
CUDA Scala
Execution speed Interpretive & Interpretive 100x faster than
native exec. execution MapReduce
[Features | Storm | GlobalArray | Mobile agents |
Data streaming Micro-batch MPI/IO Conventional
streaming file I/Os
File format Text Structured: Text
MPI file view
Data structure Tuples Arrays Serializable
objects
Data processing Micro-batch, Batch Batch
runtime
Execution model | MPMD SPMD Cognitive
queues-workers | master-workers | agents
Major functions setSpout and get(), put(), dispatch()
setBolt pre-defined clone()
matrix methods
Runtime analysis | No No Plug & play
Platforms Java C/C++, Java, Tcl/Tk
Python Fortran etc. Prolog
Execution speed Interpretive Fastest native Interpretive
execution execution execution
TABLE T

TOOLS FOR PARALLEL AND DISTRIBUTED DATA ANALYSIS

database as a distributed array. SciDB [16] maintains a large-
scale array-based database using multiple disks. The array is
multi-dimensional and capable of storing multiple data types
as well as accepting arithmetical operations and relational
queries in parallel. SciDB not only strictly divides an array
into sub-arrays but also appends to each sub-array its neigh-
bors’ boundary elements as overlapping chucks, so that each
computing node can access ghost spaces without remote disk
accesses. However, when implementing climate data, SciDB
has the following two drawbacks: (1) data items are normally
maintained in secondary storage while repeatedly accessed
items are cached in main memory, and (2) the immutable
semantics is used to create a new array every time when a
series of arithmetic operations and queries is applied to the
original array. These drawbacks slow down the computation.

Ideas of applying multi-agents or mobile agents for infor-
mation retrieval or data analysis is not brand-new. Their main
objective is to dispatch agents to and let them autonomously

interact with remote servers that maintain data of interest.
This form of remote analysis relieved scientists from numerous
interactions with data servers or from fine controls of remote
objects to survey. For instance, D’ Agents demonstrated their
potential parallelism to retrieve remote server data in a dis-
tributed manner [14]. Remote Agents in NASA Research have
integrated task planning, scheduling, and robust execution into
agents that can autonomously perform remote operations in
space [18]. However, these conventional agent systems handle
independent, coarse-grained, and cognitive agents. While they
are multithreaded and even run in a distributed environment,
they are not focusing on analyzing the same data set in
collaboration of many reactive agents that run over a cluster
system.

As emphasized in bold in Table I, the MASS library has
a combination of the following four advantages over the
other software tools: (1) handling structured scientific data,
(2) applying a collective group behavior of reactive agents for
data analysis, (3) supporting runtime analysis with introducing
new agents, and (4) facilitating both interpretive and native
executions in the same programming model.

We understand that scientific workflow frameworks such
as Anduril [19] and OnlineHPC [20] orchestrate a collection
of data-analyzing tools, each addressing a different type of
scientific data. Rather than competing with them, the MASS
library can be included as one of their plug-ins and facilitate
fast parallel computation.

To demonstrate the effectiveness and practicability of the
MASS-based data-analyzing features, we have implemented
the UWCA (University of Washington Climate Analysis)
system that analyzes historical climate data in NetCDF. The
remainder of this paper focuses on UWCA.

III. IMPLEMENTATION

UWCA is a web-interfaced climate analyzing system that
parallelizes ToE computation over a given historical climate
data, using the MASS library. The following explains its
functional overview, process architecture, and agent-based ToE
computation.

A. Functional Overview

UWCA was created with the needs of climate science stake-
holders in mind, along with computing resource constraints.
The main idea of the application is to provide an easy way
for stakeholders in the climate science domain to be able to
run ToE calculations without having to know the underlying
logic or implementation details of the calculation. This is done
by providing a simple GUI with three main features to allow
a user to be able to submit calculation jobs, view the status
of those jobs, and retrieve the results through file downloads.
The provenance features provided allow users to review the
details of the job submitted in terms of what data was used,
how it was processed, and how long that took.

A normal use case of UWCA would be an Environmental
Protection Agency (EPA) worker wanting to know about future
temperature trends to determine whether or not to commit

to funding to a university climate science department. By
opening the UWCA web page, the EPA worker can select
the temperature-based ToE variable, and then select the input
climate model data set to use for the calculation. The user
is also able to set the parameters for the calculation, such as
temperature threshold (which is explained in more detail in
the GUI section). The user can then submit the job which
is placed into a work queue. Because the calculations are
computing resource intensive, one job is executed at a time
on the computing cluster. Fortunately the user can see the
status of the job submitted on the web page at any time. Once
the job starts running, the user can download the provenance
file at any time to view what steps of the calculation have
already been done, how long those took, and the parameters
used. Once the calculation is complete, the user can download
and save all of the files for viewing and later referencing.

The above use case is a good example of how UWCA
accomplishes its goal of giving climate science stakeholders
access to complicated ToE algorithms that normally would be
out of their reach due to technical challenges.

1) Graphical User Interface: The GUI for UWCA was
designed to be simple, while still providing all the features
for submitting ToE jobs, viewing the GUI status of those jobs,
and being able to download the files produced at any time.

Fig. 2 shows the GUI which consists of three main parts:

1) Job Creator: The left section of this area allows for
selection of the ToE variable to be calculated. Once this
variable is selected, the climate models and parameters
selections become available and may be adjusted to suit
the desired ToE calculation. Once the user is satisfied
with the selections, they may hit the submit button to
begin execution of the job.

2) Job Status Viewer: Gives the user a view into which
ToE calculations are or have been calculated on the
computing cluster. It shows which ToE variable was
selected, which climate model was used, what other
parameters were given specifically for the calculation,
and what the status is of the job to be executed.

3) File Downloads: This area provides the links to the
provenance log file and the output ToE files which are
a result of the calculation performed.

The ToE variable that UWCA currently analyzes is tasmax.
Tasmax is a temperature-based variable used in climate analy-
sis. The three parameters available for the tasmax calculation
are:

1) Temperature Threshold: the value to compare the day
temperature value to, in order to discover if that day
was over the threshold.

2) Tolerance: the range used to select minimum and max-
imum days over temperature values based on historical
periods.

3) Number of ToE years: the amount of years to project into
the future when performing the final ToE calculation.

All values will be defaulted to acceptable ranges and
recorded in the provenance log if the user fails to enter valid

UW Climate Analysis

conus c5

Refresh Status

Fig. 2. The UWCA graphical user interface

values.

2) Provenance Features: UWCA features a simple prove-
nance collection mechanism which logs many of the events
which happen within the application. The following infor-
mation is collected from the application and logged to a
provenance file:

o Timestamps for each event

o Climate model input files used for the ToE calculation
o Parameters used

o Steps executed for the ToE calculation

o Output files

o Overall execution time in seconds

The file serves the purpose of recording what happened
when. As long as a user is familiar with the ToE calculation
steps, the provenance log file is understandable.

3) Data Visualization: The downloaded ToE NetCDF files
can be viewed using several different free pieces of software
such as Panoply Viewer or ncBrowse. They each have their
own way of visualizing the data which is meaningful. Fig. 3
shows an example output of a ToE file using the ncBrowse
software. The colors indicate the year in which each latitude
and longitude coordinates hit ToE.

B. UWCA Process Architecture

Fig. 4 depicts the process architecture that consists of two
main modules: the UWCA web server and MASS program.

The web server is designed of Servlet and Enterprise Java
Bean (EJB). The servlets simply handle GUI operations and
pass a request from a client, (i.e., a climatologist) off to the
EJB module to be processed by the Job Runner class. The Job
Runner class runs in a separate thread, handles the dispatching
of the user-requested job to the MASS library, waits until
the MASS library has completed the requested operations,
and then updates the Job Manager with the output of the
calculation. The Job Runner then requests a new job to be
processed by the MASS library from the Job Manager, if one
is available.

The UWCA MASS program deploys MASS processes, each
running at a different cluster node, creates Places distributed
arrays over the cluster system, reads into the arrays NetCDF
files either from an NFS server or each node’s /fmp local disk,

toeReg.nc

T |
2100 2140

toe y=", x="

2020 2060 2180

Fig. 3. An example of UWCA computation outputs

<. Agent

@ Agents
)

Servlet [F 1
JobMgr |[]
an runner > MASS > MASS

/. Age nti>

Fig. 4. The UWCA process architecture

depending on a user-provided option, and finally populates
Agents on the Places. Agents transverse the arrays to compute
and return a ToE value to the MASS main process that passes
the value to the Job Runner.

C. Time of Emergence

Although many different climate properties can be analyzed
using the ToE calculation such as precipitation and humidity,
for this example we will perform the ToE calculation to
analyze future temperatures. Agents were used extensively in
this calculation for a few reasons:

o Agents provide the functionality to move from place to
place regardless of what computing node the place is on,
while collecting data necessary to calculate different sub
variables which are necessary for the ToE calculation.

o Ease of functional understanding of the algorithm is
increased by understanding agent movement across the

import MASS.=x; // MASS Library
public class UWCAMain {
public void main (Sting args[]) {
MASS.init (args);
Places dataset = new Places(l, "ToE", 222,
Agents crawler = new Agents (2, "Crawer", 1,
for (int time=0; time<150; time++) {
crawler.callAll (crawl_);
crawler.manageAll () ;

462, 150);
102564) ;

NeNIN No WU NSNS T

10 }

11 MASS.finish();

12} }

13 public class Crawler extends Agent {
14 // data members

15 private int days;

16 private float temperature;

17/ functions

18 public Object callMethod(int funcID, Object args) {

19 switch (funcID) {

20 case crawl_: return crawl (args);

21 }

22 }

23 public Object crawl (Object args) { ...; }
24

Fig. 5. MASS agent framework

data grid during certain ToE steps.
o The MASS library makes agent programming very easy
to accomplish through its well documented API’s.

Fig. 5 presents our MASS agent framework. The UWCA
Job Runner invokes UWCAMain.main() upon receiving a new
job (line 3). MASS.Init() forks remote processes on Node 1
through to n — 1 (line 4). Thereafter, the main function loads
a climate data set in Places (line 5) which are distributed
over the cluster. Agents are spawned on the places (line 6)
and repeat migrating over the data set (lines 7-9). The actual
agent code is shown in lines 13-24. Every time main() invokes
crawler.callAll (line 8), the MASS library picks up each agent
and calls its callMethod (line 18), so that the agent calls
crawl() (line 20) to decide where to move. The actual agent
migration is carried out by crawlermanageAll() at once (line
9).

The details of agent-based ToE calculation are given in the
following steps:

1) Finding days over threshold: In this step the input
climate model data is transformed from the day-based tem-
perature values, into z dimension grid cells which represent a
particular year (from 1950 - 2099), the values in those cells,
and the amount of days over a specified temperature threshold
(user-defined parameter). Approximately 365-6 time dimen-
sion elements are transformed into one element representing
the amount of days over threshold.

2) Finding historical tolerances: Step 2 analyzes a 50-year
historical period to analyze minimum and maximum values.
For this calculation, z X y MASS Agents are spawned at the
z[0] dimension (see Fig. 6) which represents the year 1950,
and travel down to the z[49] dimension representing the year
1999, collecting days over threshold values. The collected
values are analyzed and the maximum value is multiplied by
a user-defined percentage such as 90% to find the maximum
value. The minimum value is found in a similar manner.
For example, if the calculation was decided to be done with

Longitude
X =462

)

$

G
i
(i
j

\
1
\

Step 2:

462 * 222 =

102,564 Agents

All located at z =0 indexes

W)
i
i
i
“{

i
i
W,
)
N
b
a\

Step 3:

All 102,564 Agents
\move toz= 29 indexes
Step 4:

All 102,564 Agents
move to z =56 index

7
Y,
72
Z
&
'Il’
\\
)
ALY

L

/.
7
'II'{{
A
W
W\ Y
=

\‘Ll“l\\l

A\
R
:
=

L/
L7
[17

TN
AN N
RIS

N

Fig. 6. Agents marching through a three-dimensional climate dataset

an 80% min/max range, the minimum value was 0, and the
maximum was 100, then the calculated minimum value would
be 10%, and the maximum value would be 90%.

3) Finding climatology: Step 3 moves the same agents from
the old position, to a new z-index position representing year
1980. The agents then travel along the z dimension, collecting
30 years of values, adding them together. The total is then
divided by 30 to get the average. This average represents the
climatology.

4) Computing Least Squared Regression: Step 4 moves the
same agents from the ending step-3 positions to new z-index
positions representing year 2006. The agents travel all the way
down to 2099 gathering days over threshold values. For each
latitude and longitude coordinate, the slope and confidence
intervals are calculated for the set of values collected by the
agents. Step 4 results in three 2-dimensional arrays

o Slopes for each latitude and longitude x and y coordinates

o Slopes + Confidence Interval for each latitude and longi-
tude x and y coordinates

o Slopes - Confidence Interval for each latitude and longi-
tude x and y coordinates

5) Finding ToE: For step 5, three 3-dimensional arrays
are created using the values derived from previous steps
(see Fig. 7). For each of the arrays, the z[0] index becomes
the climatology value derived for that latitude and longitude
coordinate. Beyond the z[0] element the following pattern is
used:

The amount of z-dimension elements created is determined
by a user parameter, but is usually 200. The continual adding
of the slopes and confidence intervals results in a positive or
negative trend which, when projected out far enough into the
future, will cross the minimum or maximum values determined
in step 2. The element (which represents a year in the future)
at which the value exceeds the minimum or maximum values
represents the ToE year. The final output of the ToE calculation
will be three 2-dimensional arrays which will be the same z Xy
dimensions as above, but will contain the year at which that
grid cell exceeded the minimum or maximum values.

The functional implementation of the calculations in UWCA
is an advancement in the area of ToE calculations within the
climate science domain for several reasons. The performance
increase over the comparable CDO/NCL scripts is incredible.

2[0] = Climatology
2[1] =2[0] + slope
2[2] =2[1] + slope

2[0] = Climatology
2[1] =2[0] + (slopes + confidence interval)
2(2] =2[1] + (slopes + confidence interval)

2[0] = Climatology
2[1] = 2[0] + (slopes - confidence interval)
2[2] = 2[1] + (slopes - confidence interval)

Fig. 7. Three-dimensional ToE arrays

Also the architecture of UWCA allows for extensibility of
new ToE calculations without major redevelopment efforts.
And most importantly it allows more casual climate science
stakeholders and less technically experienced people to easily
perform ToE calculations.

IV. PRACTICABILITY ANALYSIS

This section qualitatively evaluates how the MASS library
can be practically used in climate change analysis. This
practicability evaluation considers the following four items
that we claimed as the MASS advantages in Section II-C: (1)
handling structured scientific data, (2) taking an agent-based
approach, (3) supporting runtime analysis, and (4) facilitating
both interpretive and native executions.

A. Handling Structured Scientific Data

MASS and GlobalArray can maintain multi-dimensional
data sets such as NetCDF data in their distributed arrays. In
contrast, MapReduce mainly handles text files and key/value
pairs. As an extension to manipulate structured data, Sci-
Hadoop [8] automatically partitions a structured file into small
chunks, which allows MapReduce to still handle unstructured
data. However, this partitioning and regrouping must be re-
peated for each operation. Spark can process CVS and SQL
schemas but not three or more dimensional arrays. Similarly,
Storm focuses on streamed data but not structured data.

The biggest difference between MASS and GlobalArray in
structured data is their inter-element communication. Although
GlobalArray provides one-sided communication operations
such as put/get, accumulate, and read-and-increment, as shown
below, a user has to code a parallelization-aware program to
let each computing node retrieve a different portion of array
elements (lines 2-7), process each data item (lines 8-10), and
save updates back to the original elements (line 11).

GA::GlobalArray *array = GA::SERVICES.createGA(...);
myId = GA_Nodeid; () // each computing node id
int low([2]; // this node’s lower bound
int hi[2]; // this node’s upper bound
low[0] = myId = N; low([l] = 0;

hi[0] = (myId + 1) = N - 1; hi[l] = N - 1;

array->get (lo, hi, data, .) ;// retrieve data

— =000 WA W —

for (int i = 0; 1 < N; i++) // process each data item
for (int § = 0; j < N; i++)
0 data[i] [J] = func(datalil[]j]);
1 array->put(lo, hi, buf, .) ; // save updates

On the other hand, MASS invokes a given function call at
each array element in parallel, only using a single callAll()
statement.

1 ©Places »array = new Places(1, "MyArray");
2 array->callAll(MyArray.func_);

Besides multi-dimensional arrays, we may also consider
graphs as structured data (although they are seldom used in
climate analyses). As MapReduce deals with social networks
as one of its targets, many MapReduce programs have been
introduced to solve graph algorithms such as graph path plan-
ning and page rank [21]. Their programming style uses map()
to compute the state of each vertex, relays the update to all
its neighboring vertices, (thus uses combiner() as graph links),
and collects all updates at each destination vertex in reduce().
Iterative MapReduce must be used to flood such updates
entirely over a graph. Spark has enabled graph computation,
using GraphX [22] in the form of Pregel [23] that partitions
a given graph into subgraphs, each allocated to a different
worker machine. Each machine invokes the compute() function
at all vertices within the given subgraph to update their states.
Similarly to MapReduce, each vertex must exchange messages
with their neighbors.

Contrary to these vertex-oriented approaches, MASS takes
a flow-oriented approach where agents migrate over a graph
represented in an adjacency matrix, (i.e., a two-dimensional
MASS places). We believe that this approach would work
more intuitively for graphs, where scientists write their pro-
grams from a car driver’s viewpoint, in other words: as if
computations drive from one to another vertex [24].

B. Taking an Agent-Based Approach

In MASS, computation flows along time-series data as
an agent migrates from one to another data item. Contrary
to that, MapReduce, Spark, and GlobalArray processes all
data items in a batch. For instance, consider to compute the
total sum of data items. As shown in the following code,
MapReduce simply retrieves all data items in map() (lines 3-4),
and thereafter sums up all the items in reduce() (lines 10-11).

1 class Mapper {

2 method map(docid a, dataset d) {

3 for (item t : dataset d) {/ retrieve all data

4 collect (t, t.data); // pass data to reduce

5 }

6 }

7 class Reducer {

8 method reduce(item t, counts [cl, c2, ...]1) {
9 int sum = 0;

10 for (int ¢ : counts [cl, c2, ...]) {

11 sum += c; // add each data to sum
12 }

13 }

14 collect(t, sum); // write the final sum in disk
15 }

However, it is challenging for MapReduce to stop this
computation in the middle when the intermediate sum reaches
a given threshold. On the other hand, as shown below, MASS
walks a group of agents, each migrating from one to another
place (line 16) as summing up its data item (line 10) and
eventually terminating itself upon reaching the threshold (lines
11-14). This code mimics a scientist’s behavior that skims over

a dataset from top to bottom, which thus facilitates intuitive
programming. In our ToE computation, agents can go back
and forth through a given three-dimensional climate dataset
frequently, which would not be concisely implemented in other
software tools.

1 Places array = new Places(1, "MyArray");

2 Agents agents = new Agents(2, "Crawler", 1, ...);

3 wihle (agents.getPopulation() > 0) {/ until any agents exist
4 agents.callAll(Crawler.sum_) ;// repeat their migration.

5 agents.manageAll ();

6)

7 class Crawler extends Agent {

8 private mySum = 0;

9 public void sum() {

10 mySum += place.data; // add data to my sum

11 if (mySum >= threshold) ({/ reaching the threshold

12 MASS_log("[" + place.index[0] + ","

13 + place.index[1] + "1");

14 kill(); // print out the result. I'm done.
15 } else

16 migrate(); visit a next place

17 3y 3

C. Supporting Runtime Analysis

Since Spark can run on top of interactive script languages
such as Python, it naturally facilitates runtime analysis. A user
can upload a Resilient Distributed Dataset (RDD) anytime
(line 3 in the code below), invoke a built-in analyzing function
(line 4), and even execute a lambda expression on the fly (lines
5-6). However, when it comes to Java-based cluster computing,
a user must compile his/her Java programs a priori and submit
byte code as a batched job.

A modified sample code from http://spark.apache.org/docs/latest/quick-start.html
./bin/pyspark

>>> textFile = sc.textFile ("ToE.md")

>>> textFile.count ()

>>> textFile.map (lambd line: len(line.split())).
reduce (lambda a, b: a if (a > b) else b)

AN AW =

Contrary to that, the MASS library supports runtime anal-
ysis even on a cluster system. It separates the main program
from Place and Agent definitions. The main program behaves
as a framework to instantiate Places and Agents and to
orchestrate their method calls. Since MASS dynamically links
necessary Place and Agent code to the main program, main()
does not even have to assume any specific scenario of data
analysis. In the code below, the main program includes a loop
that keeps receiving the name of a new agent class (line 7),
so that a user can repetitively inject new instances to the same
in-memory datasets anytime during his/her analysis (line 10).
This in turn means that users can change their ensemble data
analysis at run time.

1 import MASS.s*;

2 public class Analysis {

3 public void main(String args([]) {

4 MASS.init (args);

5 Places dataset = new Place(l, "ToE", 222, 464, 150);
6 Scanner keyboard = new Scanner (System.in);

7 while (keyboard.hasNext ()) {/ read a user input such as:

8 String aName = keyboard.next (); / new agent class name
9 int nAgents = keyboard.nextInt () ;// #agents to populate
10 Agents agents = new Agents (2, aName, 1, nAgents);
11 while (population > 0) { / keep walking agents until

12 agents.callAll (crawl_) ;// they are done.

13 agents.manageAll () ;

143y 31

In fact, our web-based GUI supports this runtime refinement
of data analysis by adapting various agents with respect
to climate analysis. MASS can speed up the ToE compu-
tation with its parallelization, and therefore time spent on
recording/capturing provenance search with agents is quite
acceptable for real-time analysis.

D. Facilitating Interpretive and Native Executions

Both interpretive and native executions in a single program-
ming paradigm makes MASS attractive for fast mock-up and
gradual performance tune-up. At present, MASS facilitates the
same programming framework in the two different languages:
Java and C++. Therefore, users can quickly mock up their
scenario of data analysis in Java and thereafter gradually tune
up the execution performance of their data analysis in C++.
On the other hand, Spark and MapReduce are available only
at the interpretive language level: Java, Python, or Stella. If
users want to speed up their data analysis, they have to choose
a different programming model such as MPI and GlobalArray,
which requires additional time to re-write their analysis.

V. PERFORMANCE ANALYSIS

To evaluate the performance of MASS-parallelized ToE
computation, we used two computing systems: (1) a stand-
alone machine of 32GB RAM, 1TB HDD, 8 CPU (Intel
Xeon) cores, each with 2 hardware threads running at 1.6GHz,
and (2) a Giga-Ethernet cluster of 16 computing nodes, each
with a 16GB RAM, 500GB HDD 4-core CPU (Intel i7-3770)
running at 3.40Hz. The former was used as the cluster head
for measuring the overall execution of centralized file-reading
and in-memory ToE analysis, whereas the latter evaluated the
performance of decentralized file-reading and memory-only
ToE analysis. The Java environment used was Java 1.7.0_60
with Java HotSpot 64-Bit Server VM 24.60. Java runtime flags
were set to increase the starting and maximum heap size to
1GB and 8GB respectively (using -Xmslg and -Xmx8g).

In the following, we will discuss the performance improve-
ments by and challenges for the MASS library in structured
data analysis.

A. Performance Improvements by MASS

Fig. 8 compares the overall performance of file-reading and
in-memory ToE analysis among (1) the original CDO/NCL
script, (2) the corresponding MASS-multiprocessed ToE com-
putation over a cluster system, and (3) MASS-multithreaded
version at a stand-alone machine of 32GB RAM. CDO/NCL
is only specialized to handle NetCDF files in sequential.
Therefore, its actual ToE computation was intolerably slow
for real-time analysis (which took 21 minutes). On the other
hand, MASS-multiprocessed ToE completed an entire exe-
cution within eight minutes or shorter. Since this version
uses a cluster of computing nodes, each with only 16GB
RAM, it cannot load all 22GB NetCDF data onto a single
node’s memory. Furthermore, the multiprocessed ToE needs
to distribute NetCDF files to each cluster node’s /rmp disk
whose speed is 3Gbps, twice slower than the stand-alone

1600 T T

CDO/NCL

UWCA (multithreads)
1400

UWCA (multiprocesses) ---+---

+

Synchronous Migration —+—
Asynchronous Migration ---x---

1200

1000

sec

800 -

600 -

200

150

50

200 -

4 threads/cpu

#
51

1 4 8
#processes or #threads

Fig. 8. The overall execution performance of file-reading and in-memory ToE
analysis

machine, which results in considerable file-reading overheads.
Therefore, we also ran the MASS-multithreaded ToE version
that demonstrated the fastest execution within six minutes
or shorter. However, the multithreaded execution did not yet
remarkably show scalable performance. This is because the
entire execution was still bound up to the 6Gbps disk perfor-
mance. Although this file-reading operations are considered as
a one-time ramp-up before the predominant body of repetitive
in-memory analyses, they make the main program a bottleneck
of data streaming.

Fig. 9 excluded this bottleneck problem for the present and
focused on the performance of memory-only ToE paralleliza-
tion. We measured the execution as increasing the number
of cluster nodes as well as the degree of multithreading.
For this evaluation, we used two different strategies of agent
migration: (1) synchronous and (2) asynchronous migration.
Synchronous migration is the original MASS implementation
where Agents.manageAll() performs migration of all agents in
a batch. It works better for moving a large number of agents
to a different computing node at once, but incurs master-
slave communication overheads every time manageAll() is
invoked. In contrast, asynchronous migration needs no invo-
cation of manageAll() so that agents can migrate to another
place at any time. It obviously mitigates manageAll-incurred
master-slave communication while it must detect so-called
distributed termination of agents, which is expensive in partic-
ular when using only a few computing nodes. Fig. 9 verifies
our expectation and demonstrates the scalable performance
of asynchronous migration. Synchronous migration performed
1.3 times faster than asynchronous migration with a single-
threaded single computing node, however their performance
is reversed with seven or more computing nodes. Eventually,
asynchronous migration with 15 computing nodes completes

Fig. 9. The execution performance of memory-only ToE analysis

a ToE computation in 11 seconds, thus performing 7.5 times
faster than synchronous migration with a single node (in 83
seconds).

B. Performance Challenges for MASS

There are still performance challenges for the MASS-
parallelized ToE computation to become even more scalable.
As shown in Fig. 10, MASS-multiprocessed ToE spent 75%
of the entire execution time for distributed file-reading op-
erations. In addition, agents needed 1.5GB memory for the
last 90-second computation. To address these challenges, we
are planning to implement the following three performance-
improvement solutions in the MASS library:

1) Removing overheads of file read into memory: For each
computing node, we will have the first place read the
node-allocated data into memory so that the other places
on the same node can access their data quickly without
competing file reads.

Significant heap consideration: Memory usage can be
improved by pooling agents to alleviate actual agent
creations/terminations.

Optimizing the number of active agents: Rather than
create x x y agents, we should automatically spawn the
same number of agents as the underlying CPU cores to
reduce agent management overheads.

2)

3)

VI. CONCLUSIONS

We have applied an agent-based approach to parallelizing
the analysis of structured scientific datasets. For the practica-
bility verification, we parallelized discoveries of future time of
emergence, using the MASS library. We demonstrated that our
agent-based approach has the four practicability advantages
including (1) simple code of agent-based structured data
analysis, (2) intuitive data analysis by walking agents freely

Final Calculations
o Juno waiting for remote @cPu @Memory @ Classe:
JUNO reading files locally nodes to read files locally

Fig. 10. MASS overheads in file reading

over datasets, (3) runtime analysis by injecting new agents to
datasets, and (4) fast mock-up in Java and gradual performance
tune-up in C++. We have also confirmed that the MASS
execution performance is scalable with up to 15 computing
nodes but has the following challenges to address: (1) parallel
file reading, (2) pool of agents and (3) optimization of the
number of active agents. These improvement plans will allow
us to scale up the problem size of climate analysis, using
more computing nodes. In addition to these performance im-
provement tasks, we are also working on the MASS library’s
debugger that allows users to visualize on-going computation
and to modify the states of active agents and array data. We
also plan to incorporate many of the provenance techniques
developed in previous work [13].

In this paper, we particularly focused on temperature-based
ToE computation. This is because their variables are easy
to work with as they generally have a trend in the positive
direction for all grid cells. For further parallelization of climate
change analysis, we are planning to examine precipitation and
other hydro-climate variables that show spatial heterogeneity
and temporal variability. This will make the analysis and
programming more difficult. However, extreme precipitation
amounts based on historical thresholds is noteworthy to cli-
matologists. Therefore, it is worthwhile continuing our work
on enhancing the UWCA system.

ACKNOWLEDGMENT

We are very grateful to Mr. Hung Ho, a UWB graduate
student for assisting us in improving the MASS library’s
performance with automatic, asynchronous agent migration.
We also thank Mr. David Guenther and Mr. Rafael Silva, CSS
advanced system engineers for setting up and maintaining our
Linux machines to measure the MASS execution performance.
This work is supported by NSF CAREER ACI 1350724:
“iProvenance: Integrating Data Provenance with Software
Traceability”.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proc. of the 6th Symposium on Operating System
Design and Implementation - OSDI’4. San Francisco, CA: Publisher,
December 2004, pp. 137-150.

[2] Apache Spark - Lightning-Fast
“http://spark.apache.org/.”

Cluster Computing,

[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
(16]

[17]
(18]

[19]
[20]
[21]

[22]
[23]

[24]

Apache Storm, distributed and fault-toleranct realtime computation,
“http://storm.apache.org/.”

Unidata | NetCDF, “http://www.unidata.ucar.edu/software/netcdf/.”
NCAR Command Language, “http://www.ncl.ucar.edu/.”

Message Passing Interface, “https://computing.llnl.gov/tutorials/mpi/.”
J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Apra, “Advances, Applications and Performance of the Global Arrays
Shared Memory Programming Toolkit,” International Journal of High
Performance Computing Applications, vol. Vol.20, no. No.2, pp. 203—
231, 2006.

J. B. Buck, N. Wtkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Poly-
zotis, and S. Brandt, “SciHadoop: Array-based query processing in
hadoop,” in SC’11 Proc. of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. Seattle,
WA: IEEE, November 2011, p. Articl# 66.

P. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. Whitehall,
R. Verma, L. McGibbney, and P. Ramirez, “SciSpark: Applying In-
memory Distributed Computing to Weather Event Detection and Track-
ing,” in Proc. of 2015 IEEE International Conference on Big Data, Santa
Clara, CA, November 2015, pp. 1959-1965.

T. Chuang and M. Fukuda, “A Parallel Multi-Agent Spatial Simulation
Environment for Cluster Systems,” in Proc. 16th IEEE International
Conference on Computational Science and Engineering - CSE2013.
Sydney, Australia: IEEE CS, December 2013, pp. 140-153.

E. P. Salathé Jr., A. F. Hamlet, C. F. Mass, S.-Y. Lee, M. Stumbaugh, and
R. Steed, “Estimates of Twenty-First-Century Flood Risk in the Pacific
Northwest Based on Regional Climate Model Simulations,” Journal of
Hydrometeorology, vol. Vol.15, no. Issue 5, pp. 1881-1899, October
2014.

E. Hawkins and R. Sutton, “Time of emergence of climate signals,”
Geophysical Research Letters, vol. Vol.39, no. No.1, January 2012.

B. Yasutake, N. Simonson, J. Woodring, N. Duncan, W. Pfeffer,
H. Asuncion, M. Fukuda, and E. Salathé, “Supporting Provenance in
Climate Science Research,” in Proc. 7the International Conference
on Information, Process, and Knowledge Management - eKnow 2015,
Lisbon, Portugal, February 22-27 2015.

R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus,
“D’Agents: applications and performance of a mobile-agent system,”
Software — Practice and Experience, vol. Vol.32, no. No.6, pp. 543—
573, May 2002.

N. Marz and J. Warren, Big Data. Mannig, 2015.

P. G. Brown, “Overview of SciDB: Large Scale Array Storage, Process-
ing and Analysis,” in Proc. of the 2010 ACM SIGMOD International
Conference on Mangment of Data. Indianapolis, IN: ACM, June 2010,
pp. 963-968.

Apache Hadoop, “http://hadoop.apache.org/.”

N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, “Remote Agent:
to boldly go where no Al system has gone before,” Artificial Intelligence,
vol. Vol.103, no. 1-2, pp. 547, April 2001.

ANDURIL Workflow Platform, “http://www.anduril.org/anduril/site/.”
Workspace, “https://research.csiro.au/workspace/.”

J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.
Williston, VT: Morgan & Claypool Publishers, 2010.

Apache Spark GraphX, “http://spark.apache.org/graphx/.”

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proc. of SIGMOD’10. Indianapolis, IN: ACM, June
2010, pp. 135-145.

M. Kipps, W. Kim, and M. Fukuda, “Agent and Spatial Based Paral-
lelization of Biological Network Motif Search,” in /7th IEEE Interna-
tional Conference on High Performance Computing and Communica-
tions - HPCC 2015, New York, August 24-26 2015.

