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Abstract—Graph streaming has received substantial attention
for the past 10+ years to cope with large-scale graph computation.
Two major approaches, one using conventional data-streaming
tools and the other accessing graph databases, facilitate con-
tinuous analysis of endlessly flowing graphs and query-based
incremental construction of huge graphs, respectively. However,
some scientific graphs including biological networks need to stay
in memory for repetitive but various analyses. Although a cluster
system, thus distributed memory can entirely handle a big graph
in memory, a challenge is substantial overhead incurred by
loading graphs into memory. A solution is hiding such graph-
loading and construction overheads with graph computation in a
pipelined fashion. We adapted this pipelining approach for agent-
based graph computing where thousands of agents traverse a
graph for finding its attributes and shape. We used the multi-
agent spatial simulation (MASS) library to implement the con-
cept. A huge graph is incrementally constructed in batches, each
spawning and walking agents over the corresponding subgraph,
and thus all eventually completing a given computation. We coded
and ran two MASS benchmark programs: triangle counting and
connected components, with which we evaluated our pipelined
graph processing. The best performance was obtained once the
batch size shrunk enough to fit cache memory, regardless of
the number of cluster nodes. For a single node execution of
connected components over a 140MB graph, our graph-pipelining
implementation performed 7.7 times faster than non-pipelining
execution. Its parallel execution with 24 cluster nodes achieved
8.3 times speed-up as compared to the pipelined single-node
execution.

Index Terms—graph streaming, multi-agent systems, parallel
graph computing, distributed memory, pipelined parallelization

I. INTRODUCTION

Data streaming with Spark, Storm, and Flink1 is the most
popular solutions to big-data computing when it comes to
handling plain text-oriented datasets, (e.g., tweet messages),
which are continuously produced, thus demanding spatial
scalability. However, it cannot smoothly support all scientific-
computing domains that prefer processing graphs such as
biological networks and social networks.

We observe two approaches to facilitating spatial scalability
of big graphs. One is borrowing the concept of conventional
data streaming, which is called graph streaming [1]. The other
is incremental graph construction with graph databases [2] and
run-time computation with their graph queries [3]. The former
benefits recommender systems [4] and fraud detection [5] as

1https://{spark,storm,flink}.apache.org

their entire graph views have no need to stay in memory
or disk. This corresponds to the Lambda architecture’s speed
layer. On the other hand, some scientific graphs such as biolog-
ical networks need to be incrementally updated in databases as
more research findings are published and will be re-analyzed
for their attributes and shapes [6]. This approach corresponds
to batch and serving layers in the Lambda.

However, big graphs in scientific computing may not always
fit to either of these two approaches. Consider biological
networks as an example. They have been academically shared
through public databases such as bioDBnet [7]. While these
databases accept basic network queries on vertices and edges,
(e.g., proteins and their reactions), topological and clustering
analyses of a given network must be performed by down-
loading the entire dataset to different graph analyzers such
as Cytoscape [8], most of which however run on a single
machine, thus difficult to scale up the graph size. If biologists
use graph streaming, (e.g, Spark micro-batch streaming) as a
speed-layer solution, they may have to address the so-called
watermark problem [9] for properly counting subgraphs laid
over batch boundaries. Since they tend to conduct different
analyses such as network motif searches with various degrees,
the same dataset must go through the speed layer repetitively.
On the other hand, if scientists use graph databases as a
batch/serving-layer solution, their graph dataset must be con-
verted into a given query language, mostly in openCypher [3].
Although graph databases facilitate incremental and scalable
graph construction, their disk-based implementations slow
down graph analysis.

Previously, we proposed agent-based graph computing
where a large graph was incrementally constructed in dis-
tributed memory and was analyzed in parallel by propagating
agents over the graph [10]. Our approach thus served as a
solution to speed up graph computing in batch/serving layers.
However, most graph datasets are described in unique formats
such as HIPPIE [11] and MATSim XML [12], almost non-
parallelizable but supposed to be read sequentially from top
to down.

To address this drawback, we added a graph-streaming
concept to our implementation: pipelining graph construction



and agent-based computation2 while maintaining a graph in
distributed memory and later logging it into disks. Our contri-
bution to the speed-up of graph computation is three-fold: (1)
overlapping file read and graph construction with actual agent-
based graph computation; (2) preventing a graph search from
traversing too deep in each streaming batch, which eventually
lowers the number of agents involved in computation; and (3)
effectively using cache memory by adjusting the batch to the
cache size, particularly for graph processing with 1-4 cluster-
computing nodes.

The rest of the paper is organized as follows: section 2
compares our approach with related work; section 3 details our
implementation techniques for pipelining graph construction
and computation in distributed memory; section 4 evaluates
our strategy with two graph applications, (i.e., triangle count-
ing and connected components); and section 5 concludes the
research outcomes and plans on our future tasks.

II. RELATED WORK

This section looks at related work from the following three
perspectives: (1) the background of our pipelined graph con-
struction and agent-based computation, (2) the position of our
approach in graph processing and streaming algorithms, and
(3) the differentiation from parallel graph-processing systems.

A. Background of Agent-based Graph Computing

In contrast to streaming text data to conventional big-data
tools, we feel that many scientific datasets, (e.g., NetCDF [13]
in climatology and HIPPIE [11] in bioinformatics), would be
better handled by maintaining their structure in distributed
memory and injecting software agents into them for repetitive
analyses. For this purpose, we applied our Multi-Agent Spatial
Simulation (MASS) library [14] to graph computing [10].
However, our biggest challenge was reading a big graph
data into distributed memory. For instance, the world largest
69GB biological network [15] needed 70 minutes just to
be read and distributed over 24 computing nodes [16]. It
is our motivation to mitigate graph construction overheads,
using graph streaming - reading a next batch of graph data
while processing the current batch. This strategy works easily
to batch-local computation such as degree centrality search.
On the other hand, stateful computation, (e.g., topological or
clustering analysis) needs to consider a so-called watermarking
technique that identifies every single subgraph lying over mul-
tiple batches. However, batch streaming with watermarking
does not work perfectly to all graphs whose size is unknown
and whose topology may include cycles. Therefore, rather than
depend on conventional data streaming such as Spark and
Kafka, we implement our own graph streaming feature with
the following two strategies: (1) streaming a graph in small
batches and incrementally constructing the entire graph over
distributed memory and (2) processing the current batch of
graph data in a pipelining fashion and revisiting the previous
batches if necessary.

2We use “graph pipelining” with conjunction of computation, for the
purpose of differentiation from continuous or micro-batch streaming.

B. Graph Processing and Streaming Algorithms

Besta et.al. distinguished streaming graph processing and
graph streaming theory in [1]. Below we compare our graph
pipelining approach with their categorization.

Streaming graph processing can consider the following four
processing styles:

1) Batch or stream analytics incrementally runs graph an-
alytics from scratch by streaming graph data to memory
(in batches). IncRDD [17] and IndexRDD [18] facilitate
this analytics by utilizing Spark streaming and by spe-
cializing Spark (immutable) RDD in variable memory
storage with Cuckoo Hashing [19] and Persistent Adap-
tive Radix Tree [20] respectively. Our graph pipelining
is implemented on top of the MASS library to overlap
graph streaming and processing. It focuses on only
incremental vertex/edge insertion during a pipelining
stage but later allows any graph modification once an
entire graph is mapped over distributed memory.

2) Graph databases and NoSQL stores maintain large
graphs in disks or memory and update their shapes
through consecutive database queries. Batch or stream
analytics are made available by linking a data-streaming
tool to query inputs of a given graph database, (e.g.,
Kafka to Neo4j [21] and Spark to RedisGraph [22]). In
contrast, our approach maintains a graph in distributed
memory, which can also save the current graph into
disks, using the MASS checkpointing feature [23].

3) Streaming processing of static graphs divides a static
graph into batches and streams each batch into memory
for per-batch computation. An example is a combination
of Spark Stream and GraphX [24]. Our graph pipelining
is similar to this approach in reading a static graph.
However, once an entire graph is constructed in memory,
MASS can accept any modifications on it.

4) Historical graph processing stores all past graph data to
be able to query the graph at any point in the past, which
in turn enables reverse graph streaming. An example is
Tegra [25] that stores an evolving graph in distributed
snapshots over time. The MASS library allows users
to take at most one copy of snapshot in the past but
automatically memorizes a history of library calls, from
which it reconstructs any past graph between the last
snapshot and the current computation [23].

On the other hand, graph streaming theory can consider the
following three algorithms:

1) Streaming graph algorithms slide a window from top to
bottom of a given graph-update scenario [26]. They carry
out edge insertions and deletions only within the current
window at once, from which the algorithms optimize the
memory usage and the response time as well as pursue
the accuracy of various graph queries/computations.
Our approach applies a similar sliding window model
to batched pipelining but focuses on only vertex/edge
insertion and single graph computation until the entire
graph is mapped over distributed memory.



2) Dynamic graph streams still bound the number of graph
updates per window but redo graph streaming over
multiple passes for the purpose of improving the com-
putational accuracy [27]. Our graph pipelining can look
beyond the current batch and thus cover a graph under
construction so far. This is a similar effect of sliding a
window back and forth.

3) Parallel dynamic graph algorithms accelerate modifi-
cation of a given graph by parallelizing updates per
window, which results in cost reduction per update [28].
Our approach reads a graph dataset sequentially but
overlaps the graph construction and computation in a
pipelining fashion. Furthermore, graph computation is
carried out with many agents in parallel.

C. Graph Steaming Systems

Below we narrow down the above-mentioned streaming
graph processing into three well-known systems, for each of
which we identify the mismatches between their features and
our needs.

1) Spark and GraphX [24] is the best fit to streaming a
static graph in its micro-batches if it needs to cover only
batch-local computation. However, incremental graph
construction creates a new RDD repetitively, which
deteriorates the execution performance and wastes mem-
ory space [10], [18]. Furthermore, stateful computation
requires to address watermarking over multiple batches.

2) Spark and RedisGraph [18] streams an input graph
into RedisGraph, an in-memory graph database. The
graph can be dynamically modified with queries in
Cyphers. The main drawback is scalability as it runs
on a single machine, thus not supporting distributed
memory. Furthermore, Abughofa et.al. in [18] reports
that Redis performs much slower in graph construction
than in retrieval.

3) Kafka and Neo4j’s streaming strategy [21] is similar
to but different from Spark and RedisGraph in running
Neo4j over a cluster system and thus using distributed
disks. This configuration supports spatial scalability.
However, the nature of disk accesses makes this Kafka-
Neo4j combination slower than all the other streaming
systems.

In summary, we believe that our graph-pipelining approach,
implemented on top of the MASS library, can complement
to what the other streaming systems are missing: speed-up of
incremental construction and analysis of a huge graph.

III. PIPELINED GRAPH PROCESSING IN MASS

Below we show our implementation of pipelined graph
construction and agent-based computation in MASS, followed
by a user-level code framework.

A. Design Overview

The MASS library is the platform of our agent-based
graph computing. It distinguishes two classes, Places and
Agents. The former constructs a multi-dimensional array of

Fig. 1. Incremental graph construction in MASS

elements, each called a place, over a cluster system. The
latter populates mobile objects, each named an agent that
autonomously navigates from place to place, thus over the
cluster. Their callAll, exchangeAll, and manageAll functions
invoke parallel method calls, message exchanges, and agent
status changes, (e.g., cloning, termination, and migration).

Derived from Places, GraphPlaces supports agent-based
graph computing where each vertex and its emanating edges
are managed with a place and its internal neighbors data
member [10]. During an instantiation, GraphPlaces reads an
input file and constructs the corresponding graph over a cluster
system. Thereafter, it can dynamically add a new vertex and
its edges with addVertex() / addEdge() or delete an existing
vertex and its edges with deleteVertex() / deleteEdge().

The original GraphPlaces implementation was a collection
of Places, (i.e., a list of arrays), each incrementally instantiated
in batches if more vertices are requested at run time. However,
repetitive operations of vertex insertion and deletion will
unbalance dynamic graph mapping over a cluster system.
Therefore, as shown in Figure 1, the current implementation
uses a collection of vector queues, each pair of which are
allocated to a different computing node: one for maintaining
active vertices (named VertexPlace) and the other for recycling
zombie vertices [16].

Figure 2 illustrates a workflow of reading each batch
from an input file into MASS. A user can determine the
batch size as the number of vertices to be read at once.
Once MASS completes the construction of batchi from a
given file, it starts graph computing for i in parallel, while
advancing to batchi+1’s construction. To cover large and/or
cyclic subgraphs laid over multiple batches, computation in
batchi may access batch0 through to batchi−1, all maintained
in distributed memory. In agent-based graph computing with
MASS, batchi instantiates agents within its range. Many of
them may complete their traverse or computation in the current
batch, whereas some may need to migrate to batchi+1. In that
case they are suspended until batchi+1 is made available.

B. File Preprocessing

File formats for graph descriptions depend on scientific-
computing domains. We pick up HIPPIE and MATSim XML,
each intended to describe biological networks and traffic
networks respectively.



Fig. 2. Workflow of graph pipelining in MASS

Fig. 3. A snippet of a HIPPIE file

In the HIPPIE format, each line of a file represents a protein-
to-protein reaction, thus an edge from one vertex to another.
These edges are enumerated randomly (as shown in Figure 3).
If a file is simply partitioned into batches from top to down, an
edge insertion in batchk may have to refer back to batchi and
batchj where i < k and j < k. This in turn means that batchi,
while it is being computed, may re-invoke graph computation
over its former batches.

In the MATSim XML, a file includes two sections: the
first section declares all road intersections as vertices, whereas
the second section enumerates all road segments from one
intersection to another, thus listing the corresponding edges.
Figure 4 partially captures sorted vertices and edges. However,
the MATSim format does not always guarantee such data
sorting and thus has the same problem as HIPPIE when being
streamed in batches.

To avoid repetitive computation over batches that have been
previously read into memory, we need to sort graph edges in
the order of their source vertex IDs or to cluster all vertices,
in advance of graph pipelining. As file preprocessing tools, we

Fig. 4. A snippet of a MATSim file

Fig. 5. Graph construction with an additional thread in MASS

use the GNU parallel and GNU sort tools [29]. The former
executes jobs in parallel. On the other hand, the latter sorts a
file by line numerically or alphabetically, using the merge sort
algorithm. The command to achieve this file sorting is parsort.
Since such file preprocessing incurs additional overheads to
graph pipelining, we will estimate its performance impact and
propose potential solutions later in Section IV.

C. Pipelined Graph Construction

The MASS library’s programming framework is based on
the master-worker model in that the master computing node
runs a user’s main() function and initiates Places / Agents
parallel computation, using callAll(), exchangeAll(), and man-
ageAll(), whereas all worker nodes remotely respond to these
parallel function calls, each acknowledged back to the master
node with barrier synchronization. This is the same as Spark’s
execution model that runs a user program on the master and
invokes its RDD transformation or action remotely.

To overlap graph construction with the above-mentioned
computation, we instantiate an additional thread called a
loading thread. As sketched in Figure 5, the loading thread on
the master node reads a given graph file in batches. It repeats
either creating new vertices and edges locally or sending
their information with a msg streaming tag to remote nodes.
To reduce the number of messages sent to remote nodes,
the loading thread locally caches vertex/edge information per
remote node and later sends it when the cache becomes full.

On each remote node, its main thread needs to distinguish
those tagged with msg streaming from the other computation-
initiating messages. Upon receiving a msg streaming message,
the main thread spawns a loading thread that takes charge of
graph construction. The main and loading threads share the
same TCP socket to send back their acknowledgments, each
marked with ack and ack streaming respectively, to the master
node.

Back on the master node, we implement another thread
called a listener thread that relays ack streaming messages
to the loading thread. Collecting ack or ack streaming from
all remote nodes, the main and loading thread advance to a
next batch of graph computation and construction process.

For each batch of graph construction, the loading thread
on the master node reads from a graph file as many lines as
the number of their source vertices reaches a user-specified



size. By exchanging msg streaming and ack streaming, the
master and worker computing nodes instantiate new vertices
and all edges emanating from each vertex. These edges are
connected to their destination vertex if they are located within
the range up to the current batchi. Otherwise, the destination
is temporarily created as an “incomplete” vertex. The loading
thread also provides a user with the smallest and largest vertex
IDs of the current batchi as its lower and upper boundary.

Figure 6 exemplifies a graph file that has been sorted in
the order of the source vertices. Given a batch size with
four, the entire file will be streamed in three batches, each
including vertices 0-3, 4-7, and 8-9 respectively. During the
graph construction, vertex 8 is marked “incomplete” in batch0

and still maintained as is in batch1; vertex 9 is marked
“incomplete” in batch1, too; but both vertices eventually
become “complete” in batch2.

These attributes are used to control agents. The current batch
allows agents to be spawned only in its range between lower
and upper boundaries. Each agent may complete its travel
and computation in the same batch, or may suspend itself on
an incomplete vertex. For instance, batch1 will suspend two
agents, one on vertex 8 and the other on vertex 9.

Fig. 6. An example of graph under construction

D. Pipelined Graph Computation
We customized the MASS-original Agent class into Graph-

StreamingAgent that supports the new agent behaviors in
pipelined graph computation: agent creation in a current
batch, agent computation below its upper boundary, and agent
suspension on incomplete vertices. For this purpose, this class
not only maintains the current lower and upper boundary
information but also implements the following two methods:

• currentPlaceBeyondBoundary(): informs the calling agent
if it is on an incomplete vertex.

• suspendComputation(): suspends the calling agent’s ex-
ecution, deposits its state on the current place, (i.e., the
current vertex), and kills the agent. It is called upon if (
currentPlaceBeyondBoundary()==true ).

Additionally, the Agents class, (i.e., a collection of Graph-
StreamingAgents) revises its constructor and implements the
resumeAgent() method as follows:

• Agents( ... long lowerBoundary, long upperBoundary )
populates new agents in the range between lowerBound-
ary and upperBoundary as well as calls resumeAgent().

• resumeAgent(): salvages agent states deposited on each
of all incomplete vertices and resumes as many agents as
necessary from these states.

At the beginning of each batched computing, the Agents
class populates a new agent on each vertex within the range
and additionally checks if the vertex marked with incomplete.
If so, resumeAgent() counts the number of agent states de-
posited on this vertex, instantiates the same number of agents,
reinitializes them with the the states salvaged, and resumes
their computation. As illustrated in Figure 7, if there are four
different agent states on a given vertex, four agents will be
created with each of the deposited states in addition to a brand-
new agent.

The original specification of Places.callAll() intends to
invoke a given function on all the vertices of a graph. To align
with the design of pipelined graph computing that processes an
available portion of the graph, a new callAll() method receives
the lower boundary and upper boundary of a current batch,
which calls only the vertices in the current batch.

Fig. 7. Agents creation and suspension on an incomplete vertex

E. User-Level Code Framework

The latest MASS implementation can handle HIPPIE and
MATSim XML formats to read a data file into memory. For
this purpose, HippieStreaming and MATsimStreaming classes
are extended from GraphPlaces. They have the following
methods:

• HippieStreaming()/MATSimStreaming(): opens a file.
• hasNext(): checks if there are more batches to read.
• next(): reads a next batch.
• get lowerBoundary(): returns the current lower boundary.
• get upperBoundary(): returns the current upper boundary.
• syncOneCycle(): advances to a next batch.
• close(): closes the graph file.
Using these methods, a graph application will be pro-

grammed in the MASS library’s code framework as shown in
Listing 1. After starting a MASS daemon on each computing
node (line 1), this program instantiates an HippieStreaming
object that opens a given file (line 2). Thereafter, it falls into
a while loop where each iteration checks if more batches
are available to read (line 3), and reads the next batch (line
4). Without waiting for this graph reading, the user program
can passes the range of the current subgraph to the Agents
constructor (lines 5-7). The agents object refers to not only
new agents but also those resumed from the suspension. The



user program then codes agent logic to analyze the subgraph
(lines 9-14). Listing 1 counts the number of triangles in the
graph by walking agents along an edge three times and by
adding up those who returned back to their source vertex. At
the end of each batch computing, the user program needs to
confirm the completion of the current batch streaming (line
16). The last two lines in the program close the file and
terminate all the MASS daemons.

Listing 1. Pipelined graph computation
1 MASS.init( ); // start MASS daemons
2 HippieStreaming hstreaming = new HippieStreaming( ... );
3 while ( hstreaming.hasNext( ) ) { // read a next batch
4 Hippie hippie = hstreaming.next( );
5 lowerBoundary = hstreaming.get lowerBoundary( );
6 upperBoundary = hstreaming.get upperBoundary( );
7 Agents agents = new Agents( lowerBoundary, upperBoundary );
8 // a user logic begins: triangle counting
9 for ( int i = 0; i < 3; i++ ) { // traverse on 3 edges

10 agents.callAll( onArrival, i );
11 agents.callAll( departure, i );
12 agents.manageAll( );
13 }
14 numTriangles += agents.nAgent( ); // sum up #active agents
15 // end of the logic
16 hstreaming.syncOneCycle( ); // advance to a next batch
17}
18hstreaming.close( );
19MASS.finish( );

IV. PERFORMANCE EVALUATION

To verify the correctness of and to evaluate the execution
performance of our pipelined graph construction and compu-
tation, we used two graph applications: triangle counting and
connected components. Both were previously coded by former
MASS developers [30], [31].

We used a cluster of 24 computing nodes, all connected to
1Gbps LAN and available at University of Washington Bothell.
Their machine specifications are summarized in Table I.

Two input graphs, each with 290MB and 140MB, were
generated randomly with our own software tool (called Graph-
Gen.java) and were saved in HIPPIE files. We determined
these sizes in order to complete both benchmark programs in
20 minutes when running them on a single computing node.
They includes 40K and 25K vertices, respectively.

TABLE I
CLUSTER-COMPUTING ENVIRONMENTS FOR PERFORMANCE EVALUATION

#machines #cores model memory cache
3 4 Xeon 5150 @ 2.66GHz 16GB 4MB
4 8 Xeon E5410 @ 2.33GHz 16GB 12MB
5 4 Xeon Gold 5220R @ 2.20GHz 16GB 35.75MB
12 4 Xeon Gold 6130 @ 2.10GHz 16GB 22MB

A. Triangle Counting

Triangle counting is a well-known social network bench-
mark that counts the number of triangle relationships among
network users as an indicator of their friendship degrees. As
shown in Listing 1, MASS walks an agent along a series of
three edges connected from one to another. Starting from each

Fig. 8. Agent-based triangle counting in graph pipelining
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Fig. 9. Execution performance of triangle counting in graph pipelining

vertex, for the first two steps, an agent propagates itself to all
the neighboring vertices with a smaller ID than the current
vertex. It gets terminated if there are no such neighbors. For
step 3, all remaining agents attempt to return along an edge to
their source vertex. A successful return results in discovering
a triangle.

As illustrated in Figure 8, we found that agent-based trian-
gle counting took advantage of our graph pipelining. Graph
construction grew to vertices with larger IDs, whereas agent
migration flowed down to those with smaller IDs, thus all
in distributed memory. Our performance evaluation took a
290MB HIPPIE file with 40K vertices where the average
degree of each vertex was 50. Our measurements distinguished
2K, 4K, and 8K vertices as its batch size. For each batch size,
the evaluation averaged three measurements of time elapsed
to complete triangle counting.

Figure 9 demonstrates effective graph-pipelining perfor-
mance of MASS-based triangle counting with up to 24
computing nodes. The smaller size a batch has, the faster
computation it achieves with single or two-way parallelization,
whereas the batch size does not matter with four or more ways.
This is because the graph with 40K vertices fit into the entire
distributed memory supported by 4+ cluster nodes.

Obviously, Figure 9 itself cannot say if this performance
improvement is brought by graph pipelining or by restricted



TABLE II
EXECUTION PERFORMANCE OF TRIANGLE COUNTING WITHOUT GRAPH

PIPELINING

# Computing nodes Execution time (sec)
1 Out of memory
2 Out of memory
4 890.422

graph growth. Therefore, performance measurements of non-
pipelining computation (by setting the batch size in 40K
vertices) are needed. Table II summarizes the non-pipelining
execution with 1, 2, and 4 cluster nodes. The memory overflow
with one or two cluster nodes results from the rapid growth
of agent population. This is because our graph pipelining can
ultimately construct the entire graph in memory with any of
2K-8K batch sizes. On the other hand, four cluster nodes allow
non-pipelining computation to complete in success. However
its performance is 2.3 times slower than the pipelining com-
putation with the batch size of 8K, (i.e., 890.422 versus
380.083 seconds). We believe that this is a positive evidence
of graph-pipelining effect. Below, we scrutinize it through our
measurement of “connected components”.

B. Connected Components

This graph algorithm is used frequently to identify groups
in a biological network and a social network. Our agent-
based solution is similar to BFS that picks up each unexplored
vertex and searches for its neighbors and all the descendants.
However, to prevent any divergence of agent population, we
allow agents to keep traveling to only vertices whose IDs are
higher than where the agents got started. Therefore, each group
of connected vertices is eventually ruled by only one agent that
started from the vertex with the lowest ID.

Figure 10 shows an example of three connected compo-
nents, each at last colored by agents 0, 3, and 6. The figure
also describes how the graph construction and computation is
pipelined:

• batch-0 computation: populates 5 agents, each at vertices
0-4 upon completing the subgraph construction. They
move toward vertices with a higher ID. Agent 3 rules
a group of vertices 3-4, whereas agents 0 and 1 are
suspended at vertices 5 and 9 respectively as they are
incomplete.

• batch-1 computation: populates another set of 5 agents,
each at vertices 5-9, and resumes agents 0 and 1. The
computation identifies agents 0 and 6 as winners: the
former beats out agent 1 and the latter takes over vertices
6-8.

• counting components: distinguishes three groups, each
colored with agents 0, 3, and 6 when all agents are
gone. We will collect these colors with HippieStream-
ing.callAll().

Figure 11 shows MASS parallelization of connected com-
ponents in a 140MB HIPPIE graph file that includes 25K
vertices. MASS demonstrates its CPU scalability with up to

Fig. 10. Agent-based connected components in graph pipelining
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Fig. 11. Execution performance of connected components in graph pipelining

24 computing nodes. Its trend in batch sizes and execution
time is the same as triangle counting: the smaller batch, the
better performance.

For the similar purpose as triangle counting, (i.e., to check
pipelining effects), we compared non-pipelining and pipelining
executions of connected components (see Table III). Non-
pipelining execution over 25K vertices fitted into a single
computing node’s memory. However, It performed 3.37 times
slower than the pipelining computation with the batch size
of 6K vertices. (i.e., 4085.260 versus 1213.205 seconds). We
also observed CPU and memory usages for both cases to
identify any suspicious overhead incurred by disk thrashing.
The resource usage summarized in Table IV did not find any
substantial difference between non-pipelining and pipelining
executions.

From our preliminary measurements on GraphPlaces [16],
50MB HIPPIE file reading and graph construction (thus
without performing any computation) takes only 2.5 seconds,
which in turn means that 140MB HIPPIE file would need
only up to 10 seconds. Therefore, it is inferred that our graph
pipelining on connected components mainly contributes to
the reduction of graph-computation time even on a single
computing node. We attribute this performance improvement



TABLE III
EXECUTION PERFORMANCE OF CONNECTED COMPONENTS WITHOUT AND

WITH GRAPH PIPELINING

# Computing nodes Batch size Execution time (sec)
1 Non-pipelining 4085.260
1 6K vertices 1213.205
1 4K vertices 902.164
1 2K vertices 532.133

TABLE IV
RESOURCE USAGE WHEN COMPUTING CONNECTED COMPONENTS

Pipelining VM Physical Mem %Memory %CPU
No 8.9GB 4.7G 30.6% 372.4%
Yes 8.8GB 4.7G 30.4% 331.9%

to cache memory usage. Consider the batch size of 2-6K
vertices respectively. This corresponds to 11.2MB-33.6MB of
the 290MB HIPPIE data and can be halfway or even fully
covered by the cache memory of most cluster nodes we used
(refer to Table I). The subgraph constructed in batchi remains
in cache and is ready for computation by agents in batchi+1.

For 4-way or more parallelization, the same effect by cache
memory usage keeps maintained regardless of batch sizes.
This is because all batches in 11.2MB-33.6MB, divided by
4 through to 24 cluster nodes, completely fit into the cache
memory.

C. Other Performance Considerations

Our implementation of graph pipelining assumes that a
graph dataset is sorted in the order of vertices. Our per-
formance evaluation does not consider sorting overheads of
290MB and 250MB HIPPIE files. This is because both are
completed in less than 20 seconds and therefore negligible
as compared to the entire pipelining execution. However, the
larger file we have, the more sorting overheads are incurred
in the order of sorting complexity: O(n log n).

As mentioned in Section III-B, our graph pipelining is based
on parsort for sorting input files in advance. Its execution
performance on larger files is summarized in Table V. From
the 40GB-file sorting performance, we can infer that sorting
the world largest 69GB biological network file would need
327 minutes in total by substituting 87min÷ 40GB × 69GB
for n in O(n log n). This is 4.7 times slower than the 69GB
(non-pipelined) graph construction in 70 minutes.

Obviously, sorting overheads can be removed by streaming
an unsorted graph file directly to our pipelining mechanism,
which however extends the range of edge insertions from

TABLE V
FILE SORTING PERFORMANCE OF THE PARSORT COMMAND

File size #lines Execution time (minutes)
2.5GB 120 million 1 min
26GB 1400 million 34 mins
40GB 2100 million 87 mins

the current batchi all the way back to batch0 rather than
limits such insertions within batchi. To address this extended
construction, our agent-based computation must instantiate
new agents not only in batchi but also on vertices in former
batches, all reachable through the newly inserted edges. This
re-invokes graph computation over these former batches. The
higher degree (= the more edges) each vertex has, the more
former batches agents need to recompute. As more and more
batches cannot fit into cache memory, its memory usage is
increasingly deteriorated toward the end of computation.

Needless to say, the degree distribution depends on appli-
cation domains. Considering biological networks in HIPPIE
and traffic networks in MATSim, their degree range would be
3-7. In general, biological networks are scale-free. According
to [32], scale-free networks’ average degree is 7 and 75%
of their nodes has a degree of 3 or less, while a few nodes
have a degree above 500. Most traffic network files including
MATSim describe an intersection as a vertex. We assume
that most vertices are 4-way intersections, (i.e., a degree
of 4). On the other hand, social networks have a much
higher degree. For instance, Ugander et.al. counted 99 as the
median friendships for Facebook global users [33]. Therefore,
for HIPPIE and MATSim graphs, we expect that our graph
pipelining implementation, even to be revised for streaming
unsorted graphs, will be able to run with acceptable graph
re-computation overheads.

Finally, we would like to mention about our former compar-
ison work between MASS and Spark in triangle counting [30]
and connected components [31], both evaluated with non-
pipelining execution. MASS performed triangle counting 6.6-
11.2 times faster than Spark with 1-8 cluster nodes, whereas
its computation of connected components with 2K vertices
was 3.8 times slower than Spark even with 7 nodes (49.298
versus 12.923 seconds). For the latter case, assuming that
Spark’s computing time grows in proportional to the number of
vertices, its time for 25K vertices would go up to 160 seconds
as compared to 137.591 seconds with the latest MASS version,
which makes our graph-pipelining competitive to Spark.

V. CONCLUSION

This research implemented graph pipelining in the MASS
library for the purpose of better supporting agent-based graph
computing with batched graph construction. Our achievements
are five-fold: (1) supporting biological networks in HIPPIE and
traffic networks in MATSim XML as input graphs; (2) running
and synchronizing a user program and a graph-constructing
thread in a stop-n-go fashion; (3) controlling agent instanti-
ations, suspensions, and terminations as shifting computation
from one batch to another; (4) demonstrating CPU and spatial
scalability of our graph pipelining implementation through
triangle counting and connected components; and (5) tracing
the best performing condition that happens when the size of
a batch or a subgraph distributed to a different cluster node is
small enough to fit into cache memory.

Our future work includes the following three items: (1)
supporting more different graph formats including the world



largest 69GB biological network file; (2) measuring MASS
graph execution with this 69GB file; (3) interfacing MASS
GraphPlaces to major graph databases through openCypher.
Finally, for more detail and trial uses, please visit our website
at http://depts.washington.edu/dslab/MASS.
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