
Fault-Tolerant Job Execution over Multi-Clusters Using Mobile Agents∗

Munehiro Fukuda Emory Horvath Solomon Lane

Computing & Software Systems
University of Washington, Bothell,

18115 NE Campus Way, Bothell, WA 98011
{mfukuda, emoryh, solomonl}@u.washington.edu

Phone: 1-425-352-3459 Fax: 1-425-352-5216

Abstract

AgentTeamwork is a mobile-agent-based job coordina-
tion system that targets a mixture of computing nodes, some
directly connected to the public Internet and others simply
clustered in a private IP domain but not managed by a com-
modity job scheduler. The system allows its mobile agents
to carry a user job with them from the public to private
IP domains as well as to form a hierarchy where agents
are recursively spawned to launch a job at a different node,
to monitor their parent and children, to resume them upon
their crash, and to relay a job-termination signal to the root
agent, (i.e., the one directly communicating with a user).
To manage multiple clusters, all agents running within the
same cluster constitute a subtree derived from the agent re-
siding at their cluster head. This algorithm enables mobile
agents to deploy a job to multiple cluster heads and hence-
forth to their cluster-internal computing nodes, as well as to
monitor and resume the job both across clusters and within
each cluster. This paper presents our agent-based algo-
rithm and its performance for job deployment, monitoring,
and resumption over multiple clusters.

Keywords: Job coordination, fault tolerance, grid middle-
ware, mobile agents

1 Introduction

Job execution over multiple clusters has rapidly attracted
users in grid computing as one of the most cost-effective
methods to scale up processor parallelism and thus to in-
crease computing power. The challenge of multi-cluster
job execution includes not only the study of efficient co-
scheduling algorithms, (particularly those aware of inter-

∗This research is being conducted with full support from the National
Science Foundation’s Middleware Initiative (No.0438193).

cluster network bandwidth [14, 2]) but also development of
infrastructures to facilitate fault-tolerant job execution over
multiple clusters.

Most conventional infrastructures are based on a cen-
tralized two-level job deployment where a central job co-
allocator orchestrates multiple remote clusters, each man-
dated by a commodity cluster-local scheduler such as
GRAM and PBS [5, 13]. Contrary to its simplicity, this
approach would encounter the following structural, per-
formance, and fault-tolerance problems: (1) all cluster
nodes are not systematically managed by their cluster-local
scheduler and moreover turned on and off asynchronously
as typically seen in instructional computers; (2) the job-
deployment latency increases in linear to the number of in-
dependent clusters; (3) Fault recovery can be no longer han-
dled within each cluster for a job whose inter-process com-
munication takes place over multiple clusters, which in turn
means that a central job co-allocator must be furnished with
comprehensive fault-tolerant intelligence.

To address these problems, we have developed a mecha-
nism for fault-tolerant multi-cluster job execution that uses
a hierarchy of mobile agents, each deployed to a different
cluster head or gateway where it further deploys a hierarchy
of child agents to cluster-internal nodes inO(logN). Each
agent launches a user job, takes its on-going execution snap-
shots, passes them to another agent running on a different
cluster, monitors their parent and child agents, and resumes
them upon a crash. We have implemented this mechanism
in the AgentTeamwork system [10]. It is our main focus
to present how AgentTeamwork can address the structural,
performance, and fault-tolerance problems in multi-cluster
job execution as well as to analyze its competitive perfor-
mance.

The rest of the paper is organized as follows: Section 2
gives an overview of AgentTeamwork; Section 3 explains
our implementation of fault-tolerant multi-cluster job exe-
cution; Section 4 analyzes AgentTeamwork’s performance
in job deployment and check-pointing as well as compares

AgentTeamwork and Globus; Section 5 looks at related
work; and Section 6 concludes our discussions.

2 AgentTeamwork

AgentTeamwork is grid-computing middleware that sup-
ports fault-tolerant job execution over multiple computing
nodes, using an hierarchy of mobile agents [10]. The system
distinguishes them in commander, resource, sentinel, and
bookkeeper agents, each specialized in job submission, re-
source selection, job deployment and monitoring, and job-
execution bookkeeping respectively. These mobile agents
are exchanged among remote computing nodes, each run-
ning a UWAgents mobile-agent execution platform [11].

A user submits a new job with a commander agent
that spawns a resource agent. To find a collection of re-
mote machines fitted to resource requirements, the resource
agent retrieves appropriate XML-described resource infor-
mation from its local XML database as well as down-
loads new information from a shared ftp server if necessary,
(ftp.tripod.comin our current implementation).

Given a collection of destinations, the commander agent
spawns a pair of sentinel and bookkeeper agents, each hi-
erarchically deploying as many children as the number of
the destinations. Each sentinel launches a user process at
a different machine with a unique MPI rank, takes a new
execution snapshot periodically, sends it to the correspond-
ing bookkeeper, monitors its parent and child agents, and
resumes them upon a crash. A bookkeeper maintains and
retrieves the corresponding sentinel’s snapshot upon a re-
quest. User files and the standard input are distributed from
the commander to all the sentinels along their agent hierar-
chy, while outputs are forwarded directly to the commander
and displayed through the AgentTeamwork GUI.

A user program is wrapped with a user program wrap-
per, one of the threads running within a sentinel agent. The
wrapper provides a user program with error-recoverable
TCP and file libraries, each namedGridTcp [9] and Grid-
File, which serializes its execution snapshot in bytes includ-
ing in-transit messages and file contents. The system also
facilitates a fault-tolerant version of the mpiJava API [16]
that has been actually implemented with GridTcp.

Since Java does not serialize a program counter, it is im-
possible to resume a user program where it has been sus-
pended or crashed. To allow a program to restart from its
middle, AgentTeamwork defines its programming frame-
work as shown in Figure 1. The code consists of a collection
of methods, each of which is namedfunc appended by a 0-
based index. An application starts fromfunc 0 (line 5), re-
peats calling a new method indexed by a return value of the
current method (lines 10 and 14), and ends in the method
whose return value is−2 (line 17). The user program wrap-
per takes a process snapshot at the end of each function call,

so that the process can resume its computation from the last
function call.

1 public class MyApplication {
2 public int funcId; // used by system
3 public GridTcp tcp; // used by GridTcp
4 public GridIpEntry ipEntry[]; // used by GridTcp
5 public int func_0(String args[]){ // constructor
6 MPJ.Init(args, ipEntry); // invoke mpiJava
7; // more statements
8 return 1; // calls func1
9 }

10 public int func_1() { // from func0
11; // more statements
12 return 2; // calls func2
13 }
14 public int func_2() { // from func1
15; // more statements
16 MPJ.finalize(); // stops mpiJava
17 return -2; // terminated
18 } }

Figure 1. An AgentTeamwork’s user code with
function-based snapshots

As shown in Figure 2, AgentTeamwork also allows user-
initiated check-pointing operations where a Java application
starts frommain()as usual (line 9), instantiates and regis-
ters local objects to save in execution snapshots (lines 16-
17), takes an execution snapshot at any point of time (line
7), and resumes its objects from the latest snapshot (lines
12-13).

1 import AgentTeamwork.Ateam.*;
2 public class MyApplication extends AteamProg {
3 public MyApplication(Object o){} // reserved
4 public MyApplication() {} // user own
5 private void compute() { // user computation
6 ...;
7 ateam.takeSnapshot(phase); // check-pointing
8 }
9 public static void main(String[] args) {

10 MyApplication program = null;
11 if (ateam.isResumed()) { // resumption
12 program = (MyApplication)
13 ateam.retrieveLocalVar(‘‘program’’);
14 } else { // initialization
15 MPI.Init(args); // invoke mpiJava
16 program = new MyApplication();
17 ateam.registerLocalVar(‘‘program’’, program);
18 }
19 program.compute();
20 MPI.Finalize(args);
21 } }

Figure 2. An AgentTeamwork’s user code with
user-initiated snapshots

3 Job Coordination over Multi-Clusters

Figure 3 shows AgentTeamwork’s hierarchical job de-
ployment in a single address domain, which brings the fol-

cmd

snt

snt

snt

snt

bkp

bkp bkp

bkp

i0

i8 i9

i2 i3

i32 i33

i13 i14 i15i11

r0

r1 r2 r3 r4

r5

r0

r6

r4r3r2r1

bkp

bkp
r7
i50

User

rsc
i1eXist

QUERY

snt bkp
i48 i49
r5

i34
r7

snt
r6

bkp
i12

sntsnt
i10

i0: agent id
r0: processor rank

JOB SUBMISSION

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent

SPAWN
SNAPSHOT

Snapshot transfer

Figure 3. AgentTeamwork’s original algorithm
for job coordination

lowing four benefits: (1) a job is deployed in a logarith-
mic order; (2) each agent computes its tree-unique identifier
(simply abbreviated toid in the following discussions) with-
out a central name server1, with which an agent computes
an MPI rank for its user process; (3) each sentinel monitors
its parent and child agents as well as resumes them upon a
crash in parallel; and (4) each user process is check-pointed
by a different sentinel and its snapshot is maintained by a
separate bookkeeper, which improves snapshot availability
and thus enhances fault tolerance.

Despite those merits, this algorithm cannot be re-used
directly for inter-cluster job coordination. In the rest of
this section, we first examine challenges in this coordina-
tion work and thereafter show a better approach to applying
our hierarchical algorithm to multiple clusters.

3.1 Challenges

There are four challenges in applying an agent hierarchy
to multi-cluster job execution.

The first is how to divide an agent hierarchy into sub-
trees, each allocated to a different cluster. Without subtree
generation, an agent hierarchy would be deployed over mul-
tiple clusters in a pathetic manner where a sentinel agent in a
cluster-private domain might need to monitor its parent and
children, some residing at a different cluster. This burdens a
cluster gateway with rerouting all ping messages from such
a cluster-internal agent to different clusters.

The second is how to send to and maintain at book-
keepers a collection of execution snapshots that have been

1An agentid is computed from its parentid ×4+ an index (1-based if
the parent is a commander, otherwise 0-based)

taken across multiple clusters. A pair of sentinel and book-
keeper agents should not reside at the same computing node
and moreover in the same cluster for increasing snapshots’
availability. Of importance is to consider an efficient man-
ner to pass snapshots from each sentinel in a cluster-private
domain to the corresponding bookkeeper in the public ad-
dress domain without causing congestion.

The third is where to resume a crashed cluster node and
furthermore a crashed cluster gateway. If there are no more
available nodes in a cluster to resume a job or if a cluster
gateway itself has crashed, AgentTeamwork must search for
a new cluster to resume a crashed job. The main problem
is that two or more sentinels, (thus user processes) may be
running in the previous cluster. Therefore, we need to mi-
grate all of them at once to the new cluster.

The fourth is how to establish and resume inter-process
communication over multiple clusters, each constituting a
private address domain. Related to the third problem, all
user processes in the same cluster may need to migrate to
a different cluster upon a crash of their cluster gateway.
Therefore, inter-process communication must be not only
maintained but also resumed through cluster gateways.

Our solution to each of these challenges includes: (1) the
system uses a two-level agent hierarchy, where the outer hi-
erarchy is allocated to cluster gateways while the leftmost
agent at each tree level creates an inner tree for a cluster
whose gateway is managed by this agent’s parent; (2) all
snapshots taken inside a cluster are directly passed from its
gateway to the corresponding bookkeeper; (3) an agent run-
ning at a cluster gateway resumes all its descendants at a
new cluster whereas all the other sentinels terminate upon
detecting their gateway’s crash; (4) GridTcp has been en-
hanced to capture inter-cluster TCP messages in its execu-
tion snapshot for an anticipated cluster recovery. In the fol-
lowing, we will explain the details of our solution.

3.2 Job Deployment

Figure 4 illustrates AgentTeamwork’s inter-cluster job
deployment. It distinguishes clusters from independent
desktops by grouping them into the left and right subtree
of the top sentinel agent withid 2. In the left subtree, all but
the leftmost agents at each level are deployed to a different
cluster gateway. We call themgateway agentsin the fol-
lowing discussions and consider the left subtree’s root with
id 8 as the first gateway agent. Each leftmost agent and all
its descendants are dispatched to computing nodes below
the gateway managed by this leftmost agent’s parent. We
distinguish them ascomputing-node agents.

Each agent is given the same arguments upon its instan-
tiation: a list of cluster gateway names, a list of their clus-
ter sizes and a list of computing node names below each
gateway. Given these arguments, each sentinel agent inde-

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent
i0: agent id
r0: processor rank

snt
i35

cluster 3

snt
i34

cluster 2
r6
i132
snt

cluster 0

i8
snt

cluster gateway 0 Desktop computers

i2
snt

i0
cmd

i1
rsc

r5

snt
i512

i128 − i131
r1 − r4

snt

r0
i32
snt

i3
r0

bkp

Descendant
bookkeepers

Descendant
sentinels

gateway 2 gateway 3

cluster 1

gateway 1

i33
snt

SNAPSHOT

snt
i9
rX

i528 − i531snt
r7 − r10

Figure 4. Inter-cluster job deployment

pendently migrates to its corresponding cluster node in ac-
cordance with the following procedures:(1) find its gate-
way agent idby dividing the given agentid by 4 as storing
each quotient in an array till it reaches 8, and thereafter by
checking the array elements in a reverse order from bottom
to top till encountering the first 4-divisible non-8 element
whose right quotient is the gateway agentid; (2) index the
given gateway’s IP name in the gateway listby repeatedly
dividing its gateway agentid by 4 as storing each remain-
der in an array till the quotient reaches 8, and thereafter by
checking eachremainder[i] in a reverse order as calculat-
ing index = index×3+remainder[i] whereindex is first
initialized to0; and(3) index its cluster node’s IP name in
the node list below the given gatewayby repeatedly divid-
ing the agentid by 4 till the quotient reaches the gateway’s
leftmost children, and subsequently performing multiplica-
tive computation:index = index×4+ remainder[i]+1.

In Figure 4, sentinel 531’s quotients by 4 include [132,
33, 8]; 132 is the first 4-divisible non-8 element; and its
right quotient is 33. This is sentinel 531’s gateway agent.
Then, gateway agent 33 generates 8 and 1 as the quotient
and remainder respectively when dividing itsid by 4. There-
fore, its index is:0×3+1 = 1, which corresponds to cluster
1. Sentinel 531 generates 132 and 3 as the quotient and re-
mainder respectively when dividing itsid by 4. Therefore,
its index in cluster 1 is:0× 4 + 3 + 1 = 4.

3.3 Job Monitoring and Check-Pointing

Each agent monitors the aliveness of its parent and chil-
dren by receiving and sending a periodical ping message
respectively. Due to the nature of our two-level hierarchy
(shown in Figure 4), such ping messages are passed within
either only the public address or a cluster-private domain
but not across different private domains.

The UWAgents execution platform has been enhanced
to cache a message receiver’s IP address in the sender agent
upon receiving the receiver’s acknowledgment. This new
feature allows a sentinel agent to deliver repetitive snap-
shots straightly to its bookkeeper, which is particularly ef-
fective when a gateway agent sends huge cluster-internal
snapshots to its corresponding bookkeeper without interfer-
ing other gateways. For instance, sentinel 33 can collect all
snapshots from sentinel 32 and 528 through to 531, and then
deliver them directly to bookkeeper 3 or its descendant.

Another new feature is that two or more bookkeeper
agents can reside on the same host as well as receive and
distinguish snapshots from multiple sentinels. This saves
the number of both computing nodes and bookkeeper agents
to maintain execution snapshots.

3.4 Job Resumption

Figure 5 describes AgentTeamwork’s inter-cluster job
resumption. Upon an initialization, each sentinel agent re-
ceives additional arguments including a list of extra cluster
nodes and a list of extra clusters.

The former list is generated by reserving some nodes of
each cluster for future job resumption. As shown in Fig-
ure 5’s case A, a crashed sentinel is resumed at a reserved
node within the same cluster by its parent or child.

The latter list is used to resume a crashed gateway agent
at a different cluster as shown in Figure 5’s case B. The
crashed gateway agent must be actually taken care of by
its parent or one of its non-leftmost children, (i.e., another
gateway agent). Resumed at one of extra clusters, the gate-
way agent is then supposed to spawn all descendants within
this new cluster. All the previous children of this crashed
gateway receive no more ping messages, realize that they
all become network unreachable, and therefore send a sui-
cide message to themselves as well as their descendants.

The final work of job resumption is to recover all bro-
ken inter-process TCP connections. Each gateway agent
automatically instantiates a user program wrapper that sim-
ply starts GridTcp without launching any user program.
GridTcp monitors and captures inter-cluster TCP messages
in its gateway agent’s snapshot. Therefore, upon a gateway
resumption, GridTcp can recover all broken inter-cluster
connections from the latest snapshot and retrieve all lost
messages that have been in transit through the gateway.

4 Performance Evaluation

We have evaluated the system performance for job de-
ployment, termination, and resumption over two cluster sys-
tems, namedcluster-randcluster-i. As summarized below,
both clusters include 32 computing nodes, whilecluster-ris
faster than cluster-i.

cmd: commander agent
bkp: bookkeeper agent

rsc: resource agent
snt: sentinel agent
i0: agent id
r0: processor rank

i8
snt

cluster gateway 0 Desktop computers

i2
snt

i0
cmd

i1
rsc

r5

snt
i512

i128 − i131
r1 − r4

snt

r0
i32
snt

i3
r0

bkp

Descendant
bookkeepers

Descendant
sentinels

i33
snt

extra cluster

gateway 1

sntresumed

extra
node

r6
i132
snt

cluster 1
cluster 0

extra gateway

snt
i9
rX

Case A

Case B

i528 − i531snt
r7 − r10

computing nodes

Figure 5. Inter-cluster job resumption

Cluster-r: a 32-node cluster for research use
Gateway node:

specification outbound
1.8GHz Xeon x2, 512MB mem, and 70GB HD 100Mbps

Computing nodes:
#nodes specification inbound
24 3.2GHz Xeon, 512MB memory, and 36GB HD 1Gbps
8 2.8GHz Xeon, 512MB memory, and 60GB HD 2Gbps

Cluster-i: a 32-node cluster for instructional use
Gateway node:

specification outbound
1.5GHz Xeon, 256MB memory, and 40GB HD 100Mbps

Computing nodes:
#nodes specification inbound
16 1.5GHz Xeon, 512MB memory, and 30GB HD 100Mbps
16 1.5GHz Xeon, 512MB memory, and 30GB HD 1Gbps

4.1 Deployment Performance

For this evaluation, we have used a master-worker test
program that does nothing rather than simply exchanges a
message between rank 0 and each of the other ranks. Our
evaluation has considered the following two scenarios of
job deployment and termination as increasing the number
of computing nodes engaged in a job: (1)depth first: uses
up cluster-r’s computing nodes first for a submitted job,
and thereafter allocatescluster-i’s nodes to the same job if
necessary. (2)breath first: allocates bothcluster-r’s and
cluster-i’s computing nodes evenly to a job. For these two
scenarios, we have compared AgentTeamwork with Globus
that delegates the corresponding MPICH-G2 test program
to these two clusters, each mandated by OpenPBS.

Figure 6 compares their performance. For thedepth first
scenario, AgentTeamwork always performed faster than
Globus/OpenPBS, however both systems increased their
job-deployment overhead sharply from 48 to 64 comput-
ing nodes. This is because the test program made a half
of worker processes communicate with the master on the
other cluster. Forbreath first, Globus/OpenPBS fluctuated

 35

 30

 25

 20

 15

 10

 5

 64 48 40 32 24 16 8 4 2 1

el
ap

se
d

tim
e

(s
ec

)

#processors

AgentTeamwork depth first
AgentTeamwork breath first

Globus/OpenPBS depth first
Globus/OpenPBS breath first

Figure 6. Job deployment effect by cluster
node allocation.

its performance till 32 nodes while increasing more emi-
nent overheads due to its linear job deployment over mul-
tiple clusters. On the other hand, AgentTeamwork showed
its logarithmic increase of job-deployment overhead.

4.2 Check-Pointing Performance

To evaluate AgentTeamwork’s check-pointing over-
heads, we have considered the following three test cases:
(1) non IP-caching deployment: relays all execution snap-
shots from one agent to another through a hierarchy and de-
livers them to one bookkeeper; (2)IP-caching deployment
with 1 bookkeeper: allows each sentinel to cache the cor-
responding bookkeeper’s IP address, while only one book-
keeper maintains all snapshots; (3)IP-caching deployment
with 2 bookkeepers: allows each sentinel to cache the cor-
responding bookkeeper’s IP address, where two hosts are
allocated to bookkeepers, each maintaining snapshots from
cluster-randcluster-irespectively.

As shown in Figure 7, the non IP-caching deployment
shows a super-linear increase of its overhead. There are
two reasons. One is that all snapshots had to be fun-
neled through the commander agent. The other is that each
gateway itself must take periodical snapshots including all
GridTcp messages passing through it, which burdens the
gateway with relaying not only its own but also the de-
scendant gateways’ snapshots. On the other hand, the IP-
caching deployment with one bookkeeper has drastically
improved its job deployment performance by allowing exe-
cution snapshots to be delivered directly to a bookkeeper.
Furthermore, the IP-caching deployment with two book-

 300
 250
 200

 150

 100

 50

 64 48 40 32 24 16 8 4 2 1

el
ap

se
d

tim
e

(s
ec

)

#processors

Non IP-caching deployment
IP-caching deployment with 1 bookkeeper

IP-caching deployment with 2 bookkeepers
8 log4 X

Figure 7. Job deployment effect by snapshot
maintenance

keepers has balanced snapshot maintenance between their
hosts to demonstrate the best performance mostly bounded
by log4N .

5 Related Work

This section compares AgentTeamwork with other grid-
computing systems in terms of (1) hierarchical job de-
ployment and scheduling and (2) programming support for
multi-cluster computing and fault tolerance.

5.1 Hierarchical Job Deployment

Job scheduling within a single domain or a cluster
system has been facilitated in the form of both research
prototypes and commercial products such as GRAM and
PBS [5, 13]. It is a natural upgrade to orchestrate them with
a centralized co-scheduler.

Nimrod-G targets multiple clusters by continuously sub-
mitting a parameter-sweep job to a remote GRAM running
at a light-loaded domain [1], which does not however mean
that Nimrod-G co-allocates multiple clusters to a single job.

DUROC is a Globus-based co-allocator that receives an
RSL-described job submission from a user, dispatches the
job to GRAMs (each running at a different cluster), collects
a job status from them, and informs the user of a job sus-
pension and termination [6]. However, the actual resource
selection is left to a higher-level resource broker such as
DCS (Dynamic Co-Allocation Service) [17].

Similarly, Condor-G uses a central co-allocator termed
GridManagerto deploy a job to remote GRAMs [8]. Con-

dor flocking prepares in each domain at least one gate-
way machine to exchange a list of available machines with
other domains [7]. It can mitigate a potential performance
bottleneck incurred in a central manager, and differentiate
domain-local users from external users.

DIET uses a tree of scheduler agents where a job request
is forwarded to servers located at leaves of the tree and best
fitted to the job [3]. The main difference from AgentTeam-
work is that DIET’s agents are location-static and dedicated
to resource maintenance as well as scheduling but not to job
monitoring and resumption.

5.2 Programming Support for Multi-Cluster
Computing and Fault Tolerance

MPICH-G2, (i.e., the Globus version of MPICH) intro-
duces two network topological parameters such as depths
and colors, with which computing nodes can be grouped in
a different communicator with the same depth or color [15].
The actual topological description must be defined in RSL,
for which purpose thempiruncommand automatically con-
verts a user’s machine file in an RSL file that is then passed
to DUROC. Needless to say, fault recovery must be sup-
ported at lower platforms than at MPICH-G2.

Legion provides users with a fault tolerant version of
MPI namedMPI-FT that repeatedly takes a consistent snap-
shot of a job running on all computing nodes [12]. Simi-
lar to AgentTeamwork’s user-initiated check-pointing oper-
ations, applications in Legion need to explicitly save their
own data withMPI FT Save, to check their resumption
with MPI FT Init, and to retrieve the latest snapshot from
MPI FT Restore. The difference from AgentTeamwork is
that their snapshots are maintained by a single file server
and in-transit file contents must be recovered at a user level.

Condor-MW enhances fault tolerance of PVM applica-
tions by allowing them to react to runtime exceptions such
as a suspension, a resumption, and a deletion of a remote
host throughpvmnotify andpvmrecv [4]. Its restriction,
however, is the master-worker programming model in that
only the master process can handle these events and take
snapshots including communication with slaves (but not
inter-slave communication).

6 Conclusions

We have applied mobile agents for fault-tolerant dis-
tributed job execution over multi-clusters that are not sys-
tematically managed by their local schedulers and turned
on/off independently. The paper has proposed a two-level
hierarchical agent-based job coordination including job de-
ployment, monitoring, check-pointing, and resumption as
well as inter-cluster MPI rank allocation and TCP connec-
tion establishment. Our performance evaluation demon-

strated AgentTeamwork’s job deployment in a logarithmic
order, the effectiveness of direct snapshot transfer to and
distributed maintenance at bookkeeper agents, and the im-
portance of cluster node allocation in a depth first strategy.

Our next work is to develop a runtime job co-scheduling
algorithm in addition to the job deployment infrastructure
focused on by this paper. With this enhancement, we feel
that mobile agents will be more practicable for fault-tolerant
job execution over multiple clusters.

Acknowledgments
We are very grateful to Mr. David Grimmer, a UWB

Linux systems administrator for all his technical support in
clusters configuration and maintenance.

References

[1] D. Abramson, J. Giddy, and L. Kotler. High perfor-
mance parametric modeling with nimrod/G: Killer ap-
plication for the global grid? InProc. of the 14th
International Symposium on Parallel and Distributed
Processing – ISPDP, pages 520–528, Cancun, Mex-
ico, May 2000. IEEE-CS.

[2] A. I. D. Bucur and D. H. J. Epema. The performance
of processor co-allocation in multicluster systems. In
Proc. of the 3rd IEEE/ACM Internationl Symposium
on Cluster Computing and the Grid – CCGrid2003,
pages 302–309, Tokyo, Japan, May 2003.

[3] Pushpinder Kaur Chourhan, Holly Dail, Eddy Caron,
and Frederic Vivien. Automatic middleware de-
ployment planning on clusters.International Jour-
nal of High Performance Computing Applications,
Vol.20(No.4):517–530, Winter 2006.

[4] Condor MW Homepage.
http://www.cs.wisc.edu/condor/mw/.

[5] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. In
Proc. of IPPS/SPDP ’98 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 62–82, Or-
land, FL, March 1998. IEEE-CS.

[6] Karl Czajkowski, Ian Foster, and Carl Kesselman. Re-
source co-allocation in computational grids. InProc.
of the 8th IEEE Symposium on High Performance Dis-
tributed Computing – HPDC8, pages 219–228, Re-
dondo Beach, CA, August 1999.

[7] D. H. J. Epema, M. Livny, R. van Dantzig, X. Ev-
ers, and J. Pruyne. A worldwide flock of condors:
load sharing among workstation clusters. Technical

Report DUT-TWI-95-130, Delft University of Tech-
nology, The Netherlands, 1995.

[8] James Frey, Todd Tannenbaum, Ian Foster, Miron
Livny, and Steven Tuecke. Condor-G: A computa-
tion management agent for multi-institutional grids.
In Proc. of the 10th IEEE Symposium on High Per-
formance Distributed Computing – HPDC10, pages
55–63, San Francisco, CA, August 2001.

[9] Munehiro Fukuda and Zhiji Huang. The check-
pointed and error-recoverable MPI Java library of
AgentTeamwork gird computing middleware. InProc.
IEEE Pacific Rim Conf. on Communications, Comput-
ers, and Signal Processing - PacRim’05, pages 259–
262, Victoria, BC, August 2005. IEEE.

[10] Munehiro Fukuda, Koichi Kashiwagi, and Shinya
Kobayashi. AgentTeamwork: Coordinating grid-
computing jobs with mobile agents.International
Journal of Applied Intelligence, Vol.25(No.2):181–
198, October 2006.

[11] Munehiro Fukuda and Duncan Smith. UWAgents: A
mobile agent system optimized for grid computing. In
Proc. of the 2006 International Conference on Grid
Computing and Applicaitons – CGA’06, pages 107–
113, Las Vegas, NV, June 2006. CSREA.

[12] Integrating Fault-Tolerance Techniques in Grid Appli-
cations. Anh Nguyen-Tuong. PhD thesis, University
of Virginia, Charlottesville, VA 22904, August 2000.

[13] James Patton Jones. PBS Pro Relase 5.1. User guide,
Veridian Systems, Inc., Mountain View, CA, Novem-
ber 2001.

[14] William M. Jones, Luis W. Pang, Dan Stanzione, and
Walter B. Ligon III. Bandwidth-aware co-allocating
meta-schedulers for mini-grid architectures. InProc.
of the IEEE International Conference on Cluster Com-
puting – Cluster2004, pages 45–54, San Diego, CA,
September 2004. IEEE-CS.

[15] Nicholas T. Karonis, Brian Toonen, and Ian Foster.
MPICH-G2: A grid-enabled implementation of the
message passing interface.Journal of Parallel and
Distributed Computing, Vol.63(No.5):551–563, 2003.

[16] mpiJava Home Page.
http://www.hpjava.org/mpijava.html.

[17] J. M. P. Sinaga, H. H. Mohamed, and D. H. J. Epema.
A dynamic co-allocation service in multicluster sys-
tems. InProc. of the 10th Workshop on Job Schedul-
ing Strategies for Parallel Processing, pages 194–209,
New York, NY, June 2004. LNCS 3277.

