Agent-based Computational Geometry

Akbarbek Rakhmatullaev®?, Shahruz Mannan®®, Anirudh Potturi®¢, and Munehiro Fukuda®4

Division of Computing and Software Systems, University of Washington Bothell, U.S.A.
{akbarbek,mannans1,anii,mfukuda’} @uw.edu

Keywords:

Abstract:

Agent-based modeling, data streaming, message passing, computational geometry, cluster computing

Cluster computing increases CPU and spatial scalability of computational geometry. While data-streaming

tools such as GeoSpark lines up built-in GIS parallelization features, they require a shift to their programming
paradigm and thus a steep learning curve. In contrast, agent-based modeling is frequently used in compu-
tational geometry as agent propagation and flocking simulate spatial problems. We aim to identify if and in
which GIS applications agent-based approach demonstrates its efficient parallelizability. This paper compares
MASS, GeoSpark, and MPI, each representing agent-based, data-streaming, and baseline message-passing
approach to parallelizing four GIS programs. Our analysis finds that MASS demonstrates the least boilerplate
percentages and Cyclomatic complexity in its programmability and yields competitive parallel performance.

1 INTRODUCTION

Cluster computing gives more CPU and spatial scala-
bility to GIS parallelization. Actual implementations
include Hadoop-GIS (Aji et al., 2013) and Spark-
GIS (Baig et al.,, 2017), many of which maintain
spatial data in distributed storage such as Hadoop';
process the data in batches with data-streaming tools
including Spark?; and respond to anticipated GIS
queries through a front-end interface, (e.g., HIVE?).
However, the nature of data streaming is their ma-
jor challenge: besides their unique programming
paradigm, they need to flatten, stream, shuffle, and
sort spatial data structures at every computational
stage, all resulting in substantial overheads.

In contrast to data streaming, we consider an
agent-based approach that maintains GIS data as a
multi-dimensional or graph structure over distributed
memory; dispatches agents as active data analyzers;
and solves spatial queries through collective group
behaviors among the agents, (e.g., agent propaga-
tion, swarming, and collision) over the data structure.
Our research motivation is to verify the efficiency of
the agent-based approach to computational geometry,

(2 https://orcid.org/0009-0005-3376-0684
@ https://orcid.org/0009-0009-4628-5316
(2 https://orcid.org/0000-0002-9270-9628
4@ nttps://orcid.org/0000-0001-7285-2569
Thttps://hadoop.apache.org/
Zhttps://spark.apache.org
3https://hive.apache.org

as compared to the conventional data-streaming ap-
proach. We believe that this research makes two con-
tributions to parallel computing in computational ge-
ometry: (1) a development of geometric benchmark
programs demonstrates that agent code is intuitive
and smoothly fits the idea of spatial cognition (Freksa
etal., 2019) and (2) agent-based approach is competi-
tive to data streaming in some geometric applications
that take advantage of agent flocking in a 2D space
or agent traversing over a tree, both performed over a
cluster system.

The rest of the paper is organized as follows:
Section 2 introduces agent-based and data-streaming
GIS parallelization; Section 3 explains the MASS
(Multi-Agent Spatial Simulation) library* as an im-
plementation of agent-based approach; Section 4 par-
allelizes four GIS benchmark programs, using MASS,
Apache Sedona, and MPI, each representing agent-
based, data-streaming, and conventional message-
passing approach; Section 5 compares their paral-
lel performance and evaluates the strength of agent-
based approach; and Section 6 concludes our work.

2 RELATED WORK

We first identify challenges in parallelizing geomet-
ric problems, second look at the conventional data
streaming as a solution, third consider agent-based

“https://depts.washington.edu/dslab/MASS

approach to an intuitive GIS solution where control
moves over spatial data, and finally clarify our goals
to make agent-based parallelization feasible in GIS.

2.1 Challenges in Parallelizing
Geometric Problems

GEOS® and CGALS are well-known C++ libraries
that implement computational-geometry algorithms
as built-in functions. Their native executions with
multithreading are the fastest but limited to a sin-
gle machine. The problem is that they are not so
worthwhile being parallelized over a cluster system
that only incurs more communication overheads than
their single-machine execution. JavaGeom’ and JTS®
are Java versions of computational-geometry libraries
that intend to ease geometric computation. Due
to their interpretive execution, they do not outper-
form C++ libraries but show competitive processing
throughput if a dataset size is maximized to the un-
derlying memory space (Zhang and Eldawy, 2020).

In general, sequential or multithreaded execution
runs fastest but its spatial scalability is restricted to a
single machine’s memory space.

2.2 Data Streaming to Analyzing Units

As data streaming keeps receiving great popularity
in big data, it is quite natural and convenient to in-
tegrate data-streaming tools into a GIS system for
scalable spatial analysis. A typical architecture mod-
ifies a Lambda service layer tool, (e.g., HIVE) for
a real-time GIS query interface, uses data-streaming
tools such as MapReduce and Spark for preparing an-
ticipated query responses, and maintains entire spa-
tial datasets in a backend database including Post-
GreSQL.

For instance, SpatialHadoop interfaces to users
through Pigeon, a SQL-like language, which relays
their queries to MapReduce for geometric computa-
tion (Eldawy and Mokbel, 2015). Hadoop-GIS is in-
tegrated with HIVE to extend HiveQL for the use of
GIS spatial queries, to implement a real-time spatial
query engine as a shared library in HIVE, and to ac-
cess spatial data through Hadoop (Aji et al., 2013).
GeoSpark, (i.e., formally named Apache Sedona) re-
ceives a spatial query through its Spatial SQL API
that chooses the corresponding geometric algorithm,
(e.g., range search, distance joining, and KNN) in the

Shitps://libgeos.org
Ohttps://www.cgal.org
7https://geom-java.sourceforge.net
8https://locationtech.github.io/jts/

Spatial Query Processing Layer. The selected algo-
rithm is then carried out though operations on Spatial
RDDs, an extension of Spark RDDs (Resilient Dis-
tributed Datasets) (Yu et al., 2019). SparkGIS reads
spatial data from distributed or cloud storages includ-
ing HDFS and Amazon S3, preprocesses the data into
Spark RDD to utilize distributed memory of a given
cluster system, and invokes built-in spatial functions
that have been implemented with RDD transforma-
tions and actions (You et al., 2015). For graph com-
puting, GraphX extends Spark RDDs to edge and ver-
tex RDDs, and supports Pregel’s graph API (Spark
GraphX, 2018; Malewicz et al., 2010)

In general, data streaming assumes text data as its
input format since texts are easily split and streamed
to map() functions or applied to lambda expressions.
Therefore, structured files, (e.g., GIS shape files) must
be disassembled into texts before being streamed.
Most algorithms in computational geometry are op-
timized in the divide-and-conquer paradigm, which
results in repetitive MapReduce or RDD transforma-
tions before reaching the final results even for every
single query. This repetitive series of data streaming,
shuffle, and sort may slow down geometric analysis.

2.3 Migrating Analyzers over
Geometric Data Space

We consider a different approach where agents solve
a geometric problem by forming their emergent col-
lective group behavior over a spatial dataset. In other
words, we apply agent-based modeling (ABM) to
computational geometry. This idea is not brand-new
but found in the following three ABM libraries that
are available in interpretive languages:

NetLogo approximates a 2D radical propaga-
tion of agents by repetitively cloning agents to von-
Neumann and Moore neighborhoods in an alterna-
tive fashion (Wilensky, 2013). Using this agent prop-
agation from each data point, NetLogo composes a
Voronoi diagram of bisector lines between any pair
of data points, on which agents propagated from a
different point collide with each other. Repast Sim-
phony (North et al., 2007) populates agents on all the
four boundary lines of a 2D space and march them
toward the center of the space. This is a simula-
tion of wrapping data points with an elastic band,
which forms the convex hull (Saadati and Razzazi,
2022). GeoMASON supports basic geometric data
operations including: reading shape files; incorporat-
ing points, line segments, and polygons into its simu-
lation space; and allowing agents to migrate on these
geospatial components (Sullivan et al., 2010). It also
computes the shortest path on a network of line seg-

ments and their intersections as built-in functions.

Their biggest challenge is single-machine execu-
tion. Because of their difficulty in being extended to
cluster computing, they cannot support spatial scala-
bility nor parallelize file I/Os®. Since these ABM sim-
ulators put more emphasis on GUI to non-computing
users, they facilitate only basic geometric computa-
tion to find line intersections and area unions, besides
the Voronoi and the convex hull algorithms. This is
our motivation to apply MASS, a parallel ABM li-
brary to more advanced spatial problems.

3 COMPUTATIONAL MODEL

This section summarizes the MASS library’s compu-
tational model and introduces its extension to graph
and geometric computing.

3.1 MASS Library

The MASS library lines up Java, C++, and CUDA
versions. While each version has its own target, for
the purpose of our comparative work with GeoSpark
in Java, we use MASS Java, simply referred to as
MASS in the following discussions.

MASS distinguishes two classes: Places and
Agents. The former is a multi-dimensional array dis-
tributed over a cluster of computing nodes. Each
array element is called “place” and identified with
a platform-independent logical index. The latter is
a collection of mobile objects, each called “agent”,
populated on a given place and capable of moving to
a different place, thus to a different computing node.

Listing 1 shows MASS abstract code. The main()
function serves as a simulation scenario that gets
started with MASS.init() (line 3) to launch a multi-
threaded, TCP-communicating process at each clus-
ter node. Lines 4-6 create an x X y 2D Places and
populate Agents, each respectively referenced from
map and crawlers. Places has two parallel functions:
callAll() to invoke a given function, (e.g., update func
on line 7) at each place in parallel and exchangeAll()
to have each place initiate a remote method invoca-
tion to all its neighbors, (e.g., diffuse_func in line 8),
thus facilitating an RMI-based inter-place communi-
cation. Agents has two parallel functions, too. One is
callAll(), similar to but different from Places’, where
agents schedule their next behavior with spawn(),
kill(), and migrate(), each spawning new children, ter-
minating the calling agents, and moving them to a

9Repast HPC is a C++ version to run on a cluster system
but its I/Os must be serialized via main().

different place (line 9). The other parallel function
is manageAll() that intends to commit their scheduled
behaviors (line 10). Upon finishing all the ABM com-
putation, main() needs to shutdown all MASS pro-
cesses with MASS.finish() (line 11).

Listing 1: MASS abstract code

1 public class MassAppl {

2 public static void main(String args[]) {

3 MASS.init();

4 Places map = new Places("Map", args, X, y);
5 Agents crawlers

6 =new Agents("Crawlers", args, map);

7

8

map.callAll(update_func, args);
map.exchangeAll(diffuse_func);
9 crawlers.callAll(walk _func, args);
10 crawlers.manageAll();
11 MASS finish();

3.2 Agent Descriptions in Graph and
Geometric Problems

The original Place and Agent specification burdens
model designers with manual graph emulation and
agent propagation (Gordon et al., 2019). To address
these deficiencies, MASS incrementally improved its
programmability, execution performance, and devel-
opment environment with the following five features:

1. GraphPlaces: is a Places sub-class that instanti-
ates place objects as graph vertices whose ema-
nating edges are defined in the neighbors list as
one of their data members (Gilroy et al., 2020).

2. BinaryTreePlaces: is a special form of Graph-
Places to distinguish only left and right child ver-
tices, which eases KD-tree operations in range
search (Guo, 2021).

3. SpacePlaces: implements a 2D contiguous space,
using QuadTreePlaces that reduces the number
of place objects in memory as well as mitigates
unnecessary agent migration. The closet pair of
points, convex hull, and Voronoi problems use this
class (Guo, 2021).

4. SmartAgents: is an Agents sub-class that auto-
mates agent propagation over a GraphPlaces, a Bi-
naryTreePlaces, and a SpacePlaces instance, each
used in the breadth-first search, the range search,
and all the 2D geometric problems (Mohan et al.,
2023).

5. Interactive programming and visualization
(Blashaw and Fukuda, 2022; Yang, 2023): allows
users trial-and-error coding with JShell'® and vi-

10nhttps://dev.java/learn/jshell-tool/

sualizes graphs, trees, and 2D spaces, using Cy-

toscape1 L

These features make MASS competitive to other
ABM libraries in programmability as well as to data-
streaming tools in execution performance.

4 PARALLELIZED
ALGORITHMS

Our expectation for agent-based computational geom-
etry is two-fold: (1) agents could identify a given ge-
ometric shape faster if their flocking converges to a
small space, and (2) agents could quickly respond to
geometric queries if they use the same data structure
that stays in memory. From these viewpoints, we have
chosen the following four geometric problems for our
comparative work.

1. Convex hull: wraps all points with the smallest
convex polygon. Agents converges from 2D space
boundaries to the hull.

2. Euclidean shortest path: identifies the shorts
path by dodging any obstacles. Agents bouncing
to an obstacle are not the fastest to reach a given
destination, which shrinks their population.

3. Largest empty circle: finds the largest circle that
has no data points. This is adversarial example
that propagates agents from each Voronoi vertex
and thus expands their population.

4. Range search: shows all points residing in a
given space. Agents repetitively traverses the
same KD tree as different queries.

Our comparative work parallelizes the above four
programs using MASS, Apache Sedona, and MPI,
each representing agent-based, data-streaming, and
conventional message-passing approach. The reason
why we included MPI is that it is the most flexible and
lowest-level parallel-programming library which, we
expect, would demonstrate the baseline parallel per-
formance.

In the following, we give explanations of how
each benchmark program can be parallelized with
these three libraries.

4.1 Convex Hull (CVH)

4.1.1 Agent-based approach

MASS has agents swarm inward from the outer edges
of a given space until they encounter any data points,

Uhttps://cytoscape.org/

Footprint
lide to st detected
collide to stop to stop
collide to stop :
(]

) Mistakenly detected,)
later removed by
graham alg.

[]
0
(Y=
Footprint detected
to stop

Figure 1: Agent-based convex-hull computation

which simulates wrapping all points with a rubber
band. The algorithm is coded in Listing 2. It popu-
lates agents on the four boundary edges of a size x size
space (lines 4-5), marches them until they hit a point
(lines 10-13), excludes unvisited points (lines 15), and
retrieves all data points on the final convex hull (lines
16-17). Figure 1 depicts this agent swarming. As
some data points may be mistakenly detected as ver-
tices of the convex hull, they must be removed by An-
drew’s monotone chain algorithm (Andrew, 1979).

Listing 2: Convex hull using MASS

1 public class CVH {

2 public static void main(String args[]) {

Places places = new Places("AreaGrid", size , size);
4 Agents agents = new Agents("RubberBandAgent",
5 places, size * 4);

6 agents.callAll(RubberBandAgent.
7
8

w

SET_START_POSITION);
agents.manageAll();
9 // March agents toward the center like a rubber band

10 while (agents.nAgents() > 0) {
11 agents.callAll(RubberBandAgent. MOVE);
12 agents.manageAll();

14 // Remove inner points and collect those on the hull
15 places.callAll(AreaGrid. CLEAR _INNER_PLACES);
16 Object[] oResults

17 = places.callAll(AreaGrid. GET_PTS, null);

4.1.2 Data-streaming approach

Apache Sedona (we simply call Sedona in the rest of
the paper) takes a divide-and-conquer approach that
spreads out all data points to partitions, creates a per-
partition convex hull, and aggregates together all the
partial hulls into the final convex hull. In order to
achieve this, we first create a space RDD (line 4) and

then partition it using Sedona’s EQUALGRID type
(line 7), as it shows the best execution performance
among other grid types. Next, each partition creates
a list of its points (lines 11-12), from which we cre-
ate a multi-point object of Sedona’s Geometry class
(line 13-14). Then, we call Sedona’s built-in convex-
Hull() function on this multi-point object to create a
per-partition convex hull (line 16), where each convex
hull is stored as a singleton collection.

Finally, we aggregate all partial hulls into a ta-
ble (line 24) and apply Sedona’s SQL functions
ST_ConvexHull and ST_Union_Aggr to produce the
final hull, a single-row dataset representing the com-
plete convex hull (line 28).

Listing 3: Convex hull using Sedona

1public class CVH {

2 public static void main(String args[]) {

3 GeometryFactory geom = new GeometryFactory();

4 SpatialRDD < Point> space = new SpatialRDD<>();
5 // Read data points and partition them.
6
7
8

space.setRawSpatialRDD(getDataset());
space.spatialPartitioning(GridType. EQUALGRID);
// Compute per—partition convex hulls.

9 JavaRDD <Geometry > partial CvhRDD

10 = s.getRawSpatialRDD().mapPartitions(points—>{
11 List<Point> pointList = new ArrayList<>();
12 points.forEachRemaining(pointList::add);

13 Geometry multPoint = geom.createMultiPoint
14 (poitnList.toArray(new Point[0]));

15 return Collections.singleton

16 (multipoint.convexgHull()).iterator();

17

18 // Union partial convex hulls in one dataset

19 SpatialRDD<Geometry> cvhRDD

20 = new SpatialRDD<>();

21 cvhRDD.setRawSpatialRDD(partialhRDD);

22 Dataset<Row> hulls // data from of all hulls

23 = Adapter.toDf(cvhRDD, sedona);

24 hulls.createOrReplaceTempView("hulltable");

25 // Aggregate the hulls into a single convex hull

26 Dataset<Row> hull = sedona.sql(‘‘SELECT
27 ST_CONVEXHULL(ST_Union_Aggr(geometry))
28 as final_convex_hull FROM hullTable’ ');

29} }

4.1.3 Message-passing approach

MPI starts similarly by reading data points from an
input file. Before partitioning the data evenly for all
the computing nodes, (i.e. MPI ranks), the data needs
preprocessing. The points are sorted based on the x
coordinate. Now, partitioning the data and distribut-
ing the subsets to each rank will result in the subsets
having data points which are near each other. The
data distribution can be visualized as having the plane
sliced into M vertical slices where M is the number of
ranks. Next, the Monotone Chain algorithm is used
to compute the convex-hull points in each comput-
ing node. The algorithm constructs the upper and the

lower hull separately, and thereafter combines them
into a complete hull.

After creating a partial hull on every rank,
MPI _Send() and MPI_Recv() are called between two
neighboring ranks to merge their partial hulls into a
larger hull. A typical O(N) merging algorithm is used
to find the upper/lower tangent lines connecting two
hulls and to remove the points between them (See Fig-
ure 2). This merging step is repeated until all hulls are
combined into the final convex hull at rank 0.

tangent line

tangent line

Figure 2: A convex-hull merger algorithm used in MPI

4.2 Euclidean Shortest Path (ESP)

4.2.1 Agent-based approach

Upon an initial propagation from a source, agents re-
peat bouncing obstacles or terminating themselves if
others have visited the current grid, which eventu-
ally carries the fastest agent to a given destination.
Figure 3 exemplifies agent propagation from a given
source, followed by another propagation from an ob-
stacle corner to the final destination. Listing 4 ini-
tializes a 2D space with obstacles (line 4), positions a
Rover agent at a source point (lines 5-8), and then falls
into an agent propagation loop (lines 9-19) until an
agent reached the goal (line 9). Each iteration clones
agents if they are the first visitor on the current grid
that is not yet the destination (lines 13-16); moves
all the cloned agents to non-blocking neighbors (lines
17-18); marks each grid with the first agent’s footprint
(line 10); and kills all slower agents (lines 11-12).

Listing 4: Euclidean shortest path using MASS

1 public class ESP {
2 public static void main(String args[]) {
3 Places places = new Places("Cell", sizeX, sizeY);
places.callAll(Cell.init_, dataset);
Agents agents = new Agents("Rover", places, 1);
agents.callAll(Rover.starting_point,

(new int[]{starting_x, starting_y}));

~N o B

Destination

Source

Figure 3: Agent-based Euclidean shortest path search

8 agents.manageAll();
9 while (!foundTarget && agents.nAgents() > 0) {

10 places.callAll(Cell.update_);

11 agents.callAll(Rover.update_termination);

12 agents.manageAll();

13 Object target = agents.callAll(Rover.clone,

14 new Object[agents.nAgents()]);
15 agents.manageAll();

16 if (target) break;

17 agents.callAll(Rover.migrate_all);

18 agents.manageAll()

19} })

4.2.2 Data-streaming approach

To implement the Euclidean Shortest Path in Sedona,
we first define the starting and ending points (lines 5-
7) and include them in a set of all points, which com-
prises vertices from the input obstacles (lines 8-18).
Using this set, we generate a visibility graph (see Fig-
ure 4) by forming a Cartesian product of all points to
get potential edges (lines 19-24). Each edge is then
checked to see if it intersects any obstacles; if not, it’s
considered visible between the points and added to a
list for later distance calculations. With all visible ver-
tex combinations identified, we apply Dijkstra’s algo-
rithm to compute the shortest path from the start to
the endpoint (lines 25-26).

Listing 5: Euclidean shortest path using Sedona

1 public class ESP {

2 public static void main(String args[]) {

3 GeometryFactory geom = new GeometryFactory();
4 PolygonRDD obstaclesRDD = getObstacles();

5 // Start and end points of the shortest path
6
7
8

Point org = geom.createPoint(new Coordinate(x, y));
Point end = geom.createPoint(new Coordinate(i, j));
// Collect all points to be used for visibility graph

9 List<Point> points = new ArrayList<>();

10 points.add(org);

11 points.add(end);

12 for (Polygon poly :

13 obstaclesRDD.rawSpatialRDD.collect()) {

14 points.addAll(Arrays.stream(

Destination

Source

Figure 4: A visibility graph in Euclidean shortest-path

search
15 poly.getCoordinates()).
16 map(geom::createPoint).
17 collect(Collectors.toList()));
18 }
19 JavaRDD <Point> ptJavaRDD
20 = sedona.createDataset(points,
21 Encoders.kryo(Point.class)).toJavaRDD();

22 PointRDD ptsRDD = new PointRDD(ptJavaRDD);
23 JavaPairRDD <Point,Iterable <Point>> vGraphRDD

24 = generateVisibilityGraph(ptsRDD, obstaclesRDD);
25 List<Point> dijkstraShortestPath

26 = dijkstraShortestPath(org, end, vGraphRDD);

27} }

4.2.3 Message-passing approach

MPI constructs a visibility graph and applies Dijk-
stra’s algorithm on it as Sedona does. Input points for
this implementation are the obstacle corners as well as
source and destination points. These points are then
partitioned to all MPI ranks where a per-rank visibil-
ity graph is created from the subset. The simplest but
greedy approach compares every pair of points from
the input points whether a line segment between the
pair of points intersects with obstacle edges. If a line
segment does not intersect with any obstacle edge and
does not go through an obstacle, the pair has a visibil-
ity edge. Once the a per-rank visibility graph is con-
structed, the information is saved as a Hash-Map at
each rank, where the key is a vertex, and the value is
a list of the vertices which can create a visibility edge
with this specific vertex. Next, all the partial visibil-
ity graphs are sent back to rank 0 and combined into a
complete visibility graph of all the data points. Lastly,
Dijkstra’s algorithm is used for finding the shortest
path.

4.3 Largest Empty Circle (LEC)

Sedona, MASS, and MPI all take the same LEC al-
gorithm - convex hull and Voronoi diagram construc-

tions followed by computing the center of LEC from
all Voronoi vertices and intersections between the
convex hull and the Voronoi diagram. All their par-
allelization strategies also take data decomposition
where each RDD partition in Sedona, each place in
MASS, and each rank in MPI computes reports its
potential point of LEC to main(). This is because, if
we use agent propagation in MASS, the agents expo-
nentially diverge their population from each Voronoi
vertex, thus waste memory space, and do not perform
faster.

4.3.1 Agent-based approach

MASS first uses Fortune’s sweep-line algorithm to
create a Voronoi Diagram sequentially from input
data points that are located within a space of w width
and & height (line 5). It then distributes the Voronoi
vertices and edges into nP partitions (lines 7-13).
From them, MASS creates Places (line 14), each
of which takes a different partition (line 15), com-
putes the intersections between Convex Hull edges
and Voronoi edges in the partition (line 16), and iden-
tifies a potential LEC center (line 18). Finally, main()
collects potential circles from all the Places and finds
the final LEC (lines 20-23).

Listing 6: Agent-based largest empty circle

1 public class LEC {

2 public static void main(String args[]) {

3 Point2D[] points = dataPoints();

4 // Create Voronoi Diagram

5 Voronoi diagram = new Voronoi (w, h, points);
6

7

8

// Partition vertices
int vSize = diagram.vertices.length;
int[][] v = partitionData(diagram, vSize, nP);
9 // Partition Edges
10 int eSize = diagram.edges.length;
11 int[][] e = partitionData(diagram, eSize, nP);
12 // Create subsets
13 Object([] partitions = createPartitions(v, e, nP);
14 Places places = new Places("Partitions", nP);
15 places.callAll(Parititions.Init, partitions);
16 places.callAll(Parititions.Intersections);
17 // Compute Largest Empty Circle
18 places.callAll(Partitions.LEC, points);
19 // Return all Largest Empty Circles
20 Object([] results
21 = places.callAll(Partitions.Collect);
22 // Get The largest empty circle from all the circles
23 max(results);

24} }

4.3.2 Data-streaming approach

Sedona first gathers all dataset points (line 3) and
constructs a convex hull (line 8), using the algo-
rithm described in Section 4.1.2. It then generates a
Voronoi Diagram from these points from its built-in

VoronoiDiagramBuilder class (lines 11-12). There-
after, Sedona clips the diagram along the convex
hull edges to obtain Voronoi polygons (lines 13-17).
These polygons, combined with the convex hull, help
identify candidate points (lines 18-21). These candi-
date points are then converted to spatial RDD which
gets partitioned using Sedona’s EQUALGRID (lines
22-26). A nearest neighbor search is applied to these
candidates within each partition to determine the cen-
ter and radius of the largest empty circle (lines 27-29)
Once it is finished, Sedona combines all the centers
and radiuses from all partitions to find the one with
the largest radius (lines 30-31).

Listing 7: Largest empty circle using Sedona

1 public class LEC {

2 public static void main(String args[]) {

3 SpatiaRDD<Point> spatialRDD = getData();
4 // Partition spatialRDD

5 spatialRDD.analyze();
6
7
8

spatialRDD.spatialPartitioning(EQUALGRID);
Geometry convexHull = getConvexHull();
SpatiaRDD < Geometry> allPointsRDD

9 = getPoints(spatialRDD);

10 // Build Voronoi polygons

11 VoronoiDiagramBuilder voronoiBuilder

12 = new VoronoiDiagramBuilder();

13 voronoiBuilder.setSites(coordinates);

14 voronoiBuilder.setClipEnvelope(convexHull.
15 getEnvelopelnternal());

16 List<Polygon> voronoiPolygons

17 = getPolygons(voronoiBuilder);

18 List<Coordinate> lecCenters = new ArrayList<>();
19 for (Geometry polygon : voronoiPolygons) {
20 lecCenters.addAll(polygon.getCoordinates());

22 épatialRDD <Geometry > lecCentersGeomRDD

23 = new SpatiaRDD < >(lecCenters);

24 lecCentersGeomRDD.analyze();

25 lecCentersGeomRDD.

26 spatialPartitioning(EQUALGRID);

27 JavaRDD < Tuple2 <Geometry, Double>>

28 lecCentersRDD

29 = nearestNeighborSearch(lecCentersGeomRDD);
30 lecCentersRDD = lecCentersRDD.cache();

31 findLargestValue(lecCentersRDD);

2}}

4.3.3 Message-passing approach

In MPI, rank O reads an input file and sequentially
creates a Voronoi diagram from the input points, us-
ing the Fortune’s sweep-line algorithm. It thereafter
creates the convex hull as described in Section 4.1.3.
Next, the Voronoi vertices, Voronoi edges, and the
convex hull points are split into partitions and dis-
tributed to all MPI ranks. They compute the inter-
section points between the subsets of Voronoi Edges
and the Convex Hull edges in their partition. There-
after, all the ranks iteratively examine all the Voronoi
vertices and the intersection points to calculate the ra-
dius to their closest original data point. Finally, they

report their local LECs to rank O that finds the largest
one among them.

4.4 Range Search (RGS)

4.4.1 Agent-based approach

Listing 8 outlines agent propagation down over a KD
tree from its root in search for all tree nodes in a given
range. First, MASS creates a KD tree from Graph-
Places (lines 3-4), which is the slowest part of the
code as the tree is recursively constructed from main()
(line 5). Thereafter, the initial agent starts a KD tree
search from its root (line 6) and repeats propagating
its copies along the left/right tree branches (line 7-
10). Upon every propagation down to the next tree
level, agents report back to main() if they encounter
tree nodes within a queried range (lines 8-9). Lines 6-
10 can be repetitively used for responding to different
queries. The strength in the MASS implementation is
a global KD tree construction over distributed mem-
ory as shown in Figure 5.

4.4.2 Data-streaming approach

Sedona performs a range search, using its built-in
functions and classes, such as SpatialRangeQuery
(line 20). This class requires only a few parameters
to operate: a spatialRDD with the data points (line
6), an Envelope defining the query boundaries (line
8), a SpatialPredicate (set to COVERED_BY for this
operation) (line 13), and a Boolean, (i.e., usingIndex
in line 14) to specify index usage (line 21). This
configuration enables Sedona to identify all points
within the Envelope in spatialRDD. Before process-
ing a query, the spatialRDD is partitioned using Grid-
Type. EQUALGRID (line 17), and results are subse-
quently collected (line 22).

Listing 9: Range search using Sedona

1 public class RGS {

2 public static void main(String args[]) {

3 GeometryFactory geom = new GeometryFactory();

4 SpatiaRDD<Point> spRDD = new SpatiaRDD < >();
5 //Read data and set it as raw RDD to spatialRDD
6
7
8

spRDD.setRawSpatialRDD(getDataset());
// Range Search coordinates
Envelope queryWindow

9 = new Envelope(new Coordinate(x1, y1),

Listing 8: Agent-based range search

1 public class RGS {
public static void main(String args[]) {

2

3 ArrayList<Point2D> points = getPoints(inputFile);
4 GraphPlaces kdTree = new GraphPlaces("KDTree");
5 constructTree(kdTree, points);

6 Agents rovers = new Agents("Rover", kdTree, 1);

7 while(rovers.nAgents() > 0) { / tree traverse

8 Object results[] = rovers.callAll(Rover.search);
Collections.addAll(results); // range identified

9
10

ni}

rovers.manageAll();

new Coordinate(x2, y2));
// Create a predicate
SpatialPredicate spPredicate
= SpatialPredicate. COVERED_BY;
boolean usingIndex = false;
// Partition spatialRDD
spRDD.analyze();
spRDD.spatialPartitioning(Grid Type. EQUALGRID);
// Query a SpatialRDD
JavaRDD <Point> queryResult
= RangeQuery.SpatialRangeQuery(spRDD,
queryWindow, spPredicate, usingIndex);
queryResult.collect();

Ak e”
2\ ¥ B
A K

Figure 5: Agent-based range search

4.4.3 message-passing approach

First, data points are read from a CSV input file,
equally partitioned, and distributed to all MPI ranks.
Each rank constructs its local KD tree by recursively
selecting dimension X or Y in turn, sorting the local
points in terms of the selected dimension, splitting the
smaller and the larger half in the left and right sub-
trees. Upon a tree completion, a query about finding
points in a given range is passed to all the ranks, each
traversing its own local KD tree. Once all the ranks
have completed querying their trees, MPI_Gather() is
called to collect into rank O all the points that are
found in a specified range.

4.5 Programmability

Having coded the four benchmark programs with the
three libraries, we summarized their programmabil-

ity in # lines of code (LoC), boilerplate percentage'?,
and Cyclomatic complexity, as shown in Table 1. In
general, as Sedona lines up built-in GIS functions,
all its benchmark LoCs are the smallest. However,
this code compactness results in increasing Sedona’s
boilerplate percentage even with a few additional
statements that prepare distributed datasets, each fit-
ting its corresponding built-in function. Since the
MPI benchmarks are manual versions of divide-and-
conquer algorithms, their LoC is three to five times
larger than Sedona’s. However, MPI’s boilerplate per-
centage and Cyclomatic complexity are smaller than
Sedona. This is because MPI directly accesses each
data item while Sedona repetitively prepares differ-
ent datasets, each using lambda expressions that han-
dle a list of data items. In contrast, MASS programs
end up in the largest LoC while demonstrating the
smallest boilerplate percentage and Cyclomatic com-
plexity, both indicating less semantically gapped and
less branching code. Although MASS facilitates intu-
itive agent-based coding and parallelization, its cur-
rent GIS supports such as Graph/Tree/SpacePlaces
and SmartAgents still need to automate and to inte-
grate more GIS features into MASS agents.

Table 1: Programmability comparison

Benchmark [Metrics [Sedona [MASS MPI
CVH LoC 113 710 316
Boilerplate % 43 3.8 8.8

Cyclomatic complexity 44 34 42

ESP LoC 191 692 523
Boilerplate % 31 5.1 4.7

Cyclomatic complexity 3.8 4.1 3.1

LEC LoC 210 767 612
Boilerplate % 41 2.5 52

Cyclomatic complexity 4.1 3.1 35

RGS LoC 120 368 233
Boilerplate % 47 4.1 8.5

Cyclomatic complexity 4.0 2.6 3.1

Average LoC 163.5 634.3 421
Boilerplate % 40.5 39 6.8

Cyclomatic complexity 4.1 33 35

S EVALUATION

We conducted benchmark measurements on our own
research cluster system at University of Washington
Bothell. The system consists of 20 computing nodes,
all that are 64-bit Linux servers connected to a central
filesystem. Detailed information about these comput-
ing nodes is summarized in Table 2

IZA rate of LoC needed for parallelization against the
entire LoC.

Table 2: Benchmark environment

#machines CPU CPU model Cache Memory
#VMs cores

3 (physical) 4 Xeon 5150 @2.66GHz 4MB 16GB

4 (physical) | 4 Xeon E5410 @2.33GHz | 6MB 16GB

5 VMs 4 Gold 5520R @2.20GHz 36MB 16GB

8 VMs 4 EPYC 7252 @3.10GHz 512KB 16GB

Our evaluations of the computational geometry
implementations with Sedona, MASS, and MPI uti-
lized a diverse range of GIS datasets. Table 3 shows
which dataset was used for which computational ge-
ometry problem. The datasets are in CSV or text for-
mat which allowed us to feed the datasets to all the
libraries. To evaluate the spatial complexity for LEC,
we used a dataset of 50,000 randomized coordinates.
We could not find a GIS dataset in CSV format that
contained obstacles as points for benchmarking the
ESP implementations. Thus, we generated a dataset
containing 300 as well as 500 polygons with some
randomized number of corners: ranging from 4 to 8.

Table 3: Datasets used for evaluation

Datasets Size (points) Benchmark Programs

National USFS fire occurrence' 581,541 RGS, CVH (small)

Crime locations in LA, US? 938,458 RGS, CVH (large)
US private school locations? 22,346 LEC (small)
Randomized spatial points 50,000 LEC (large)
Randomized 300 polygons* 1,200-1,700 ESP (small)
Randomized 500 polygons* 2,000-3,000 ESP (large)

! (U.S. Forest Service - Geospatial Data Discovery, 2024)
2 (Los Angeles Open Data Portal, 2024)

3 (ArcGIS Hub, 2023)

4 Each polygon with with 4 to 6 vertices

5.1 Convex Hull (CVH)

Figures 6 and 7 compare parallel performance of Se-
dona, MASS, and MPI when running CVH with the
small and the large dataset respectively. The trend
in their execution performance does not change be-
tween the small and the large datasets. Overall, Se-
dona’s total execution time is the slowest due to its
considerable data-loading overheads. Yet even focus-
ing on its computational time only, Sedona performs
slower than MASS total execution. This is because
MASS agents converge to a convex hull much faster
than Sedona’s repetitive data shuffle-and-sort opera-
tions. Despite that MASS needs to create a 2D Places
space, its total execution time is competitive to MPI or
even better than MPI as increasing the number of ma-
chines beyond eight. This is because MASS can read
input data in parallel while MPI needs to distribute
date from rank O to the other worker ranks. Using 18

or 20 machines, Sedona’s shuffle-and-sort overheads
diminish, which makes Sedona competitive to MASS.
On the other hand, MASS agent migration over ma-
chine boundary gets increased with more computing
nodes, which slows down MASS execution time be-
yond four machines.

* Sedona Total Time e Sedona Computation Time « MPI Total Time
* MASS Total Time ® MASS Computation Time
30000

000 o A/\'

Time (in ms)

Number of Nodes

Figure 6: CVH with fire.csv

* Sedona Total Time e Sedona Computation Time « MPI Total Time
* MASS Total Time ¢ MASS Computation Time
30000

20000

Time (in ms)

Number of Nodes

Figure 7: CVH with crime.csv

5.2 Euclidean Shortest Path (ESP)

Figures 8 and 9 show all the three libraries’ parallel
performance of ESP execution, each computing with
300 and 500 obstacles respectively. While the small
dataset ranks MASS as the slowest execution, its par-
allel performance continuously improves as increas-
ing the number of machines, which makes MASS the
fastest with 20 computing nodes. The main reason
is that agent propagation actually controls the agent
population rather than explodes it since many agents
hit obstacles to stop their propagation. As the number
of computing nodes gets increased, each computing
node has less agents that even alleviate their propaga-
tion. This trend is even clearer with the large dataset

that includes more obstacles. On the other hand, Se-
dona suffers from its Cartesian product computation
that is bound to O(n?). This quadratic complexity
also slows down Sedona’s total execution with the
larger dataset, while still showing its parallel perfor-
mance. MPI’s visibility graph construction similarly
increases quadratic to the data size, but its total ex-
ecution time is the fastest until 16 computing nodes
as each computation of line intersections is computa-
tionally negligible.

* Sedona Total Time ¢ Sedona Computation Time © MPI Total Time
* MASS Total Time

125000

100000

n
E 75000
E =
5
£ 50000
25000
0
1 2 4 6 8 10 20
Number of Nodes
Figure 8: ESP with 3000bstacles.txt
* Sedona Total Time ¢ Sedona Computation Time © MPI Total Time
* MASS Total Time
1250000
1000000
m
E 750000
£
Q
E 500000
= ‘\

250000

Number of Nodes

Figure 9: ESP with 5000bstacles.txt

5.3 Largest Empty Circle (LEC)

As described in Section 4.3, Sedona, MASS, and
MPI take the same LEC parallelization strategy. Yet,
MASS does not improve parallel performance as its
main() function is the focal point that chooses the final
LEC among all potential LECs, each reported from
a different place element. Figures 10 and 11 show
that MASS parallel performance is always bound to
its main() function and does not change. Sedona runs
the slowest with 1-12 computing nodes even with the
large dataset but eventually outperforms MASS. This
is because Sedona’s lambda expressions repetitively

compare each pair of potential LECs, which incurs
large overheads with less computing nodes. However,
since Sedona has no focal point in parallelization, its
performance is improved with more machines added
to the computation. Finally, MPI serves as the best
baseline performance as its computation is coarsely
performed in each rank and a one-time reductive com-
munication takes only at the end of the execution to
find the final result among up to 20 potential LECs.

* Sedona Total Time ® Sedona Computation Time « MPI Total Time
© MASS Total Time
500000

400000
300000

200000

100000 \
~—_
. e
2 4 6 8

Time (in ms)

10 20
Number of Nodes

Figure 10: LEC with school.csv

* Sedona Total Time ® Sedona Computation Time « MPI Total Time
* MASS Total Time
500000

400000

300000

200000 ’\

100000 \V

Time (in ms)

Number of Nodes

Figure 11: LEC with s.txt (random points)

5.4 Range Search (RGS)

Figures 12 and 13 measure the KD-tree construction
and range-query execution time elapsed by the three
libraries, as feeding the USFS fire occurrence dataset
(581,541 points) and the LA crime location dataset
(938,458 points). MPI runs the fastest in both cases
while its query transactions, (i.e., MPI computation
time) receive more communication overheads when
increasing the number of machines. On the other
hand, Sedona always runs the slowest. Its main over-
head (which occupies 59% through 73% of the total
time) is its tree construction and results from Sedona’s

repetitive RDD shuffle-and-sort operations. These
operations also slow down query transactions in both
small and large datasets, each spending 2.6-1.9 times
and 2.3-1.4 times more than MASS query transac-
tions. MASS cannot outperform MPI while its total
execution time gets closer to MPI’s as increasing the
number of computing nodes beyond 16.

© Sedona Total Time ® Sedona Computation Time © MPI Total Time
* MPI Computation Time © MASS Total Time ® MASS Computation Time

30000

20000 o—

Time (in ms)

Number of Nodes

Figure 12: RGS with fire.csv

* Sedona Total Time ¢ Sedona Computation Time = MPI Total Time
* MPI Computation Time ¢ MASS Total Time ¢ MASS Computation Time

30000

20000

Time (in ms)

10000 b=

— ————e——7

1 2 4 6 8 10 20

Number of Nodes

Figure 13: RGS with crime.csv

6 CONCLUSIONS

We parallelized four benchmark programs including
CVH, ESP, LEC, and RGS, using MASS, Sedona,
and MPI for the purpose of programmability and per-
formance comparisons. Sedona lines up major built-
in functions in computational geometry, which facil-
itates benchmark programming most efficiently. On
the other hand, MASS allows us to code the programs
from the viewpoint of spatial cognition, which makes
them easier to understand than MPI. While MPI runs
fastest in general due to its lowest-level paralleliza-
tion, MASS outperforms Sedona in most benchmark
programs. This demonstrates that agent flocking and
tree traversing are effective in GIS parallel execution.

ACKNOWLEDGMENTS

This paper is dedicated to Dr. Christian Freksa, a
former director of Bremen Spatial Cognition Center,
who gave us valuable hints on computational geom-
etry from the viewpoints of spatial cognition. This
research was supported by IEEE CS Diversity and
Inclusion Fund (IEEE CS Diversity and Inclusion,
2023), the CSS Division’s graduate research funds,
and the divisional RA-ship supports.

REFERENCES

Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and
Saltz, J. (2013). Hadoop GIS: A High Performance
Spatial Data Warehousing System over MapReduce.
In Proc. of the 39th International Conference on Very
Large Data Bases, pages 1009-1020, Riva del Garda,
Italy. VLDB Endowment.

Andrew, A. M. (1979). Another efficient algorithm for con-
vex hulls in two dimensions. Information Processing
Letters, 9(5):216-219.

ArcGIS Hub (2023). Private School Locations - Current.
Accessed on: November 2, 2024. [Online]. Avail-
able: https://hub.arcgis.com/datasets/nces::private-
school-locations-current/explore/.

Baig, F., Vo, H., Kurc, T., Saltz, J., and Wang, F.
(2017). SparkGIS: Resource Aware Efficient In-
Memory Spatial Query Processing. In Proc. of the
25th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages
28:1-28;10, Redondo Beach, CA. ACM.

Blashaw, D. and Fukuda, M. (2022). An Interactive En-
vironment to Support Agent-based Graph Program-
ming. In Proc. of the 14th International Confer-
ence on Agents and Artificial Intelligence - Volume
1, pages 148-155, Online Streaming. SCITEPRESS
Digital Library.

Eldawy, A. and Mokbel, M. F. (2015). SpatialHadoop: A
MapReduce Framework for Spatial Data. In IEEE
31st International Conference on Data Engineering,
pages 1352-1363, Seoul, Korea. IEEE.

Freksa, C., Barkowsky, T., Falomir, Z., and van de Ven, J.
(2019). Geometric problem solving with strings and
pins. Spatial Cognition & Computation, 19(1):46—64.

Gilroy, J., Paronyan, S., Acoltzi, J., and Fukuda, M. (2020).
Agent-Navigable Dynamic Graph Construction and
Visualization over Distributed Memory. In 7th Int’l
Workshop on BigGraphs’20, pages 2957-2966, On-
line Streaming. IEEE.

Gordon, C., Mert, U., Sell, M., and Fukuda, M. (2019).
Implementation techniques to parallelize agent-based
graph analysis. In Int’l Workshops of PAAMS 2019,
Highlights of Practical Applications of Survivable
Agents and Multi-Agent Systems, pages 3—14, Avila,
Spain.

Guo, Y. (2021). Construction of Agent-navigable Data
Structure from Input Files. MS Capstone White Pa-

per, University of Washington Bothell, Bothell, WA
98011.

IEEE CS Diversity and Inclusion (2023). New Diversity
and Inclusion Projects Powered by the IEEE Com-
puter Society Diversity and Inclusion Fund. 15 Febru-
ary 2023 | D&I, DEI, Education, Focus35.

Los Angeles Open Data Portal (2024). Crime Data from
2020 to Present. Accessed on: November 2, 2024.
[Online]. Available: https://data.lacity.org/Public-
Safety/Crime-Data-from-2020-to-Present/2nrs-
mtv8/about_data/.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. (2010).
Pregel: a system for large-scale graph processing. In
Proc. of the 2010 ACM SIGMOD International Con-
ference on Management of data, pages 135-146, New
York, NY. ACM.

Mohan, V., Potturi, A., and Fukuda, M. (2023). Auto-
mated Agent Migration over Distributed Data Struc-
tures. In Proc. of the 15th International Conference
on Agents and Artificial Intelligence, pages 363-371,
Lisbon, Portugal. SCITEPRESS Digital Library.

North, M. J., Tatara, E., Collier, N., and Ozik, J. (2007).
Visual Agent-based Model Development with Repast
Simphony. In Agent 2007 Conference on Complex In-
teraction and Social Emergence, Chicago, IL.

Saadati, S. and Razzazi, M. (2022). Natural
Way of Solving a Convex Hull Problem.
https://doi.org/10.48550/arxiv.2212.11999, arXiv.

Spark GraphX (2018). Accessed on: November 2, 2024.
[Online]. Available: https://spark.apache.org/graphx/.

Sullivan, K., Coletti, M., and Luke, S. (2010). GeoMason:
Geospatial Support for MASON. Technical Report
GMU-CS-TR-2016-16, George Mason University.

U.S. Forest Service - Geospatial Data Discovery (2024).
National USFS Fire Occurrence Point (Feature
Layer). Accessed on: November 2, 2024. [Online].
Available: https://data-usfs.hub.arcgis.com/datasets/
6059claddca749d393e33ee5f8a0cbaf_9/about/.

Wilensky, U. (2013). The NetLogo NW Ex-
tension for Network Analysis, accessed
on: October 5, 2023. [online]. available:
http://ccl.northwestern.edu/netlogo/5.0/docs/nw.html.

Yang, Y. (2023). Agents Visualization and Web GUI De-
velopment in MASS Java. MS Capstone White Pa-
per, University of Washington Bothell, Bothell, WA
98011.

You, S., Zhang, J., and Gruenwald, L. (2015). Large-scale
spatial join query processing in Cloud. In Proc. of
the 31st IEEE International Conference on Data Engi-
neering Workshops, pages 34-41, Seoul, Korea. IEEE.

Yu, J., Zhang, Z., and Sarwat, M. (2019). Spatial data man-
agement in apache spark: the GeoSpark perspective
and beyond. Geoinformatica, 23(1):37-78.

Zhang, Y. and Eldawy, A. (2020). Evaluating Computa-
tional Geometry Libraries for Big Spatial Data Explo-
ration. In GeoRich’20: Proc. of the Sixth International
ACM SIGMOD Workshop on Managing and Mining
Enriched Geo-Spatial Data, Portland, OR. ACM.

