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Abstract—For more than the last two decades, multi-agent
simulations have been highlighted to model mega-scale social
or biological agents and to simulate their emergent collective
behavior that may be difficult only with mathematical and
macroscopic approaches. A successful key for simulating mega-
scale agents is to speed up the execution with parallelization.
Although many parallelization attempts have been made to multi-
agent simulations, most work has been done on shared-memory
programming environments such as OpenMP, CUDA, and Global
Array, or still has left several programming problems specific
to distributed-memory systems, such as machine unawareness,
ghost space management, and cross-processor agent management
(including migration, propagation, and termination). To address
these parallelization challenges, we have been developing MASS,
a new parallel-computing library for multi-agent and spatial
simulation over a cluster of computing nodes. MASS composes
a user application of distributed arrays and multi-agents, each
representing an individual simulation place or an active entity.
All computation is enclosed in each array element or agent;
all communication is scheduled as periodic data exchanges
among those entities, using machine-independent identifiers; and
agents migrate to a remote array element for rendezvousing
with each other. This paper presents the programming model,
implementation, and evaluation of the MASS library.

I. INTRODUCTION

The multi-agent model, sometimes coupled with
individual-based model, gained in popularity when Swarm [1]
was developed to model a large number of social or biological
agents and to simulate their emergent collective behavior that
may be difficult only with mathematical and macroscopic
approaches. A successful key is how to handle mega-scale
agents within an acceptable time, which is generally facilitated
by parallel computing. For instance, FIuTE, a multi-agent
influenza epidemic simulation with 10 million people takes
about 2 hours, and therefore uses OpenMP and MPICH for
a parallel simulation of the entire continental US with 280
million people, using 32 cluster nodes [2].

Although many parallelization attempts have been made
to multi-agent simulations, most parallelization work has
been limited to shared-memory programming environments
such as multithreading, OpenMP, and CUDA [2], [3], [4],
[5]. It is much more challenging to parallelize multi-agent
simulation on distributed-memory systems. The challenges
can be characterized into (1) programming and (2) execu-
tion performance problems. The former problems are mainly
brought from partitioning and allocating a simulation space
and a collection of agents to different cluster nodes, each

with an independent memory space. They include machine
unawareness to refer to a remote simulation space and name
each agent transparently, ghost space management to allow
agents to read and modify the boundary of adjacent remote
simulation space, guarded agent migration to avoid agents
from colliding each other at the same logical location, and
agent propagation and distributed termination to spawn and
terminate agents dynamically. The latter problems are resulted
from handling mega-scale agents for more accurate simulation
with a larger problem. More specifically, we need to facilitate
fine-grained scalable computation of agents by reducing their
inter-processor communication overheads.

To address these problems, we have been developing
MASS, a new parallel-computing library for multi-agent and
spatial simulation. MASS composes a user application of
distributed array elements and multi-agents, each represent-
ing an individual simulation place or an active entity. All
computation is enclosed in each array element or agent; all
communication is scheduled as periodic data exchanges among
those entities using their machine-independent identifiers; and
agents migrate to a different array element (on a remote
cluster node) for rendezvousing with each other. These MASS
features can therefore allow a user application to intuitively
mimic actual phenomenon such as epidemic among people in
FIuTE [2] and traffic jams in MatSim [6].

The contribution of this paper is two-fold: (1) giving new
solutions to the above programming problems in multi-agent
parallelization and (2) empirically demonstrating competitive
performance of fine-grained scalable computation of agents.
The rest of the paper is organized as follows: Section II
examines the current problems in parallelizing multi-agent
simulations; Sections III and IV discusses the MASS pro-
gramming model and its current implementation; Sections V
and VI evaluate the MASS programmability and execution
performance; and Section VII concludes our discussions.

II. RELATED WORK

Frequent interaction among mega-scale agents via their
simulation space is a challenge for parallelizing a multi-agent
simulation over a distributed-memory system. The successful
key is how to visualize remote sub-spaces to distributed agents.
One solution is to use a distributed shared array whose element
is intended to describe a simulation sub-space and maintain
agents residing on it. The other is to use an existing multi-agent
simulation environment to develop an application, based on its
API. This section considers these two programming platforms.



A. Distributed Array

Example systems supporting distributed shared arrays in-
clude UPC: Unified Parallel C [7], Co-Array Fortran [8], and
GlobalArray [9]. UPC allocates global memory space in the
sequential consistency model, which is then shared among
multiple threads running on different computing nodes. Co-
Array Fortran allows “so-called” images, (i.e. different execu-
tion entities including ranks, processes and threads) to share,
to perform one-sided operations onto, and to synchronize on
distributed arrays. They are all based on the distributed shared
memory concept. If an entire array is made visible to all agents,
the simulation scalability is limited due to their memory
consistency enforcement. Therefore, GlobalArray facilitated
ghost spaces that are adjacent boundaries of remote spaces,
visible to local agents. However, ghost spaces are updated by
their home, (thus remote) computing node but not by local
agents. Although this read-only feature is sufficient for some
spatial simulations such as computational fluid dynamics and
Schrodinger’s wave diffusion, many agent-based applications
(including traffic and epidemic simulations [6], [2]) need to
move local agents onto ghost spaces, thus by allowing them
to update the ghost spaces. Since agents are described as data
members in each array element, model designers are respon-
sible for manually implementing agent management such as
duplication, migration, termination, and collision avoidance.
Finally, array elements and agents are indexed and executed by
iterative loops, which makes model designers aware of which
machines maintain which simulation objects.

B. Multi-Agents

Most multi-agent systems such as PDES-MAS [10] and
MACE3J [11] focus on parallel execution of coarse-grained
cognitive agents, each with rule-based behavioral autonomy.
These systems provide agents with interest managers that work
as inter-agent communication media to exchange spatial infor-
mation as well as to multicast an event to agents. However,
their nature of coarse-grained agents and multicast-based inter-
est managers obstructs mega-scale agent simulations. Another
similar framework to consider is Nomadic Threads [12].
These threads migrate over a distributed array to make all
data accesses local to the threads for realizing thread-memory
proximity. Similarly to the above systems, Nomadic Threads
are coarse-grained cognitive agents that are not suitable for
a mega-scaled agent simulation. Repast HPC [13] is a large-
scale agent-based modeling system that was implemented on
top of MPI and tested on Argonne National Laboratory’s Blue
Gene/P. The system gives a C++ based agent framework,
shared contexts as inter-agent communication media, and ghost
spaces visible to adjacent processes, which facilitated basic
requirements for agent parallelization. However, it has been
designed from the hawk’s viewpoint or in the top-down strat-
egy where a user must launch a Repast process at each MPI
rank, update agent status with iterative loops, construct logical
network spaces with MPI ranks, and use read-only ghost spaces
similar to those implemented in distributed arrays.

In many cases, mega-scale agent simulations are modeled
from the individual-based viewpoint, (i.e., in the bottom-up
strategy), and used for observing their emergent collective
behavior or self-organization. Therefore, to assist model de-
signers, (i.e, non-computing specialists) in agent paralleliza-
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Fig. 1. MASS execution model.

tion, we need to address (1) individual-based design, (2)
machine unawareness, (3) readable/writable ghost spaces, and
(4) system-level agent management.

III. PROGRAMMING MODEL

To address the above problems in agent parallelization,
we have first developed the MASS library in Java, and are
currently porting it to C++ and CUDA platforms. Its design
principles are three-fold: (1) individual-based design: allows
simulation users to focus on agent and space design by
automating underlying agent and (ghost) space management;
(2) machine-unaware transparent environment: relieves simu-
lation users from model parallelization by automating parallel
agent execution and migration; and (3) scalable and fine-
grain parallelization: facilitates mega-scale agent simulation
by implementing MASS with low-level system calls rather than
additional middleware libraries such as MPI.

A. Execution Model

Places and Agents are keys to the MASS library. Places
is a multi-dimensional array of elements that are dynamically
allocated over a cluster of multi-core computing nodes. Each
element is called a place, is pointed to by a set of network-
independent array indices, and is capable of exchanging infor-
mation with any other places. Agents are a set of execution
instances that can reside on a place, migrate to any other
places with array indices (thus as duplicating themselves), and
interact with other agents as well as multiple places. As shown
in Figure 1, parallelization with the MASS library uses a set of
multi-threaded communicating processes that are forked over
a cluster of multi-core computing nodes and are connected to
each other through ssh-tunneled TCP links. The library spawns
the same number of threads as that of CPU cores per node.
Those threads take charge of method call and information
exchange among places and agents in parallel.

B. Library Specification

A user designs a behavior of a place and an agent
by extending the Place and Agent base classes respectively.



They are populated through the Places and Agents classes.
Actual computation is performed between MASS.init() and
MASS.finish(), using the following major methods [14]. (Note
that the following discussions focus on the Java specification
for simplicity.)

MASS Class

e public init(String[] args, int nProc, int nThr) uses
nProc processes, each with nThr threads if specified.
e  finish() finishes computation.

Places Class

e public Places(int handle, String className, Object
argument, int boundary, int size...) instantiates a
shared array with size from className as passing an
argument to the className constructor. The array has
a shadow space with boundary and receives a user-
given handle.

e public Object[] callAll(int functionld, Object[] ar-
guments) calls the method specified with functionld
of all array elements as passing arguments[i] to ele-
ment[i], and receives a return value from it into Ob-
ject[i]. Calls are performed in parallel among multi-
processes/threads. In case of a multi-dimensional ar-
ray, i is considered as the index when the array is
flattened to a single dimension. We also have the
callSome() method to call a given method of one or
more selected array elements.

e public void exchangeAll(int handle, int functionld,
Vector<int[]> destinations) calls from each of all
elements to a given method of all destination elements,
each indexed with a different Vecror element. Each
vector element, say destination[] is an array of inte-
gers where destination[i] includes a relative index (or
a distance) on the coordinate ¢ from the current caller
to the callee element. The caller passes its outMes-
sage[ | data member to the callee as a set of arguments,
and receives return values in its inMessage[]. The
exchangeSome() method is a variation to call from one
or more selected array elements to their destinations.
Another variation is exchangeBoundary() to exchange
node-boundary elements with neighboring nodes as a
ghost space.

Place Class

e private size[]; private index[] maintains the size of
the shared array that each element belongs to and the
index of each array element.

e  public Object callMethod(int functionld, Object ar-
gument) is invoked from Places.callAll/Some() and
exchangeAll/Some() so as to call a function specified
with functionld.

Agents Class

o public Agents(int handle, String className, Object
argument, Places places, int population) instantiates
a set of agents from className, passes the argument to
their constructor, associates them with a given Places
matrix, and distributes them over these places, based
on the map() method that is defined in the Agent class.

e public Object callAll(int functionld, Object[] argu-
ments) is the same as Places.callAll().

e  public void manageAll() updates each agent’s status,
based on its latest calls of migrate(), spawn(), kill(),
sleep(), wakeup(), and wakeupAll(). These methods are
defined in the Agent base class and may be invoked
from other functions through callAll().

Agent Class

o migrate(int[] index...) allows a calling Agent to
migrate to the Place specified with index upon
Agents.manageAll(). The Agent can also propagate
itself to all neighboring or multiple Place elements
with no or multiple index arguments.

o spawn(int nChildren, Object arguments) spawns chil-
dren as passing arguments to them.

e  kill() terminates a calling Agent.

e  public Object callMethod(int functionld, Object ar-
gument) is the same as Place.callMethod().

It is natural for callAll/Some() and exchangeAll/Some() to
call each element’s function with a user-given string-class
name. However, Java reflection is intolerably slow for parallel
computing, and C/C++ dynamic loading does not resolve a
method within a given object. Thus, a selection of methods to
call should preferably be done with switch(), where we need to
identify each method with an integer value. For this reason, a
user must provide callMethod() that assists the MASS library
in choosing a method to call. Figure 2 illustrates the general
code pattern of such method calls.

1 public class Wave2D extends Place {
2 // constants: all methods are identified by an integer
3 public static final int init_ = 0;
4 public static final int computeWave_ = 1;
5 public static final int exchangeWave_ = 2;
6 // automatically called from callAll/Some and exchangeAll/Some
7 public static Object callMethod( int funcId,
8 Object args ) {
9 switch( funcId ) {
10 case init_: return init ( args );
11 case computeWave_: return computeWave( args );
12 case exchangeWave_: return exchangeWave( args );
13 }
14 public Object init ( Object args ) {
15 ]
16 }
17
Fig. 2. Function calls from callAll/Some() and exchangeAll/Some().

C. Coding Examples

To give more concrete ideas of the MASS library, we
introduce two example MASS applications: Wave2D (a two-
dimensional wave simulation) and RandomWalk (an agent-
movement simulation over a two-dimensional space).

1) Wave2D: Figure 3 shows an example use of
Places.callAll() and Places.exchangeAll() for developing a
parallel spatial simulation program named Wave2D. It is a two-
dimensional matrix that simulates Schrédinger’s wave diffu-
sion. In this example, a two-dimensional matrix is instantiated
on line 9 by simply creating a new instance of Places. The
application enters a cyclic simulation to calculate the wave
height at every Place element in parallel (line 24), and to
exchange wave height information (line 26) between each
element and all its neighbors (as defined on lines 16-19).



1 import MASS.«;/ Library for Multi-Agent Spatial Simulation

2 public class Wave2D extends Place {

3 public static void main( String[] args ) {

4 // validate the arguments

5 int size = Integer.parselnt( args[0] );

6 int maxTime = Integer.parselnt( args[l] );

7 MASS.init ( args ) ;// start MASS

8 // create a Wave2D array.

9 Places wave2D = new Places( 1, "Wave2D", null,
10 size, size );

11 // initialize the Simulation space.

12 wave2D.callAll( init_, null );

13

14 // define the four neighbors of each cell

15 Vector<int []> neighbors = new Vector<int[]>( );
16 int[] north = { 0, -1 }; neighbors.add( north );
17 int east = 1, 0 }; neighbors.add( east );

[l {

18 int[] south = { 0, 1 }; neighbors.add( south );
19 int[] west = { -1, 0 }; neighbors.add( west );
20
21 // now go into a cyclic simulation
22 for ( int time = 0; time < maxTime; time++ ) {
23 // calculate each place’s wave height
24 wave2D.callAll ( computeWave_ );
25 // update each place with neighbor’s wave information.
26 wave2D.exchangeAll ( exchangeWave_, neighbors );
27 }
28 MASS.finish ( ) ;// finish MASS
29 }
30 }
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Fig. 3. Wave2D code and simulation space.

2) RandomWalk: Figure 4 shows an example of multi-agent
migration over a two-dimensional space with Agent.callAll()
and manageAll(). This example instantiates a Land array with
args[0] x args[0] (line 10), and populates Nomad agents on
it (line 12). In each simulation cycle (lines 17-22), agents
compute their next position to visit (line 19) and migrate there
(line 21). Defined in lines 26-34, the Nomad agent randomly
chooses one of the four neighboring places in computePosi-
tion() and schedules its migration on line 33.

IV. IMPLEMENTATION

Both Java and C++ versions of the MASS library is based
on the master-slave architecture where the master process
spawns slaves, each running at a different computing node until
the end of the main() function and executing a given method of
all places and agents with multi-threads in parallel. Therefore,
the master process does not become a system bottleneck.

A. MASS Implementation

MASS is the infrastructure of the library on which the user
application is executed. It is responsible for construction and
deconstruction of remote processes on a cluster of computing
nodes, and maintains references to all Places and Agents in-
stances. Inif() identifies all remote hosts as specified in the host

1  import MASS.«;/ Library for Multi-Agent Spatial Simulation

2 public class RandomWalk {

3 public static void main( String[] args ) {

4 // validate the arguments

5 int size = Integer.parselnt( args([0] );

6 int nNomads = Integer.parselnt( args[l] );
7 int maxTime = Integer.parselnt( args[2] );
8 MASS.init ( args ) ;start MASS

9 // create a Land array.

10 Places land = new Places( 1, "Land", null,
11 size, size );
12 Agents nomad = new Agents( 2, "Nomad", null,
13 land, nNomads );
14 // define the four neighbors of each cell
15 —
16 // now go into a cyclic simulation
17 for ( int time = 0; time < maxTime; time++ ) {
18 // decide the next destination
19 nomad.callAll ( computePosition_ );
20 // move agents
21 nomad.manageAll ( );
22 }
23 MASS.finish ( ) ;// finish MASS
24 }
25 }
26 public class Nomad extends Agent {/ the Nomad agent
27 Random rand = new Random( );
28 Object computePosition( Object arg ) {
29 // decide a neighboring place to visit
30 int[] dest = new int[index.length];
31 dest [0] = index[0] + rand( 2 );//from current x to new x
32 dest[1] = index[1] + rand( 2 ) ;/from currenty to newy
33 migrate ( dest ) ;/ actual migration invoked by nomad.manageAll
34y}
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Fig. 4. Random walk code and simulation space.

file machinefile.txt, launches a slave process on each remote
host through JSCH in Java or libssh2 in C++. After all the
remote processes have been launched, each process (including
the master process that runs a user’s main() function) creates a
pool of worker threads. Finish() sends a termination message
to all slave processes that terminate their worker threads and
close all TCP connections for a graceful exit.

B. Places Implementation

For each of the following Places functions, the master
process sends the corresponding command to all slaves, each
waiting on a different remote node.

Places constructor: sends a different sub-range of a new
shared array to each slave. All master and slave nodes then
create their own array partition with the given range.

callAll/Some(): sends a function identifier, place element in-
dices, and arguments to each slave process. All master and
slave nodes then invoke the given method of the specified place
elements. The return value of this method may be sent back
to the master node after all executions have been completed.



exchangeAll/Some(): sends each slave a function identifier and
a collection of destinations to invoke the function. All master
and slave nodes execute local exchanges first. If a destination
is outside of the local node, this exchange request is wrapped
in a message and queued up on a hash map with the host
name to which this message must be delivered. At the end of
the local data exchange, each slave sends a different hash map
to the corresponding remote slave that handles these remote
exchange requests.

C. Agents Implementation

In the same as the Places implementation, the master
process sends all slaves a command to invoke callAll() and
manageAll().

callAll(): is similar to Places.callAll() in a way that a slave at
each remote node receives a function identifier and arguments
from the master node, and invokes the given method of the
specified Agents.

manageAll(): is invoked to complete Agent’s actions such as
migrate(), spawn(), and kill() in a batch. At each of the master
and slave processes, the worker threads pick up one after
another agent from the Agents’ pool to complete its action.

e migrate(): given a set of coordinates, the agent
will migrate to the destination upon the next man-
ageAll() call. This method transmits agent states for
re-instantiation to the destination host. As opposed to
Places.exchangeAll() where communications are two-
way, agent.migrate() moves agents from their local
host to destination host but not the other way around.
If there are no agents to migrate, each slave node sends
a simple acknowledgement byte to the destination
host, signaling that no remote migration needs to be
performed to avoid being blocked on read().

e spawn(): dynamically creates any number of dupli-
cates of the calling Agent at the current Place element.

e  kill(): simply sets a calling Agent’s alive flag to false,
so that the next manageAll() call de-allocates all the
agents with the false alive flag.

V. PROGRAMMABILITY ANALYSIS

This section analyzes the programmability of the MASS
library in both spatial and multi-agent simulations.

A. Spatial Simulation

In addition to Wave2D shown in Figure 3, we consider
a more practical spatial simulation. BrainGrid is a neural
network simulator that imitates the growth of electrical acti-
vation and synapses among neurons that are placed in a given
square space [15]. The simulation ultimately examines the
neural spike and radius history of many different layouts, each
mixing endogenously active, inhibitory, and neutral neurons, A
simulation run proceeds as a sequence of 100 second segments
(epoch), during each of which synaptic strengths are computed
for all pairs of neurons based on an overlap of their round-
shaped connectivity regions, and the status of neurons and
synapses is updated. At the end of each epoch, each neuron’s
average firing rate is calculated based on its spike history

and used to adjust its neurite outgrowth in 300-600 epochs
long (i.e., 30,000-60,000 seconds). A single-threaded 60,000-
second simulation of 100 x 100 network takes 2,000 hours
(83 days). BrainGrid can be parallelized with only MASS
places as shown below to distribute a network of N x N
neurons over multiple computing nodes. Each “neuron” place
maintains synapses dynamically emanating from it, using a
vector of neighbors to be passed to exchangeAll() at run time.
The following MASS code abstracts synapse inputs converged
onto adjacent neurons.

1 Places neurons = new Places(l, "Neuron", arguments, N,N);
2 Vector<int[]> neighbors = new Vector<[]>( );

3 int[] synapse = { ... }; neighbors.add( synapse );

4 neurons.exchangeAll ( 1, Neuron.Synapselnput, neighbors );

Based on the code inspection of both Wave2D and Brain-
Grid, the MASS library has the following four merits: (1)
machine-unaware data distribution and collection to map the
Wave2D and BrainGrid spaces over cluster nodes automati-
cally, (2) no explicit ghost space management to allow each
Wave2D element to receive its neighbors’ information through
exchangeAll(), (3) machine-unaware logical network creation
to support the dynamic growth of BrainGrid’s synapses with
the “neighbors” parameter given to exchangeAll(), and (4) no
explicit for-loop parallelization to invoke a given function of
all array elements in parallel.

B. Multi-Agent Simulation

In addition to RandomWalk described in Figure 4, we
examine FIuTE, a stochastic influenza epidemic simulation
model [2] as a publicly available multi-agent simulation. It
synthesizes populations, each corresponding to the year-2000
Census tract that is evenly subdivided into communities of 500-
3000 individuals. One to seven individuals form a household
where influenza is transmitted most often. Individuals are
also categorized into preschool-age/school-age children and
non-working/working adults. Workers are divided into non-
migrant and migrant workers, the latter of whom travel across
communities. An unmitigated epidemic simulation with 10
million people requires 800MB memory and takes about 2
hours [2]. The following shows a MASS-parallelized program-
ming framework of FIUTE: a Places forms a collection of
communities (line 1); an Agents populates people over the
communities (line 2); and thereafter MASS starts a cycle
simulation (lines 5-11). In each cycle, the agents calculate
their daytime susceptibility and infection in day() (line 6),
migrate to a different community in manageAll() (lines 7 and
9), and transmit infection among their family in night#() (line
8). The places respond to epidemic such as school closure and
vaccination in response() (line 10).

Places comm = new Places(l, "Community", size);
Agents people=new Agents (2, "Person", comm, population);
Vector<int []> neighbors = new Vector<int[]>( );
int[] traffic = { ... }; neighbors.add( traffic );
for ( int time = 0; time < maxTime; time++ ) {
people.callAll( Person.day );
people.manageAll ( );
people.callAll( Person.night );
people.manageAll ( );
10 comm.callAll ( Community.response );
11 comm.exchangeAll ( 1, Community.exchange, neighbors );

O 001\ W W —

For multi-agent simulations such as RandomWalk and
FIuTE, the MASS library facilitates the following features:



(1) automated agent migration to packetize and transfer agents
with Agnets.manageAll(), (2) guarded agent migration to avoid
agent collision on the same place in RandomWalk or com-
munity in FIuTE with Agent.migrate() that receives a list of
multiple destinations and choose an available place, and (3)
agent propagation and distributed termination to duplicate
an agent, propagate its copies to all the neighboring array
elements, and clean up all terminated agents with just one
Agents.manageAll().

C. Summary

The above code analysis demonstrates that the MASS
library successfully addresses the four problems we listed in
Section III: (1) individual-based design: facilitating bottom-up
agent and space design; (2) machine unawareness: relieving
developers from parallelization; (3) ghost space management:
reading and updating adjacent boundaries of remote spaces;
and (4) system-level agent management: allowing application
developers to focus on designing agent behavior. Furthermore,
an additional advantage of the MASS library is a clear sep-
aration of the simulation scenario from the simulation mod-
els. The main() function in both Wave2D and RandomWalk
works as a scenario that introduces necessary models, instan-
tiates/constructs entities, and controls their interaction. This
separation allows application developers to focus on each
model design.

VI. EXECUTION PERFORMANCE

At present we completed the MASS library in Java and
verified its functionalities through a pilot use in our regu-
lar course at University of Washington Bothell [16] where
students developed simple applications including Wave2D,
RandomWalk, and Conway’s game of life. Since we are
currently porting MASS to C++ platforms, the following
performance evaluation was conducted with the Java version
in terms of the following five test items: (1) identification of
the minimum problem size necessary for parallelization, (2)
the minimum place computation granularity, (3) the minimum
agent group size, (4) spatial simulation performance using
Wave2D and Conway’s game of life, and (5) multi-agent
simulation performance using RandomWalk. Unless otherwise
specified, the following evaluation was conducted on a Gigabit-
Ethernet cluster of nodes, each equipped with dual 3.2 Xeon
GHz Intel processor with 1 GB memory. The master node has
an Intel Xeon E5520 processor with 6 GB of memory.

A. Problem Size

Figure 5 determines the minimum MASS simulation space
that can benefit from multithreaded multi-process simulation
on top of a cluster system. This test was conducted for 1000 it-
erations while the simulation size increases from 1002 to 5002.
Each iteration contains a single callAll() and exchangeAll(),
each computing a floating-point multiplication. For mimicking
many applications that check on-going computation, the test
collected intermittent computation at the main() program every
10 iterations. The results showed that a 500 x 500 or larger
space was necessary to compensate repetitive data collection
overheads.
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Fig. 5. Problem size for multi-threaded and multi-process computation
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B. Place Granularity

Based on the previous test, we used a 500 x 500 grid for
investigating the minimum computation granularity of each
Place to obtain scalable performance. We observed callAll()
and exchangeAll() separately. Figure 6 shows the execution
performance of callAll(). The computation increased from 1
to 100 floating-point multiplications in callAll(). The result
demonstrated typical embarrassingly-parallel performance.

Figure 7 shows the callAll() performance where the in-
termittent results are collected by the main() program every
10 iterations. We increased callAll() computation granularity
from 1 to 500 floating-point operations. Obviously, due to
repetitive data collection by the main() program, we need
100 computation in each callAll() when returning intermittent
results to the master node.

The exchangeAll() performance was evaluated using the
same criteria as callAll(). Figure 8 shows that performance
increase was not as observable as the increase gained from
callAll() due to the fact that each exchangeAll() involves
communication with the nearest neighbors. However, the result
indicates that exchangeAll()’s minimum computation granular-
ity is 100 floating-point multiplications as well.

C. Agent Group Size

We examined to see how many agents are necessary for
parallel simulation. The test included 1000 iterations on a
500 x 500 grid with agents evenly distributed. Each iteration
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contains an Agents.callAll() with only one floating-point multi-
plication and an Agent.migrate() call. Intermittent results were
collected at the master node once every 10 iterations. Figure 9
shows that the MASS library needs 300,000 fine-grained
agents, (i.e., 1.2 agents per place) to yield scalable computation
with up to 16 cluster nodes. This means that Agent.migrate()
is much lighter than Places.exchangeAl() that requires 100
floating-point computation per place. This is because agent
migration involves only one-way communication from a source
to a destination.
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# 1 2 3 4

1 4642 4321 4421 4367
Fiocs 2 7486 5585 56.60 56.42

3 63.04 4719 4586  44.16

4 64.82 4394 4347  40.92
Fig. 11. Performance of Conway’s game of life

D. Performance of Spatial Simulation

The first application is Wave2D. The test was conducted
with a 1500 x 1500 grid for 1000 iterations, (each contain-
ing callAll() and exchangeAll() as shown in Figure 3). The
master node collected intermittent results of the simulation
every 10 iterations. Figure 10 demonstrates the total execution
performance of Wave2D with 4 to 23 cluster nodes. In this
application, the benefit of distributed memory became apparent
as a 1500 x 1500 simulation size requires a huge memory
space. Although the performance scaling is slower than ideal,
the performance gain with additional nodes is still observed.
This demonstrates the competitive performance of a typical
application where the user demands near real-time update on
the simulation.

The second application is Conway’s game of life (simpli-
fied as Life in the discussions below) that creates a 2D grid
of square cells, (i.e., places in MASS), each alive or dead
based on its neighbors: live cells under 2 live neighbors die,
live cells with 2 or 3 live neighbors live on, live cells over 3
live neighbors die, and dead cells with 3 live neighbors come
alive. The code structure is the same as Wave2D in containing
callAll() and exchangeAll(). We used four computing nodes,
each with two 1.8GHz dual-core AMD Opterons and 1MB
memory to simulate 100 generations of Life over a 600 x 600
grid. Despite that Life’s computation granularity was much
smaller than Wave2D, Figure 11 shows that its execution
performance was scalable with up to 4 nodes with 4 cores,
(i.e., 16-way parallelization).

E. Performance of Multi-Agent Simulation

We used RandomWalk (see Figure 4) for evaluating the
execution performance of multi-agent simulation. The test was
conducted by iterating migration of 300,000 agents over a
500x 500 grid for 1000 simulation cycles to identify scalability
requirements. Figure 12 demonstrates the performance with
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1 to 16 cluster nodes. The blue bars (i.e., bars on the left)
show the execution performance of RandomWalk where each
iteration executes Agents.callAll(), Agents.manageAll(), and
Places.callAll() as collecting results every 10 iterations. On
the other hand, the red bars, (i.e., bars on the right) show
the performance when we added Places.exchangeAll() to each
iteration for updating neighboring place information, which
thus incurs additional communication overheads. The results
demonstrate that even with frequent information exchange
among cluster nodes, the performance increase was noticeable
when more computing nodes were added to the simulation, and
in all cases, multiple computing nodes outperformed single
computing-node performance even with such fine grained
computation.

FE Summary and Comparison with Other Systems

Based on all the performance results, the minimum con-
ditions to benefit from automatic parallel execution using
the MASS library are: (1) 500 x 500 places, (2) 300,000
agents, and (3) 100 floating-point operations required per
exchangeAlll() or callAll(), both returning values to the calling
place.

Once the MASS C++ version is complete, we will be able
to compare it with GlobalArray [9] and Repast HPC [13], each
representing a distributed array and a multi-agent simulation
system. Both systems are implemented on top of MPI that
is an additional communication layer and thus can be a
substantial overhead. In contrast, the MASS C++ version is
being implemented, directly using low-level system calls, and
therefore it will be able to run with less overheads.

VII. CONCLUSIONS

In this paper, we elaborated the programming advantages
in using the MASS library for spatial and multi-agent sim-
ulation: individual-based design, machine unawareness, read-
able/writeable ghost spaces, and system-level agent manage-
ment. Our performance evaluation of the Java version of the
MASS library demonstrated the CPU scalability of MASS
applications with 300,000 fine-grain agents on a 500 x 500
grid. While the Java version (coupled with the JSCH jar file)
is portable to any JVM-available machines, we understand

that it does not outperform native execution. Therefore, we
are currently developing two versions of the MASS library
to support C++ and CUDA-based Nvidia GPUs. In the near
future, we hope to combine the C++ and CUDA/OpenCL
versions to be able to utilize a cluster of computing nodes,
each having a high performance GPU. We are also planning to
port BrainGrid and FIuTE to MASS for purpose of analyzing
its practical execution performance.
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