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Abstract: We apply agent-based modeling (ABM) to distributed graph analysis where a large number of reactive agents
roam over a distributed graph to find its structural attributes, (e.g., significant subgraphs including triangles in
a social network and network motifs in a biological network). Of importance is providing data scientists with
an interactive environment to support agent-based graph programming, which enables interactive verification
of agent behaviors, trial-and-error operations, and visualization of graphs and agent activities. This paper
presents and evaluates our implementation techniques of these interactive features.

1 INTRODUCTION

In contrast to conventional data streaming, we ap-
ply agent-based modeling (ABM) to big-data com-
puting (Fukuda et al., 2020). More specifically, in-
stead of streaming data to analyzers such as Spark1

and Flink2, we construct a distributed data structure,
dispatch reactive agents to it as mobile analyzers, and
find its structural attribute in their emergent collec-
tive group behavior. For instance, triangles in a given
social network is considered as a useful factor to mea-
sure the intimacy among the network users and can be
counted by walking agents three times over the net-
work (Gordon et al., 2019).

Distributed data structures have been facilitated
for years in well-known parallel and distributed sys-
tems. GlobalArray constructs multi-dimensional ar-
rays on top of MPI (Nieplocha et al., 2006). Pregel
is a large-scale graph library based on inter-vertex
message passing (Malewicz et al., 2010) and is used
in Spark’s data streaming as GraphX. RepastHPC is
the parallel version of Repast Simphony3 that distin-
guishes spatial and network projections.

Focusing on graph analysis, these systems how-
ever have substantial difficulties in implementing
our agent-based approach: GlobalArray could repre-
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sent a graph with an adjacency matrix but does not
support element-to-element communication, thus ob-
structing agent communication nor movement; Pregel
and GraphX nail computation in their vertices, im-
mobilizing agents over a graph; and RepastHPC is
meant for traditional ABM simulation, not consider-
ing parallel file I/Os nor interactive operations on its
network projections. Given this background, we fa-
cilitated distributed graph construction, agents’ graph
traversal, and Cytoscape4-enabled graph visualiza-
tion in the MASS (multi-agent spatial simulation) li-
brary (Gilroy et al., 2020).

Of importance is providing data scientists with an
interactive environment to support agent-based graph
programming, which includes interactive verification
of agent behaviors, capability of trial-and-error opera-
tions, and visualization of graphs and agent activities.
This paper presents and evaluates our implementation
techniques of these interactive features.

The rest of this paper is organized as follows:
Section 2 differentiates our interactive environment
from the related work in graph programming; Sec-
tion 3 gives technical details on the MASS interac-
tive features and their implementation; Section 4 eval-
uates MASS execution overheads, programmability
improvements, and visualization; and Section 5 con-
cludes our discussions as mentioning our future plans.

4http://cytoscape.org/



2 RELATED WORK

This section compares the MASS library with other
related systems from the following four viewpoints:
(1) potential of distributed graph analysis with agents,
(2) agent tracking over a distributed graph, (3) for-
ward and backward graph analysis, and (4) visualiza-
tion of graphs and agents.

2.1 DISTRIBUTED GRAPH
ANALYSIS WITH AGENTS

NetLogo5 and Repast Simphony are capable of sim-
ulating networked agents or agent movements over
a network, respectively using network extensions or
network projections. However, the biggest challenge
results from their single-computing execution that
limits graph scalability. In fact, our scalability test
shows that Repast Simphony suffers from counting
the number of triangles in a graph only with 3,000
vertices (Wenger et al., 2021).

RepastHPC and FLAME6 are MPI-supported par-
allel ABM simulators. The former maps Repast
Simphony’s network projection onto a cluster system
where agents can traverse the network, thus moving
from one cluster node to another. The latter pop-
ulates agents statically over a cluster system where
networked agents can communicate with their neigh-
bors through broadcast messages. Although these two
systems parallelize ABM in graphs, their MPI-based
C/C++ implementation does not consider interactive
operations that are essential to the speed or the serving
layer in big-data computing. Furthermore, they can-
not initialize a graph in parallel as rank 0 must read
an input file sequentially.

WAVE (Sapthy and Borst, 1996) and UCI Mes-
sengers (Bic et al., 1996) are mobile-agent execution
platforms, both allowing their agents to construct and
to roam over a distributed graph at run-time. Their
drawback is the necessity of describing graph con-
struction logics in their agent code, which in turn
means that they are incapable of automating graph
construction from an input file and are thus unsuited
to big-data computing.

2.2 AGENT TRACKING

ProvMASS (Davis et al., 2018) provides MASS users
with a novel approach for tracking data provenance in
a distributed setting. This data provenance includes

5https://ccl.northwestern.edu/netlogo/
6http://www.flame.ac.uk/

agent data, simulation space, and cluster node infor-
mation, and is captured to file at run-time. Although
these data provenance features contribute to analyz-
ing agent behavior, they have a significant impact
on simulation performance. Specifically, such agent-
tracking implementation must be lightweight enough
to keep in memory during simulation and to practical-
ize interactive graph analysis.

Repast Simphony, on the other hand, has a
lightweight implementation for tracking agent data,
but settings must be pre-configured before running
the simulation and recorded agent data can only be
written to console or file. This is useful for review-
ing agent information but does not facilitate interac-
tive uses nor operations on the agent data in a running
simulation.

IBM Aglets (Lange and Oshima, 1998) allows
users to communicate with the agent servers named
Tahiti. Through Tahiti’s GUI, users can create, clone,
inspect, dialogue with, retract, and destroy agents.
However, since Aglets are intended to work on In-
ternet tasks, they do not distinguish distributed data
structures nor duplicate too many instances through
the GUI menus.

2.3 FORWARD AND BACKWARD
GRAPH ANALYSIS

We anticipate that data scientists may want to conduct
various analyses on the same graph, (e.g., centrality
and clustering analyses on the same biological biolog-
ical network). These operations need to retract agents
or even roll back computation, which are then fol-
lowed by a new analysis. Some systems indirectly or
directly implement such forward and backward com-
putation as follows:

Optimistic synchronization in parallel simula-
tors (Wang and Zhang, 2017) allows each computing
node to take repetitive snapshots of on-going compu-
tation for the purpose of rolling back to the computa-
tion and accepting tardy messages from slower com-
puting nodes. As their checkpointing and rollback
operations are system-initiated features, users cannot
use them intentionally for their trial-and-error analy-
sis.

The UCI Messengers system implements the op-
timistic synchronization in the execution platforms
so that agents can automatically go back to a net-
work node they previously visited (Fukuda et al.,
1998). Needless to say, agent checkpointing and roll-
back are carried out automatically and thus not user-
controllable.

The MASS library freezes agents when they ex-
plosively clone themselves in a short time period,



which prevents physical memory from being ex-
hausted quickly (Mart, 2017). These agents are se-
rialized and stored in either separate memory or disk
space until the other agents complete their computa-
tion and release their memory space. Again, this is a
system-automated but not user-controllable feature.

Looking at single-CPU execution, Repast Sim-
phony requires that all graph and agent information
be set prior to execution of the simulation and does
not support incremental backtracking or manipulation
of a running simulation.

2.4 GRAPH VISUALIZATION

Single-CPU ABM simulators furnish non-computing
users with a plenty of graph analyzing and visualiza-
tion features. NetLogo arranges an IDE-based graph
visualization with its network extension (Wilensky,
2013). It includes a plenty of primitives for network
analysis, (e.g. centrality and clustering analyses) and
visualizes the resultant graphs. However, it forces
users to pre-configure visualizations and lacks the
mid-simulation control features. Repast Simphony is
equipped with JUNG (O’Madadhain et al., 2003) as
its internal graph tool that uses the Java Swing API
to display graphs. This in turn means that data scien-
tists need to embed visualization logics in their graph
programming.

Cytoscape is an open-source network visualiza-
tion tool, originally developed for use in analysis of
biomolecular interaction networks, which has grown
to be widely used by various disciplines for the fol-
lowing three graph-programming supports: (1) exten-
sive file support for importing graphs into Cytoscape,
(2) native functionality for dynamic manipulation of
existing graph structures, and (3) the use of the OSGi
framework to make its components modular and eas-
ily extensible. Needless to say, Cytoscape is not con-
cerned with agent activities on a Cytoscape graph.

We should emphasize that all these graph visual-
ization endeavors are limited to single-CPU execu-
tion, thus unable to address the demand for large-scale
graph analysis.

In summary of this section, agent-based graph
programming needs to address interactive and scal-
ability problems in the following three areas:
1. Agent tracking: quickly observing a large num-

ber of agents traversing a graph;
2. Forward and backward computation: interac-

tively retracting active agents, restoring former
graph states, and dispatching new agents; and

3. Graph visualization: dynamically modifying
graphs through GUI and visualizing agent activ-
ities on a graph.

3 INTERACTIVE FEATURES AND
THEIR IMPLEMENTATION

In the following, we briefly introduce the MASS li-
brary and thereafter explain our technical solutions
to three interactive graph-programming features: (1)
agent tracking, (2) forward and backward computa-
tion, and (3) graph visualization.

3.1 MASS LIBRARY

The MASS library represents ABM using the two
modeling objects: Places and Agents. Places is
a computational space implemented with a multi-
dimensional array that is partitions into smaller
stripes, each mapped to a different cluster node. Each
place, an independent array element is referred to
with an architecture agnostic index and capable of
exchanging data amongst themselves. On the other
hand, Agents is a collection of reactive agents within
the computation. An agent has navigational auton-
omy of traversing places. Upon a migration, agent
data is serialized and passed between cluster nodes
via TCP communication.

The MASS library functions using a master-
worker pattern to control the computation.
User applications interact with the MASS mas-
ter node that runs their main() function; starts
MASS workers with MASS.init(); invokes a par-
allel function call at each place or agent with
Places.callAll(func) or Agents.callAll(func); ex-
change data among places in an inter-place RPC
form with Places.exchangeAll(func); clones, kills,
and moves agents within Agents.manageAll(); and
terminates the MASS workers with MASS.finish().

To ease graph programming, MASS derives
GraphPlaces from the Places base (Gilroy et al.,
2020). Using this class, users can initialize a dis-
tributed graph with an input file in XML, HIPPIE,
CSV, and text formats. As GraphPlaces can grow by
adding a new Places instance to itself, users can in-
crementally construct the graph with addVertex() and
addEdge().

The MASS library interfaces with Cytoscape for
GUI-enabled graph construction and visualization as
well as with JShell (Oracle, 2017) for interactive
agent deployment over the graph.

3.2 AGENT TRACKING

We implemented an agent-tracking feature in MASS,
based on the following three design strategies:
1. performance: minimizing temporal and spatial

overheads incurred by additional network com-



munication and memory management, thus en-
abling quick observation of many agent activities;

2. consistency: generating unambiguous and
exactly-once outputs of agent propagation history
including cloning and migration over a graph;
and

3. usability: facilitating a straightforward, easy-to-
use agent-tracking API and providing users with
easily consumable statistics such as finding all
agents alive at a particular time or determining the
number of visits an agent made.
To pursue the performance consideration, instead

of allowing each agent to carry its travel history with
it, we added to each place the AgentHistoryMan-
ager class that is responsible for managing which
agents or classes of agents are being tracked and
then recording history each time a tracked agent vis-
its that place. Importantly, this means agent history
is stored on the Places but not on the Agents; this
maintains execution performance by ensuring agents
remain lightweight for serialization and transfer be-
tween computing nodes. The tradeoff is that agent
history is distributed amongst the cluster nodes during
execution which introduces some complications when
extracting the data, especially when child agents are
involved.

In many applications, agents will come to deci-
sion points at which their instructions indicate they
need to travel to multiple places at once. In these in-
stances, the parent agent will move to one place, and
then a child agent will be spawned for each of the
other available places. At this point, if agents are be-
ing tracked by their class name, then places will be-
gin gathering data on the newly spawned child agents.
This pattern may continue throughout the computa-
tion, causing multiple waves of child agents to spawn
at various times in the computation. The issue that
arises from this process is that the child agents will
have an incomplete history, because they did not exist
at the beginning of execution.

To help illustrate this problem, consider the Tri-
angle Counting benchmark application running on a
sample graph shown in Figure 1. Triangle Counting
is solved in four ABM simulation cycles:

Time 0: one agent is spawned on each available
place.

Time 1-2: each agent propagates itself to all neigh-
boring places with a lessor index value than the
current place (which results in spawning children
if more than one neighbors fits this criterion).

Time 3: all remaining agents attempt to return to
their original source. Each agent that can return
home at time 3 represents a discovered triangle.
Figure 2 shows the history captured for each agent

Figure 1: A sample graph

Figure 2: Agent history before parent propagation, where
[t,v] means: at time t, a given agent visited vertex v

as this benchmark application plays out; note that
child agents are missing their parent itinerary before
they were spawned. This missing piece of data is
needed for the user application to correctly determine
the path the agents traveled along, i.e., the edges of
the triangles.

As shown in Figure 2, agent 7 is the only agent
that completed its path at time 3, but its complete
path is unknown because agent 7 is a child and did
not spawn until time 2. Further, agent 7 is the child
of agent 5 and agent 5 is also a child agent of agent
4. So, even if we retrieve information from agent 5,
the data will remain incomplete unless we also pull
information from agent 4. Thus, there is the need to
solve this problem depth-first recursively at the time
agent 7’s history is extracted to the user program.

Figure 3 illustrates the result of propagating data
from parent agents, with the red arrows indicating the
flow of information from parent to child. In the case
of agent 7, we see that it retrieved results directly from
parent agent 5, after agent 5 retrieved its own history
from parent agent 4. Now, from agent 7s movement
history, we can correctly conclude the triangle found
from this simulation is between vertices 4, 2, and 0.

Figure 3: Agent history after parent propagation



Listing 1 shows a code snippet to initiate agent
tracking and to collect agent travel history. The
main() program creates a graph (line 5) and initializes
AgentHistoryManager at each graph place (line 6).
Once an agent class is registered for tracking, the user
program may continue execution without worrying
about tracking data. Each time the manageAll() func-
tion is invoked, the MASS library will keep track of
all associated agent movements. Although the code
invokes manageAll() twice for each loop iteration,
one in line 10 for spawning children and the other
in line 12 for moving all the agents to neighboring
places, manageAll() internally counts these two invo-
cations as one logical time event. This gives users a
simple view of agent dissemination. Finally, main()
can retrieve all the agent travel histories through
graph.callAll(AGENT TRACE GET) (line 14). This
retrieval process internally consolidates all collected
results into a single, cleaned, and sorted AgentHisto-
ryCollection object. It is at this step that parent-data
propagation occurs.

Listing 1: Using MASS agent tracking

1 import MASS.∗;
2public class Analysis {
3 public void main(String[] args) {
4 MASS.init();
5 GraphPlaces graph = new GraphPlaces( ... );
6 graph.callAll(places.

AGENT TRACE REGISTER CLASS, Crawler
.class.getName());

7 Agents crawlers = new Agents(‘‘Crawler’’, graph);
8 while ( crawlers.hasAgents() ) {
9 crawlers.callAll(ClawerAgent.spawn );

10 crawlers.manageAll();
11 crawlers.callAll(ClawerAgent.walk );
12 crawlers.manageAll();
13 }
14 AgentHistoryCollection history = graph.callAll(

places.AGENT TRACE GET);
15 MASS.finish();
16} }

3.3 FORWARD AND BACKWARD
COMPUTATION

To provide incremental execution and the ability to
checkpoint and rollback computation, we have lever-
aged the MASS library’s interface to JShell named
InMASS (Alghamdi, 2020). Our design strategies are
two-fold:
1. performance: minimizing temporal and spatial

overheads incurred by checkpointing an on-going
computation and retrieving a past computation

2. code base: maintaining the original InMASS im-
plementation with less impact on the basic func-
tionality.
In conventional data streaming, Spark ad-

dresses forward/backward computation with im-
mutable RDDs that create new versions upon any
transformation applied to them, and thus keeps old
RDDs retrievable with their references. This strat-
egy takes the same effect as checkpointing and roll-
back of computation. To avoid generating too many
snapshots of RDD, Spark carries out lazy evaluation
of RDD transformations until they really need to be
evaluated for passing their changes to RDD actions
(which produce non-RDD values). In agent-based
graph programming, agents travel or propagate over a
graph as changing each data item. This in turn means
that, if we use the same strategy as Sparks dataset
immutability, we need to take a snapshot every time
an agent changes each vertex. Furthermore, unlike
Sparks RDD, (i.e., a collection of data items), a graph
needs more disk space for storing its serialized data
upon a checkpointing and more time for de-serializing
it upon a rollback. Taking these overheads in consid-
eration, we implemented interactive parallelization in
the MASS library as follows:
1. Maintaining only one snapshot of computa-

tion: MASS users are supposed to commit their
operations to an in-memory graph once they have
no intention to roll back beyond this checkpoint.
This saves the secondary storage space.

2. Maintaining a history of previous MASS func-
tion calls: The MASS library will keep recording
any MASS functions invoked since the last snap-
shot was taken, so that MASS can rebuild any past
graph structure between the snapshot and the lat-
est graph state.

3. Rolling back computation by re-executing
functions in history: Upon a user-specified roll-
back, the MASS library will re-apply previous
function calls to the snapshot in a chronological
order all the way to the rollback point. While
this rollback scheme needs a substantial time to
rebuild a past graph, the normal computation can
run faster without continuously taking a snapshot
of ongoing executions onto disk.

At the highest level, InMASS is simply a wrapper
class that initializes a JShell window, injects MASS
startup code into that JShell instance, and then pro-
vides hooks for various MASS execution and shut-
down functions. This basic functionality alone en-
ables line-by-line execution when running on a sin-
gle node and effectively eliminates boilerplate code in
user applications. The challenges of InMASS imple-
mentation, however, revolve around (1) making JShell



function properly for all cluster nodes in a distributed
environment and (2) deciding how to save and reload
computation state for checkpoint and rollback func-
tionality.

To address issue 1, we customized a Java class
loader named InMASSLoader that facilitates distribu-
tion of new classes bytecode from the MASS mas-
ter to worker nodes. Once all computing nodes are
aware of the new classes, they use new MASSObject-
InputStream and MASSObjectOutputStream functions
to assist in serialization and deserialization of these
dynamic classes.

To address issue 2, we had Agents and Places in-
herit AgentsInternal and PlacesInternal serializable
classes to facilitate serialization and deserialization of
all agents and places data. Then, each MASS worker
process gathers all hash tables containing all Agents
and Places instances, and holds them in one single
object named MState. This is the object to be saved
and updated on checkpoint and rollback. (Note that
users can choose a checkpoint storage from active
memory, temporary disk location, or a specified file
in disk.) To facilitate user ability to rollback to states
other than the original checkpoint, the MASS master
process prepares the MHistory object to keep a log of
all API calls to Agents and Places and to store their
bytecode to enable re-execution on demand. Conse-
quently, when a user requests rollback to “step 5”, for
example, the original snapshot will be loaded from
MState, and then MHistory will execute the next five
API calls that follow the snapshot.

3.4 GRAPH AND AGENT
VISUALIZATION

To facilitate visualization and validation of agent ac-
tivities over a distributed graph, we have extended the
existing MASS-Cytoscape integration, based on the
following three implementation strategies:
1. Usability: allowing users to focus on program-

ming their graph application in MASS, while not
configuring or managing the visualization solu-
tion. This automation includes transfer of agent
data to Cytoscape.

2. Expandability: following the OSGI framework
to modularize MASS-related plugins, which eases
the future expandability of the MASS-Cytoscape
system integration.

3. Scalability: allowing large-scale graphs to be
shown in Cytoscape by extending its capability to
retrieve partial graphs from the MASS library, us-
ing an n-neighbors approach.

Figure 4: MASS-Cytoscape integration architecture dia-
gram

3.4.1 USABILITY ENHANCEMENT

Figure 4 presents an overview of the MASS-
Cytoscape architecture. On the left side of the figure
is the user space. We have illustrated the users two
points of interaction, with the JShell window for run-
ning their code in MASS and with the MASS Control
Panel for managing their data flow and visualization
in Cytoscape.

The MASS Control Panel serves three main func-
tions. First, it provides a single point of interaction for
the user by internally managing the data transfer plu-
gins: import-network, export-network, and import-
agents. Second, it provides the ability to manipu-
late the MASS Configuration tables that inform the
data transfer plugins of how to find the MASS com-
putation and what data to pull back into Cytoscape.
Lastly, it provides the interface and logic for visualiz-
ing agent movement through manipulation of the Cy-
toscape data tables and network view.

In MASS, the CytoscapeListener class must be
started by the user application to open a TCP-based
communication port for MASS-Cytoscape communi-
cation. This listener will then field any requests from
Cytoscape by first parsing the request, then obtaining
reference to the corresponding GraphPlaces method,
and finally invoking that method and returning the re-
sults to the requesting Cytoscape plugin. Internally,



the GraphPlaces methods utilize standard MASS in-
ternal APIs, such as callAll(), to communicate with
the rest of the cluster and set or retrieve the appropri-
ate information.

Visualizations in Cytoscape are all controlled by
two factors: the layout and the network view. While
we utilized the Circular layout, (i.e., one of Cy-
toscape’s defaults), we customized the network view
to change edge thickness and vertex color for visual-
izing agent travel histories.

3.4.2 MODULARITY AND EXPANDABILITY

Cytoscape plugin components must follow OSGi to
modularize them in a bundle. Since each bun-
dle is self-contained, plugin developers are respon-
sible to coordinate bundle invocations and to pro-
vide bundle-to-bundle data communication. We han-
dle this communication using a shared table named
“MASS Configuration table within the Cytoscape en-
vironment. The table includes fields for the MASS
hostname and port as well as other fields used for par-
tial graph streaming. The MASS Control Panel writes
new values to the table after taking inputs from the UI
and the data transfer plugins read in relevant informa-
tion each time a new data transfer task is created. To
tolerate any ordered start-up of bundle, the panel also
maintains a reference to each of the data transfer plu-
gins and the ability to test and reacquire the reference.

3.4.3 GRAPH SCALABILITY

Visualization of a partial graph is important in situa-
tions where the MASS cluster is operating on a graph
too large to be stored in a single machine. To allow
the visualization environment to support the scale of
these graphs, we have implemented an optional N-
Neighbors approach to graph retrieval from MASS.
This requires the user to provide a centroid node ID as
well as determine the degrees of separation (DoS) that
should be imported. DoS is interpreted as the num-
ber of neighbor rings that we would like to visualize.
Shown in Figure 5, if the user selects 1 DoS then the
graph retrieval will bring back the centroid node as
well as one ring of immediate neighbors. Specifying
2 DoS would bring back all the centroids neighbors as
well as the neighbors of those nodes in the first ring,
and so on.

To manage this request on the MASS side of the
program, the MASS master node first receives the
request, saves centroid and DoS information, and
then invokes GraphPlaces’s getGraphNNeighbors()
method. This method iteratively queries the remote
workers for each DoS requested, passing a list each
time to ensure only the required graph vertices are

Figure 5: N-Neighbors Graph Retrieval (where Centroid =
0, DoS = 1)

sent back. Importantly, this approach results in addi-
tional overheads from iterative network calls but en-
sures that the data returned to the master node is lim-
ited, which is critical when a given graph is too large
for a single machine.

4 EVALUATION

We evaluated the MASS interactive environment in
the following three criteria: (1) execution perfor-
mance, (2) ease of programming, and (3) usefulness
of visualization. At the end of this section, we also
discuss about the current limitations. All the verifi-
cations, measurements, and visualizations were per-
formed using a cluster of eight computing nodes, each
with an Intel Xeon Gold 6130 CPU at 2.10GHz and
20 gigabytes of system memory.

4.1 EXECUTION PERFORMANCE

We first compared the execution performance be-
tween the agent-tracking API and the conventional
history-passing technique (i.e., maintaining and pass-
ing a travel history from a parent to its children di-
rectly every time new children was spawned). We uti-
lized the agent-based Triangle Counting benchmark
application for this comparison. Table 1 summarizes
five different graph sizes between 100 and 1,500 ver-
tices.

As the size of the graph increases, we also observe
a corresponding exponential increase in the total num-
ber of agents needed to perform the analysis. Due to
variability in complexity from one graph to the next,
and the management of agent data being the primary



Table 1: Graph sizes used for performance evaluation

#vertices max # total #agents #triangles
neighbors spawned found

100 8 373 8
500 19 7,734 145
750 28 24,818 526

1,000 50 143,486 4,578
1,500 66 342,802 9,124

Figure 6: Performance of triangle counting with agent-
tracking API versus history-passing technique

point of interest for these features, we will use the to-
tal number of agents to provide context to our results.

Figure 6 shows Triangle Counting’s execution
time as increasing the number of agents. Note that we
calculated the average of five measurements. Beyond
140K agents, we observe approximately 1,700ms
( 11-18%) slower performance when using the agent-
tracking API. This increase in processing time is due
to the added overhead from data capture methods in-
voked when agents are spawning and moving. This
gap widens slightly when running in multi-node con-
figurations due to network latency, but the correlation
between the two techniques remains consistent.

Figure 7 compares agent-tracking API and the
history-passing technique in their overheads when ex-
tracting agent data. We conversely observe a sig-
nificant gap in performance between the two tech-
niques regarding agent-data extraction time. There
are two primary explanations for this disparity in per-
formance:
1. The amount of data being returned to the user is

significantly different. Using the agent-tracking
API returns all agent data captured in computa-
tion while the history-passing technique returns
only data for agents that are alive at the time of
retrieval. This is the same as the number of trian-
gles found at the end of computation. In terms of
the 1,500 vertices trial, this means that the history-
passing technique returned data for 9,124 agents
while the agent-tracking API approach returned
results for 342,802 agents.

2. The agent-tracking API takes additional steps to

Figure 7: Agent data extraction overheads incurred by
agent-tracking API and history-passing technique

clean, sort, and propagate the data upon retrieval.
The impact of this extra data processing is some-
what limited in Triangle Counting, however, be-
cause the three repetitive walks on triangle edges
limit parent-child propagation to at most two lev-
els. Longer computation with more parent-child
relationships is likely to see further increase in
agent-data extraction time.

4.2 PROGRAMMABILITY
EVALUATION

Table 2 shows a qualitative comparison of the two
techniques. First, the history-passing technique only
works for agents that are alive at the time of data
extraction; whereas the agent-tracking API manages
history for all registered agents and makes that data
available at any point in execution. Second, the agent-
tracking API is arguably more intuitive for inexperi-
enced MASS users. The history-passing technique re-
quires the user to have additional understanding of the
MASS library: to understand that they can pass argu-
ments from the parent to the child agents to maintain
a log of visits. In contrast, the agent-tracking API can
be initiated and then ignored until needed, allowing
the user to instead focus on the logic of their applica-
tion. Additionally, the agent-tracking API will func-
tion the same way in all applications allowing knowl-
edge of its use to be easily transferred to new projects.
Finally, the agent-tracking API shows a small reduc-
tion in # lines of code (LoC) and, more importantly, a
consolidation of those lines to one initialization state-
ment and then a single block of code to retrieve and
process the data.

4.3 GRAPH AND AGENT
VISUALIZATION

To facilitate user exploration and computation under-
standing, we have implemented two agent visualiza-



Table 2: Programmability comparison between agent his-
tory passing and agent-tracking API

Agent-history passing Agent-tracking API

Completeness Only alive agents All tracked agents
Ease of use Less intuitive More intuitive
LoC 15 13

Figure 8: Agent path visualization

tions in Cytoscape: Agent Path and Heat Map. Both
visualizations are generated using the MASS Control
Panel and each can be freely manipulated in the net-
work view.

Agent Path is shown in Figure 8 and provides the
user with the ability to review the complete path of
any individual agent. The more recent movements are
represented with a darker node and thicker edge. If an
agent ever traverses an edge that does not exist in the
edge table, then a dashed line is created to signal the
issue to the user. This view is particularly useful in
computation, such as Triangle Counting, where the
pattern of agent movement determines the success of
the application. In Figure 8, we see the selected agent
was successful in finding a triangle because the agent
was able to return to its origin.

The Heat Map visualization, shown in Figure 9,
provides the user a representation of all agents ac-
tive in the simulation at a point in time with darker
nodes representing higher concentrations of agents.
The user is then able to cycle through the time vari-
able of the computation to observe movement patterns
of the entire group. This visualization is best applied
to use cases such as in network centrality analyses, in
which we seek to observe aggregate movement pat-
terns centralized around particular vertices of interest
in graph analysis.

Table 3 provides a comparison of key features
between previous versions of MASS Java, this im-

Figure 9: Heat map visualization

Table 3: Visualization and interactivity comparison be-
tween MASS and Repast Simphony

  MASS (Graphs) MASS (Graphs) w/  
New Features 

Repast Simphony 
Ex

ec
ut

io
n Interface CLI CLI GUI 

Flow Control Forward Complete Forward / Backward 
Stepping Forward Stepping 

Vi
su

al
iz

at
io

n 

Interface GUI GUI GUI 

Objects Graph Only Graph + Agents Graph + Agents 

Type 2D 2D 2D / 3D 

Synchronicity  Retrieved at end Asynchronous Synchronous 

Flexibility Set at start As needed, selectable Set at start 

 

plementation, and competitor software Repast Sim-
phony with regards to agent-based graph program-
ming. Compared features are then sub-divided into
execution and visualization categories.

Repast Simphony provides a GUI for both ex-
ecution and visualization of graph analysis through
their integration with the Eclipse IDE. This integra-
tion also provides plugin support for 2D/3D visual-
ization of the simulation Context, (which corresponds
to MASS Places and Agents.) The visualizations,
known as Projections, (which includes Network Pro-
jections) are configured through the IDE before start-
ing the simulation and are strictly synchronized with
simulation execution. Repast Simphony does provide
statistics and logging features for reviewing historical
data, but the simulation itself is limited to only step-
ping forward through execution or running the simu-
lation at full speed.

MASS with the new interactive support sepa-
rates the execution and visualization aspects of the
system into two windows. Computation is handled
through the command-line interface, which also en-
ables forward and backward stepping through the in-



clusion of JShell with checkpointing and rollback
features. Visualization is then managed separately
through the Cytoscape GUI and MASS-specific ex-
tensions. Adding support for agent visualization in
this work brings MASS on par with Repast Simphony
as far as what objects can be visualized, but our visu-
alizations are still limited to 2D views. Most impor-
tantly, the separation of view and execution concerns
allows for the visualization to be completed asyn-
chronously and the visualizations to be adjusted as
desired through the Cytoscape GUI without the need
to pre-configure or restart a computation. This is par-
ticularly useful in long-running computations where
the need for visualization was not considered ahead
of time or when users explore which visualizations
may best fit the application.

4.4 CURRENT LIMITATIONS

The current implementation has three limitations. We
discuss how each of these issues may be mitigated
by the user or addressed through future work on the
MASS library.
1. JShell provides a CLI which may be unfamil-

iar or awkward for users just getting started.
This difficulty may be particularly acute for users
who normally rely heavily on their IDE for auto-
correction and suggestion support. Although
these features exist in JShell their use is not as
smooth as in most IDEs. These challenges will
fade over time, however, as users become more fa-
miliar with the JShell interface and available fea-
tures, such as the /open command which allows
the user to open and run a pre-written text file.
This command is particularly powerful in that it
allows the user to continue developing in their
chosen IDE and then simply run the /open com-
mand on their file when they are ready to test ex-
ecution.

2. The current agent-tracking API allows for regis-
tration and retrieval of an entire agent class. This
limitation exists because the history of agent visits
is distributed amongst the places and the propaga-
tion occurs upon retrieval, once all agent tracks
have been coalesced on the master node: if agent
tracks are not present on the master process, then
they cannot be propagated. Further, the current
MASS-Cytoscape integration only allows for re-
trieval of full agent history. Addressing these lim-
itations may lead to improved performance in in-
stances where only a selection of agents, for ex-
ample successful agents, is required.

3. Agent visualization in Cytoscape does not al-
low for much customization by the user and has

only been optimized for instances where the user
would like to track a single class of agents. Fur-
ther, the color gradient is based on only fifteen
shades of the base color which leads to instances
where a vertex may show no agents present, even
when they are, because the number of agents on
the place is not significant enough with respect to
the most populated places.

5 CONCLUSIONS

We implemented a set of new tools and functional-
ity for MASS users to enable more rapid development
and exploration when building agent-based graph pro-
grams. We accomplished this by introducing new
APIs for tracking agent data, incorporating an in-
terface for forward and backward computation with
JShell, and expanding integration of Cytoscape for
visualization of MASS GraphPlaces and associated
Agents. Verification of this work was done by exam-
ining each major deliverable using Triangle Counting,
which showed that the new functionality provided re-
sults consistent with previous methods and did so with
minimal impact on execution performance, though
greater impact on agent-data extraction times.

Our future work is two-fold in Cytoscape ex-
pansion: (1) visualization capabilities of multi-
dimensional arrays and binary/quad trees and (2) fil-
tering capabilities of agents to capture for their graph
traverse, (e.g., those alive at a particular time or
marked as a successful traveler).
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