Agent and Spatial Based Parallelization of
Biological Network Motif Search

Matthew Kipps,

Wooyoung Kim,

Munehiro Fukuda

Computing & Software Systems
University of Washington Bothell
18115 NE Campus Way, Bothell, WA 98011
{ matkips, kimw6, mfukuda } @uw.edu

Abstract— Most graph algorithms are challenging in par-
allelization, in particular executing fine-grain computation at
each graph node in parallel from both programmability and
performance viewpoints. To bridge the semantic gap between
the original sequential algorithms and their corresponding par-
allelized programs, we have been developing MASS: a parallel
library for multi-agent spatial simulation. The library allows
software agents to crawl a distributed array, e.g., a graph mapped
over a cluster system. To demonstrate the MASS library’s fitness
to graph parallelization, we have focused on biological network
motif search. This paper compares MASS agent-based and the
conventional MPI/OpenMP parallelizations, and discusses the
MASS library’s applicability to graph algorithms.

I. INTRODUCTION

Graph algorithms, including information diffusion, sub-
graph and path finding, page ranking, and clustering can
quickly exceed computing resources provided by a single
computer and thus need parallelization for scaling up their
problem size. It would be nice for developers to intuitively
parallelize their graph programs using breadth-first search or
exhaustive graph crawling, where computation at each graph
node is executed in parallel by a different processor. However,
such parallelization is not always intuitive, and does not
always work effectively due to the nature of each node’s
fine-grain computation and hence with considerable overheads
incurred by inter-node transitions of computation. Therefore,
parallelization of graph algorithms in many cases ends up
requiring drastic modification and tune-up of their sequential
versions, using the conventional parallel-computing techniques
such as multithreading and inter-process communication. This
is a huge programming barrier to non-computing specialists.

Our research seeks to bridge this semantic gap in graph
parallelization by mapping a graph to a cluster of computing
nodes and walking a mega number of agents through the graph.
We facilitated this agent-based graph algorithm with MASS, a
parallel library for multi-agent spatial simulation. This paper
intends to demonstrate the fitness of agent-based approach
to graph parallelization, focusing on biological network motif
search in particular finding all subgraphs in a target network.

II. BACKGROUND

This section overviews network motif search, and differen-
tiates our agent-based parallelization from related work.

A. Network Motifs

In the study of systems biology, there is interest in finding
network motifs to examine how the molecular level of infor-
mation relates to the system level. For example, biologists
can model protein-protein interaction (PPI) networks as a
set of interactions (edges) between proteins (vertices). This
model can then be analyzed with motifs network, which
might provide insight into connections between the molecular
biology and systems biology.

A network motif is a significantly and uniquely recurring
connected subgraph pattern within a target network [1]. Net-
work motif finding is the process of determining these motifs
through enumeration of subgraphs and statistical testing for the
uniqueness of the subgraph pattern in random graph pools. In
this paper we are focusing primarily on finding all subgraphs
in the target network. We use the ESU (Enumerate Subgraph)
algorithm [2] to efficiently traverse the target network to find
all subgraphs of a given order. As shown in Fig. 1, to find all
subgraphs with size k, ESU gets started with each vertex, v
of a given graph (line 01), groups all vertices reachable from
v as VEgtension (line 03), chooses a vertex w from this group
to create an ongoing subgraph Vsypgrapn (line E3), regroups a
new extension, Vf,_,..... . reachable from Vgypgrapn (line E4),
and recursively performs creating a subgraph and regrouping
a new extension until the subgraph size reaches k£ (line E1).

Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU)
Input: A graph G = (V, E) and an integer 1 < k < |V]|.
Output: All size-k subgraphs in G.

01 for each vertex v € V do

02 VEstension < {u € N({'U}) Lu> ’U}

03 call EXTENDSUBGRAPH ({v}, Viutension, V)

04 return

EXTENDSUBGRAPH(Vsubgraph, VEstensions V)
E1 if |Vsubgraph| = k then output G[Vupgraps] and return
E2 while VEztension 7£ @ do
E3 Remove an arbitrarily chosen vertex w from Vegtension
E4 Vﬁmension — VE‘ztension U {U € Nezcl(w: VSubymph) tu > ’l)}
B5 call EXTENDSUBGRAPH(Vsusgraph U {w}, Vissronsions V)
E6 return

Fig. 1. The Enumerate Subgraph (ESU) algorithm [2].

B. Parallelization Approaches

Finding all subgraphs is an exponentially complex cal-
culation with respect to the size of motif and size of the

target network. First, the isomorphic testing is NP complete.
Additionally, the number of non-isomorphic motifs grows
exponentially with the size of the motif. For example, the
number of size 10 undirected-non-isomorphic graphs reaches
11,716,571. [1]. Therefore, parallelization is a promising ap-
proach to finding subgraphs.

Most graph parallelization work has taken vertex-oriented
approaches. MapReduce [3] performs computation at all ver-
tices in parallel and thereafter combines the results from all
the vertices, using the map() and reduce() functions respec-
tively. Iterative MapReduce is required for some applications
including page rank and shortest path search to repeat multiple
steps, each forwarding the current computation at each vertex
to its neighbors for the next step. Intermediate results must be
sorted from map() to reduce() and fed back from reduce() to
map(), which is considered a substantial overhead. Pregel [4]
partitions a given graph into subgraphs, each allocated to a
different worker machine that invokes the compute() function
at all vertices within the given subgraph to update their states.
Similarly to MapReduce, such updates must be diffused to
neighboring vertices if applications consist of multiple compu-
tation steps, (i.e., called super-steps in Pregel), for whose pur-
pose each vertex must exchange messages with their neighbors.
GraphLab [5] is based on asynchronous distributed shared-
memory paradigm that allows graph algorithms to access their
local and adjacent vertices along their edges. No message
send/receive or separate map/reduce functions are required.
Therefore, algorithm designers can focus on their program
development, isolated from data movement.

Contrary to these vertex-oriented approaches, flow-oriented
approaches would work more intuitively for information dif-
fusion or subgraph/path search, where algorithm designers
write their programs from a car driver’s viewpoint, in other
words: as if computations drive from one to another vertex.
Olden [6] facilitated thread migration over a graph distributed
on top of a cluster system. Its threads can traverse a graph
in parallel by cloning themselves upon encountering a vertex
with multiple branches, using the futurecall() function. Since
a new thread spawns along each edge, a large graph would
results in considerable thread management overheads.

To remove these thread-incurred overheads, we modeled a
graph as a distributed adjacency matrix and replaced migrating
threads with mobile objects named agents that carry only their
data members. Such agents can instantly jump to their next
array element, (i.e, a vertex) for updating the vertex state,
and migrate to a remote cluster node with other agents in an
aggregated message. The next section describes this system.

III. MASS LIBRARY

The MASS library is a parallelization tool designed for
Multi-Agent Spatial Simulation [7]. It uses a set of multi-
threaded communicating processes that are forked across a
cluster of computing nodes, using JSCH in Java and libssh2 in
C++. MASS is designed around two key concepts: Places and
Agents. Places is a multi-dimensional array of elements that are
allocated over a cluster of multi-core computing nodes. Each
element of a Places array is called a Place. Agents are a set of
execution instances that can reside at a single place, access its
public data/method members, migrate to other places, spawn

child agents, and interact with other agents. A user designs a
program by extending the Place and Agent base classes and
specifying some behavior. Actual computation is performed
between MASS.init() and MASS.finish(), using the following
major methods, each performed in parallel.

Places Class

public Places(int handle, String className, int size...)

instantiates a shared array with size from className.

public Object[] callAll(int functionld, Object[] arguments)

calls the method specified with functionld of all elements as passing
arguments[i] to element[i], and receives a return value into Object[i].
public void exchangeAll(int handle, int functionld, Vector<int[]>
destinations)

calls from each element to a given method of all neighbors, each
indexed with a Vector element, and exchanges data among the elements.
Place Class

private size[]; private index[]

maintains the size of the shared array that each element belongs to and
the index of each array element.

Agents Class

public Agents(int handle, String className, Places places)

populates agents from className onto a given places.

public Object callAll(int functionld, Object[] arguments)

is the same as Places.callAll().

public void manageAll()

updates each agent’s status, based on its latest calls of migrate(),
spawn(), and kill(). These methods are invoked within callAll().

Agent Class

migrate(int[] index...); spawn(int nChildren); kill()

moves a calling Agent to a place specified with index, spawns children,
and terminates the agent respectively.

IV. PARALLELIZATION

Our parallelization work focuses on finding all subgraphs.
In the following, we examine three different parallelization
approaches: (1) MASS agent-based, (2) MPI-based, and (3)
MASS place-based parallelization. All parallelization work has
been done in Java to maintain the compatibility with other
graph-computing tools that we have used.

A. MASS Agent-based Parallelization

To parallelize subgraph finding with MASS agents, we
define a Place subclass, GraphNode, as well as an Agent
subclass, GraphCrawler. Each GraphNode represents a node
(vertex) of the target network and maintains its emanating
edges as an adjacency list. It also stores any subgraphs
deposited by crawlers. On the other hand, each GraphCrawler
represents an agent that will find a single subgraph enu-
meration within the network. This GraphCrawler behavior
is described with pseudocode in Algorithm 1. Whenever a
crawler has more than one choice to make, it spawns as
many clones as additional choices, and each clone follows a
branch. When a crawler completes its subgraph, the subgraph
is collected at the GraphNode, and the crawler is terminated.

Fig. 2 shows the main program that initializes a single
GraphCrawler at each GraphNode (lines 6-9), and updates
the crawlers using callAll() (line 12) followed by manageAll()
(line 13) until there are no more remaining GraphCrawlers.
As described in section III, Agents.manageAll() updates
GraphCrawler objects based on any calls to migrate(),
spawn(), or kill(). When all crawlers are terminated, the
subgraphs can be collected from the GraphNode objects (line
16), grouped into a single collection, and sent to labelg that
groups subgraphs (line 18).

Algorithm 1: The pseudocode for the GraphCrawler crawl()
method, which finds a unique subgraph within the target network.

node = current GraphNode;
add node to subgraph;
if subgraph is complete then
send subgraph to node;
// deposit it to node
kill(); // terminate crawler
else
update extension set per ESU algorithm;
size = size of extension set;
if size is O then
// no more nodes to migrate to
kill();
else if size is I then
| migrate to extension[0];
else
for i = 1; i < size; i + + do
| spawn clone at extension[i];
end
migrate to extension[0];

end
end

1 import MASS.=*;
2 public void main(String[] args) {
3 Graph input = ...; create graph object
4 MASS.init (args); / start MASS
5 // initialize simulation collections
6 Places graph = new Places ("GraphNode",
7 input.size());
8 Agents crawlers = new Agents ("GraphCrawler", graph,
9 input.size());
10 // enumerate subgraphs
11 while (crawlers.nAgents() > 0) {
12 crawlers.callAll (crawl_);
13 crawlers.manageAll () ;
14 }
15 // collect the results
16 Object[] results = graph.callAll (getSubgraphs_);
17 MASS.finish () ; // finish MASS
18 . .; / use labelg to get isomorphs
19
Fig. 2. MASS agent-based parallelization

B. MPI-based Parallelization

The MPI-based implementation uses mpiJava [8] and Java
threads to parallelize subgraph finding by partitioning the
sequential approach to the ESU algorithm at the root subgraph
level. For p processes across a cluster, given a target network of
order n, each process is given a partition of n/p root vertices.
Essentially, we parallelize the outer for-loop in Fig. 1.

Fig. 3 shows the simplified main program. After parsing
the input file at rank O (line 3), MPI. COMM_WORLD.Bcast()
distributes the network graph in its entirety throughout the
cluster (line 6), such that there exists one copy of the network
graph in memory at each cluster node. Each node determines
the local partition using MPI.COMM_WORLD.Rank() and the
size of the network graph. The partition for each cluster node
is then dynamically distributed to the local computational
threads at that cluster node. Each thread picks up an available
root vertex from the local cluster node partition, and then
extends all subgraphs from that root using a standard sequential
ESU approach (lines 7-8). Whenever a subgraph is completed,
it is saved in a synchronized collection. After enumerating
all subgraphs for its partition, each cluster node uses labelg
locally to get the isomorphism classes of the subgraphs,

1 import mpi.s*;

2 public void main(String[] args) {
3 Graph input = ...; // create graph object
4 MPI.Init (args);

5 // distribute graph across the MPI cluster
6 MPI.COMM_WORLD.Bcast (input, masterRank);
7 .. .; // start threads
8 . ..; // join on threads
9

Map<String, Integer> isomorphs = ...; / from labelg

10 Object[] allIsomorphs =
11 new Object [MPI.COMM_WORLD.Size()];
12 MPI.COMM_WORLD.Gather (isomorphs, allIsomorphs,
13 masterRank) ;
14 MPI.Finalize();
15
Fig. 3. MPI-based parallelization

and then transfers the set of isomorphism classes to rank 0,
using MPIL.COMM_WORLD.Gather() (line 12). At rank 0, the
isomorphism classes are aggregated.

C. MASS Place-based Parallelization

We implemented a third version of parallelization of
subgraph finding, which used only MASS Places to mimic
the concepts of the MPI-based implementation. Because the
MASS library partitions Place objects evenly across the threads
of a computing cluster, we can use this characteristic to
distribute the work similar to MPI. We defined a simple Place
object that represents a single iteration of the ESU for-loop
(the outer loop of the algorithm in Fig. 1). The MASS place-
based implementation of the ESU algorithm is almost identical
to that of the MPI-based program. However, at the user
level, the program does not implement any multi-threading or
synchronization management that are supported by MASS.

V. EVALUATION

In the following, we will compare MASS and MPI in terms
of programmability and execution performance.

A. Programmability

We discuss the MASS programmability cover the following
three measures: (1) Separation between algorithm and par-
allelization logics: The MASS library provide an easier object-
oriented conceptual model for graph applications with MASS
Place and Agent classes. On the other hand, MPI provides
only communication utilities. The lack of abstraction also
makes it harder to maintain clear separation of parallelization
logic and algorithm logic. Particularly in the Java environment,
the MPI-based version cannot use OpenMP for automatic
loop parallelization. (2) Intuitive flow-oriented approach to
implement graph algorithms: MASS agents facilitate the
best intuitive programming model to implement graph algo-
rithms such as information diffusion or subgraph/path search.
Algorithm designers write their programs from a car driver’s
viewpoint, in other words: as if computations flows from one to
another vertex. On the other hand, the MPI- and MASS place-
based parallelizations are based on vertex-oriented approaches,
where they perform examining vertices one after another from
VEatension- (3) Flexibility in optimizing graph algorithms:
MPI provides a high degree of flexibility that allows algorithms
to make specific optimizations. In MASS, we sacrifice the
ability to implement behavior such as local and global dynamic

network partition. Furthermore, it is difficult to control the rate
of crawler creation, which leads to the memory issues that
impact performance.

Overall, we feel that MASS eases parallelization of graph
algorithms with an intuitive programming framework.

B. Execution Performance

For performance analysis, we used a cluster of 16 com-
puting nodes, each with 4-core 3.40GHz CPU (Intel i7-3770)
and 16 GB memory. Figs. 4, 5, and 6 shows that MASS agent-
based implementation struggles to parallelize within the cluster
environment, whereas both MPI-based and MASS place-based
implementations demonstrate desirable parallelization charac-
teristics. The primary problem is an explosion of agents, which
results in poor memory usage. For the 2365-node network,
with motif size 4, there were over 400,000 subgraphs, and with
motif size 5, there were 5.5 million subgraphs. A significant
amount of time is spent allocating and freeing memory to
create or destroy these crawlers.

6000

Sequential
5000

4000

3000

Milliseconds

2000

1000

0 2 4 6 8 10 12 14 16
Cluster Nodes

Fig. 4. MASS agents’ performance. Network size is 2365; motif size is 4.

1200000
Sequential
1000000

800000

600000

Milliseconds

400000

200000

0 2 4 6 8 10 12 14 16
Cluster Nodes

Fig. 5. MPI’s performance. Network size is 5134; motif size is 5.

We are currently working on the MASS library’s perfor-
mance tune-up, particularly for its agent management: (1)
Asynchronous agent migration: MASS agents need a syn-
chronous Agents.manageAll() invocation for each cycle of their
actual duplication, termination, and migration. This implemen-
tation increases communication from the main program to
all remote MASS processes. Asynchronous migration without
invoking Agents.manageAll() mitigates this communication
overheads. Our latest experiment confirmed 2.5-time faster

1200000

1 2 4 Sequential

1000000

800000

600000

Milliseconds

400000

200000

[2 4 6 8 10 12 14 16
Cluster Nodes

Fig. 6. MASS places’ performance. Network size is 5134; motif size is 5.

performance than synchronous migration. (2) Pool of idle
agents: A numerous repetition of memory allocation and
deallocation kills multithreaded parallelization. Pooling idle
agents is expected to mitigate this repetition so as to use heap
space more effectively. (3) Restriction of agent explosion:
The current implementation does not terminate an agent even
when arriving at a place, (i.e., a vertex) that another agent has
already visited, which tends to explode the number of alive
agents. We will introduce an agent footprint to each place to
terminate agents that found another agent’s footprint.

VI. CONCLUSIONS

The MASS library can intuitively parallelize biological
network motif search, using an agent-oriented approach, how-
ever it still needs to improve its execution performance.
With the three techniques described in Section V-B, we
feel that the MASS library will serve as a promising tool
to parallelize graph algorithms intuitively with small per-
formance penalty. At present, MASS is internally available
at http://depts.washington.edu/dslab/MASS/ but will be
made available soon to the public.

REFERENCES

[1] W. Kim, M. Diko, and K. Rawson, “Network motif detection: Al-
gorithms, parallel and cloud computing, and related tools,” Tsinghua
Science and Technology Journal, vol. 18, no. 5, pp. 469-489, June 2011.

[2] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM Trans.
Comput. Biol. Bioinformatics, vol. 3, no. 4, pp. 347-359, Oct. 2006.

[3] Apache Hadoop, “http://hadoop.apache.org/.”

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proc. of SIGMOD’10. Indianapolis, IN: ACM, June
2010, pp. 135-145.

[51 Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab: A Framework fro Machine Learning
and Data Mining in the Cloud,” in Proc. of the 38th International
Conference on Very Large Data Bases, Vol. 5, No. 8. Istanbul, Turkey:
VLDB Endowment, August 2012, pp. 716-727.

[6] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
Dyanmic Data Structures on Distributed-Memory Machines,” TOPLAS,
vol. Vol.17, no. No.2, pp. 233-263, March 1995.

[71 T. Chuang and M. Fukuda, “A parallel multi-agent spatial simulation
environment for cluster systems,” in Proc. 16th IEEE International

Conference on Computational Science and Engineering - CSE2013.
Sydney, Australia: IEEE CS, December 2013, pp. 140-153.

[8] mpiJava, “http://www.hpjava.org/mpijava.html.”

