Agent-Navigable Dynamic Graph Construction and
Visualization over Distributed Memory

Justin Gilroy, Satine Paronyan, Jonathan Acoltzi, and Munehiro Fukuda
Computing and Software Systems
University of Washington Bothell
Bothell, WA 98011
{jegilroy, sparon, jacoltzi, mfukuda} @uw.edu

Abstract—Some graph analyses, such as social network and
biological network, need large-scale graph construction and
maintenance over distributed memory space. Distributed data-
streaming tools, including MapReduce and Spark, restrict some
computational freedom of incremental graph modification and
run-time graph visualization. Instead, we take an agent-based
approach. We construct a graph from a scientific dataset in
CSYV, tab, and XML formats; dispatch many reactive agents on
it; and analyze the graph in the form of their collective group
behavior: propagation, flocking, and collision. The key to success
is how to automate the run-time construction and visualization
of agent-navigable graphs mapped over distributed memory. We
implemented this distributed graph-computing support in the
multi-agent spatial simulation (MASS) library, coupled with the
Cytoscape graph visualization software. This paper presents the
MASS implementation techniques and demonstrates its execution
performance in comparison to MapReduce and Spark, using
two benchmark programs: (1) an incremental construction of
a complete graph and (2) a KD tree construction.

Index Terms—multi-agent systems, agent-based modeling, data
analysis, data visualization, parallel programming

I. INTRODUCTION

In response to most demands for big-data computing, par-
ticularly in business, the major software tools such as MapRe-
duce [1], Spark [2], and Storm [3] have focused on streaming
unstructured text data to their multithreaded analyzing units:
map/reduce functions in MapReduce, transformations/actions
in Spark, and spouts/bolts objects in Storm. Their simple pro-
gramming frameworks have also attracted physical scientists
in need of their structured data analyses. The key to success is
obviously how to fill the gap between structured data analyses
and data-streaming tools. To address this issue, SciHadoop [4]
serializes and partitions a NetCDF [5] array-oriented scientific
dataset, (e.g., climate data) into smaller chunks that are then
fed to MapReduce. GraphX [6] facilitates a graph description
as Spark’s resilient distributed dataset (RDD) to be loaded over
a Spark cluster.

However, this approach to interfacing to the conventional
tools still suffers from the following two challenges: (1) a
dataset cannot remain in memory for incremental modifica-
tions and (2) specific data items and their relationship cannot
be visualized at run time.

Contrary to this data-streaming approach, we proposed an
agent-based framework for distributed data analysis in [7],
where analyzing units (i.e., agents) navigate over and even

modify a structured dataset in memory at run time, for the
purpose of repetitive discovery of the structural attributes,
such as the shortest path [8] and the number of triangles [9]
in a given graph. We named this approach agent-based data
discovery. Using the multi-agent spatial simulation (MASS)
library [10], we demonstrated its programming and perfor-
mance advantages over the data-streaming approach. First,
agent-based programs can be coded intuitively as typical col-
lective group behaviors in agent-based modeling (ABM): agent
propagation, flocking, and collision. Second, some agent-based
algorithms can empirically run faster than or are competitive
with MapReduce and Spark. For example, in the closet pair
problem [11] and connected component search [12], each is
implemented as agent collision detection and propagation.

While distributed arrays such as GlobalArray [13] are
available and applicable for agents to navigate over, there
are few software tools to automate the construction of agent-
navigable, distributed graphs except using parallel ABM sim-
ulators (e.g., RepastHPC [14]). Furthermore, the visualization
of a distributed graph and agents traversing on it still relies
on each user’s capability. These drawbacks are confirmed by
Gordon et. al. [9] to give quite negative impacts to agents’
programmability and their total execution time.

Given this background, this research focuses on agent-
navigable graph construction and maintenance over a cluster
system and realizes the following three graph features in the
MASS library: (1) graph construction from different file for-
mats such as CSV, HIPPIE tabs [15], and MATSim [16] XML,
(2) both interactive and pre-coded graph modifications over
distributed memory, and (3) graph visualization by interfacing
the MASS library to Cytoscape [17].

The rest of this paper is organized as follows: section II
looks at the current trends in graph processing and proposes
an agent-based approach; section III gives the details of our
implementation of an agent-navigable graph structure and
its visualization; section IV compares our implementation
with MapReduce and Spark; and section V summarizes our
achievements.

II. RELATED WORK

We first look at several achievements for applying ABM
to data sciences beyond its original pursuit of agent-based
microsimulation. Second, we examine graph construction and

maintenance strategies taken by data-streaming tools and
thread migration. Third, we summarize some graph visualiza-
tion tools. Finally, we identify the current challenges in graph
maintenance over a commodity cluster system.

A. ABM as Data Analyzing Framework

Since highlighted by Swarm [18], ABM has been used
to run environmental and social simulation for observing an
emergent collective group behavior among many simulation
entities called agents. Scientists in operations research are
applying the same concept to scheduling problems, engineer-
ing optimization, and data sciences. This approach is called
biologically inspired algorithms. The particle swarm optimiza-
tion (PSO) [19] and the grasshopper optimization algorithm
(GOA) [20] use agents flocking and repelling features to ex-
plore and exploit optimized solutions such as cluster centroid
identification. Ant colonial optimization (ACO) [21] imple-
ments a pheromone-attracted foraging capability in agents
in order to solve the traveling salesman problem (TSP) and
optimizes network-routing optimization in a reasonable time
range. However, for big-data computing, most work has put
their paramount focus on orienting new parallelization tech-
niques to MapReduce [22], [23] and Spark [24], [25], thus
handling single-use text inputs and leaving the data distribution
to these underlying infrastructures.

To apply ABM to repetitive analyses of structured datasets
in memory, we would end up using parallel ABM simula-
tors such as FLAME [26] and RepastHPC [14]. The former
simulates an interaction among communicating agents: each
static to a given MPI rank, maintaining the entire simulation
environment, and behaving as a finite-state machine. The latter
creates a lattice, a network, or a contiguous space projection;
maps it over an MPI cluster; and observes agent movements in
the projection. While FLAME cannot globally map a dataset
to a cluster system nor move agents over the data, RepastHPC
may have potential to distribute a dataset as a projection and
let agents navigate it over for data discovery.

Unfortunately, RepastHPC has the following four difficulties
when being used for data sciences rather than ABM simula-
tion: (1) the computation cannot stop under a certain condition
instead of using a given simulation tick; (2) all I/O operations
are performed sequentially by the master computing node (i.e.,
rank 0); (3) a projection is not modifiable during simulation;
and (4) no visualization or state-checking tools are available
to keep track of agent movements or to observe the on-going
state of a projection (i.e., a dataset).

B. Graph Processing with Big Data Tools

From the inception of MapReduce [1], its users have devel-
oped techniques to extend their text-processing algorithms to
graph problems. The typical approach introduced in [27], [28]
solves a graph problem by repetitively exchanging information
among neighboring graph vertices until all vertices eventually
fall into a stable state that emits no more new information.
This vertex-oriented approach can be implemented by invoking
map() to diffuse each vertex’s status change to neighboring

vertices and then calling reduce() to collect such status changes
from the neighbors. Therefore, map/reduce invocations must
be repeated until a given network reaches a stable state.
Tez [29] addressed this demand for facilitating repetitive
MapReduce.

Spark [2] can take the same vertex-oriented approach as
MapReduce, using its transformations similar to map/reduce
such as flatMapToPair() and reduceByKey(). GraphX [6] al-
leviates a steep learning curve required for users to han-
dle graphs with Spark, by defining a graph in VertexRDD
and EdgeRDD and facilitating popular graph functions. For
user-customized graph problems, GraphX implements the
Pregel [30] API, which automates repetitive message passing
from a vertex to its neighbors, using its sendMsg() and
mergeMsg() functions.

Other MapReduce and Spark users focused on graph edges
rather than vertices, and developed their own graph algorithms
by recursively narrowing down candidate edges as normal text
lines [31]. For instance, triangle counting can be implemented
by examining all the edge connectivities, narrowing them
down to triads, identifying those that create a triangle, and
removing duplicates.

However, all the above approaches are expensive and time-
consuming. Basically, users are responsible for rerunning
MapReduce with a revised input file, rebuilding a different
version of RDD, and extracting graph states to observe by
invoking additional reduce() functions or Spark actions. One
solution is IncRDD [32], a Spark RDD extension that relieves
users’ burdens of new RDD construction as well as speeds
up such automated RDD modifications using Cuckoo Hash-
ing [33]. Yet, users cannot directly observe which vertices
and/or edges have been affected.

Looking at thread migration, EMU [34] constructs a large
scale graph on its distributed memory and orchestrates thread
migration over the graph. It emulates a graph with compressed
sparse row representation (CSR) [35] and dispatches new
threads to remote array elements in Cilk Plus [36]. EMU
takes the closest approach to agent-navigable distributed graph
construction that we are aiming for. On the other hand, it
differs from the MASS library in: (1) the nature of CSR-
based graph emulation does not support incremental graph
modification; (2) thread migration in Cilk only spawns child
threads remotely but does not move active threads; and more
importantly (3) EMU needs its custom hardware.

C. Graph Visualization

ABM visualization has been made available in various
single-process simulators such as MASON [37] and Repast
Simphony [38] but not so much in parallel ABM systems.
MASON’s GUI is a Java-based tool that runs separately from
the simulation platform, capable of drawing a network in a
2D or a 3D space with generic visualization functions and
thus applicable to any other ABM simulations. However, its
general aspect of visualization gives users a steep-learning
curve to master its GUIL On the other hand, Repast Simphony
combines the GUI into its IDE. Its graph model is based on a

projection of the data space, and thus the GUI-based graph
construction starts with the “Projection” menu bar. A user
clicks the “Scenario Tree” menu, chooses a network from
“Displays”, and sets up how to generate the outputs from
the “Data Sets” menu. Despite its convenience, the Repast
Simphony’s GUI is not portable to any other ABM simulators.

Pavlopoulos et.al. [39] empirically compared the four ma-
jor graph visualization tools: Cytoscape [17], Tulip [40],
Gephi [41], and Pajek [42]. They reported that Pajek demon-
strates the best scalability and the fastest visualization speed
while leaving some space to enhance manual vertex/edge
editing and plug-ins from other graph applications. It is
capable of handling 100 million graph vertices that can even
be extended to two billion with Pajek64-XXL. Needless to say,
its capability is maximized with the underlying memory space.
Looking at Stanford Large Network Dataset Collection [43],
the large biological network [44] consists of only 8+ million
vertices but occupies 69GB in its full file size. This, in
turn, indicates that not only the visualization tools’ capability
but also available memory space (preferably supported by
distributed memory) is of importance to maintain and visualize
large graphs.

D. Technical Challenges

The above survey in Sections II-A through to II-C implies
agent-based graph analysis needs the following three features
all to be blended into one implementation:

1) Graph -construction and maintenance over dis-
tributed memory: scales up the graph size and allows
agents to use more memory space for data discovery,
conducted through their group behavior;

2) Incremental graph updates: allows users to repeat
trial-and-error computation on a given graph in an
interactive fashion; and

3) Interface to visualization tools: sends graph data to a
visualizer for zooming in and out of the graph as well
as receives graph updates from the visualizer for incre-
mentally constructing a graph over distributed memory.

We have implemented these three features in the MASS
library and have measured its execution performance. The
following two sections describe our achievements.

III. IMPLEMENTATION
A. MASS Library

MASS [10] approaches ABM with two classes: Agents and
Places. The former represents a collection of mobile objects
in a simulation, each named agent. The latter represents a
multi-dimensional array space of entities, each named place.
MASS users initialize places with their dataset and populate
agents that can autonomously traverse places as the logical
space. Parallelization in MASS is facilitated by distributing a
different subspace of Places across cluster nodes and further
splitting a node’s portion of the subspace between multiple
threads on each node. This distribution of the data-set across
multiple computing nodes gives MASS the ability to simulate
large logical spaces beyond what can be represented on a

Process0

CPU Core 0
CPU Core 1
CPU Core 2
CPU Core 3
CPU Core 0
CPU Core 1
CPU Core 2
CPU Core 3
CPU Core 0
CPU Core 1
CPU Core 2
CPU Core 3

System Memory

Cluster|node 0

System Memory

Clusterinode 1

System Memory

Clusterjnode 2

Cluster Network

Fig. 1. MASS library architecture

single node. Agents can then seamlessly migrate between
places regardless of the node or thread they are associated
with.

Figure 1 shows the distribution of places across a clus-
ter of three computing nodes, each with four threads of
execution to manipulate the places and agents in parallel.
Communication between each node is carried out through TCP
sockets. A collection of agents are associated with places.
Parallel computation onto places and agents are enabled with
Places.callAll(func) to call a given function of all places,
Agents.callAll(func) to call a given function of all agents,
Places.exchangeAll(func) to exchange data among neighboring
places through a function call, and Agents.manageAll() to com-
mit agent creation, termination, and migration that have been
scheduled in the last callAll(). For better programmability,
we facilitated Agents.doWhile() and doUntil() that eliminate
repetitive notations of Agents.callAll() and manageAll().

MASS provides users with parallel file I/O features [8] that
access NetCDF and text files in parallel. Each place can open
an identical file and read/write only its corresponding file data
using the following built-in functions: Place.open(filename),
read(fd), write(fd, bytes), and close(fd), where fd is a file
descriptor. A large dataset is partitioned and distributed to each
cluster node’s /tmp directory, in support with either MASS
parallel I/O tools or HDFS.

Previously in MASS, users were responsible for emulating
a graph with Places. One emulation was to implement an
adjacency matrix with a 2D array of places [45], while the
other was to define a 1D array of places, each representing a
graph vertex and maintaining an adjacency list, namely a list of
logically adjacent place indices [8]. In the former approach, an
agent scanned the current row of the matrix and cloned itself
to other rows enumerated as the logically adjacent vertices.
In the latter approach, an agent traversed a graph by moving
from one place to another as referring to each adjacency list.

In summary, MASS smoothly transitioned from ABM simu-
lation to multi-dimensional dataset analysis but left the graph-
to-array mapping to the users of the library.

B. Graph Programming with MASS

To promote agent-based graph analyses with MASS, we
extended the Places class to GraphPlaces. Listing 1 gives an
example code snippet that propagates agents over a biological
network to search for network motifs. The GraphPlaces con-
structor reads a given input data, (e.g., “input.txt” in Listing 1)
and builds a graph as a 1D distributed array of places, each
with an adjacency list (lines 5-6). It currently distinguishes
CSV, HIPPIE tab, MATSim XML, and key/value formats. The
key/value format (indicated as KEYVALUE) uses a vertex ID
as a key and lists all the adjacent vertices as the corresponding
value. This file format can be pre-partitioned and placed at
each computing node’s /tmp directory so that the MASS
parallel I/O reads graph data in parallel. Once a GraphPlaces
object is mapped over a cluster system, the main program can
add an additional vertex to the graph (line 7) and establish
a new edge to the vertex (lines 8-9). All vertices can invoke
a given function in parallel through callAll() (line 10) and
exchange data with their neighbors through exchangeAll() (line
11).

Assuming Listing 1 defines 100 vertices in “input.txt” and
adds one more vertex to the graph, the code populates 101
agents, each starting from a different vertex (line 12). Then,
the main program repeats the logic of motif search agents until
no agents remain in the graph (line 13). The actual agent logic
is implemented in an independent class: for example in Motif
(lines 16-19). The @onArrival annotation invokes Motif.walk()
every time an agent migrates to a new vertex [46].

Listing 1. MASS graph creation
limport MASS.x;
2public class GraphCreation {
3 public void main(String[] args) {
4 MASS.init();
5 GraphPlaces graph = new GraphPlaces(1, "Bionet",
6 "input.txt", KEYVALUE, PARALLEL_LIST);
7
8

graph.addVertex(new Integer(100));
graph.addEdge(new Integer(99), new Integer(100),
9 new Integer(0));
10 graph.callAll(updateState);
11 graph.exchangeAll(forwardMsg);
12 Agents searcher = new Agents(2, "Motif", graph, 101);
13 crawler.doWhile(()—>crawlers.hasAgents());
14 MASS .finish();
15} }
16 public class Motif extends Agent {
17 @onCreation public void init() { ...;
18 @onAurrival public void walk() { ...;

19}

C. Technical Challenges of GraphPlaces Implementation

The non-deterministic nature of graph construction and
maintenance causes the following two technical challenges:

1) The run-time growth of graph size through vertex/edge
additions and deletions

2) The unsorted definition of vertices and edges in an input
file

* 200 224 225 249 275 299
layer2 [T+ [-+ O I+ O
L 1 100 101 124 125126 149 175 199
ayer cee cee con
e ith O N]] (]
GraphPlaces.
addVertex()
01 24 2526 49 Global vertex ID 75 76 99
Layer 0 .- 0 e~ 0O e 0O
Created by ? ? ? ? f ?
GraphPlaces H H H + +
Constructor Shared — 3 Shared — Shared X
Buffer * Buffer Buffer ¢

Cluster Node 0 Cluster Node 1 Cluster Node 3

Fig. 2. GraphPlaces Implementation

1) Solution to Incremental Graph Growth: We implement
GraphPlaces as a collection of Places objects where the first
object is internally created with the GraphPlaces constructor,
whereas the following Place objects are automatically added
to GraphPlaces as needed through addVertex() calls. Figure 2
illustrates the runtime additions of Places objects in Graph-
Places. The figure breaks down a cluster of four computing
nodes. Layer 0 is the very first 1D Places array. Layers starting
from 1 are run-time additions to GraphPlaces. Each graph
layer imitates the MASS layer’s size and allocates a fraction of
the size to each computing node in the cluster. In other words,
if we map 100 vertices to a cluster system containing four
computing nodes, each node would be allocated one quarter
of the size (i.e., 100 places) as their portion of the data set.
In this scenario, each computing node would be allocated 25
places. Therefore, node 0 would be allocated indices 0-24,
node 1 indices 25-49, node 2 indices 50-74, and node 3 indices
75-99. Maintaining this 100-place scenario, the place indices
0-99 represent layer 0. For additional vertex insertions, we
repeat this association in a round-robin fashion where the next
allocation of 25 places, in this particular scenario, would be
associated to computing node O at layer 1.

Based on Table I, this implementation maps a O-indexed
global vertex ID in GraphPlaces (i.e., globalV I D) to the cor-
responding triplet (computel D, layerID, localVID), each
respectively referring to the cluster-computing node ID, the
layer ID, and a local vertex ID within the layer. Using this ad-
dressing algorithm, we can store a single integer in the cluster-
wide distributed map to allow mapping an arbitrary vertex ID
to a unique place in MASS that is directly addressable. The
layering allows the use to expand the graph well beyond the
initial size.

2) Solution to Unsorted Vertex/Edge Definition in an Input
File: The KEYVALUE file format as shown in Listing 1
is our proof-of-concept file definition. Each line of an input
file begins with a unique vertex ID, followed by a list of
adjacent vertex IDs. It assumes that no identical vertex ID
will appear twice or more times to define additional neighbors.
This format makes it easy to sort and map vertices to a

TABLE I
PARAMETERS TO IDENTIFY A GIVEN VERTEX IN GRAPHPLACES
Parameters | Remarks
globalVID 0-indexed global vertex identifier in GraphPlaces
clusterSZ # computing nodes in a given cluster system
initSZ The size of layer O of a GraphPlaces object
(i.e., # vertices initialized by the constructor)
stripeSZ Layer 0’s fraction allocated to each computing node
(i.e., initSZ + clusterSZ)
computeNID | Computing node’s identifier in the cluster
(i.e., (globall D mod initSize) + stripeSZ)
layerID 0-indexed layer identifier
(i.e., globall D = initSZ)
localVID 0-indexed vertex identifier within a given layer
(i.e., globall D mod stripeSZ)

cluster system. Similarly, the CSV format defines an adjacency
matrix, which can be read in parallel with slight modifications
of the KEYVALUE format. In MATSim XML, vertex IDs are
provided as 1-indexed sequential integers first, and thereafter
all their edges are listed. Therefore, the MATSim XML format
allows easy manipulation of the vertex IDs with a simple offset
of 1.

The HIPPIE format, in contrast, contains two possible
attributes for each vertex: a string and a non-sequential in-
teger. The integer attribute represents an incomplete range
of integers (sampled from 1 up to 100,820,829 seen in the
hippie_current.txt dataset [47]). This format revealed a signif-
icant deficiency in the existing pattern of mapping vertices to
ordinals compared to the other file formats.

The issue at hand is that the MASS library does not have
a hashing method that allows mapping a given vertex ID,
string, or integer consistently across a cluster system. This
problem is compounded by our goal of supporting dynamic
modification of the graph; therefore, a pre-calculated complete
hash was not an option. A solution that became clear to
us was to implement a distributed map in MASS to allow
consistent hashing across the cluster system or to utilize an
existing library with such distributed map capability included.
We elected to use Hazelcast [48] for this project. The mapping
solution we came up with maps an object key to an integer
that represents the global index for the place associated with
a given key. This allows users to reference the vertices in
their data as expected: the logical name of the vertex. MASS
can then use the logical name of the vertex as a key into the
distributed map to retrieve the global index of the place that
represents the vertex.

D. MASS and Cytoscape Integration

The MASS library uses Cytoscape as a GUI tool for
interactive graph construction, editing, and visualization. The
two main reasons are: Cytoscape’s popularity among scientific
users and its well-defined plug-ins. Integrating MASS with
Cytoscape requires two key interactions between the two
systems through Cytoscape plug-ins:

1) Import-network plug-in: pulling an in-memory graph

from MASS and re-building it inside of Cytoscape into

a native CyNetwork with a combination of CyNode and
CyEdge entities.

2) Export-network plug-in: serializing the currently se-
lected Cytoscape CyNetwork into the MASS Graph-
Places for sending to MASS.

To facilitate communication between Cytoscape and MASS,
a user must run CytoscapeListener in the MASS main program
as shown in Listing 2 on line 7. Then, Cytoscape plug-ins
establish a TCP socket to communicate with MASS. Since
a user interacts with Cytoscape on the graph visualization,
Cytoscape invokes both import- and export-network plug-ins.
They respectively send the following commands to MASS,
followed by a transfer of a lightweight graph representation
with only essential information such as the vertex IDs and
their neighbors:

1) getGraph: initiates retrieving the in-memory graph from
MASS that sends the serialized message to Cytoscape.

2) setGraph: sends the current CyNetwork to MASS that
rebuilds the corresponding GraphPlaces object inside of
it.

These two commands are interpreted by CytoscapeListener
automatically and are applied to a given graph in parallel
of the main program. With its command interpretation in
background, a user can repeatedly observe the progress of
graph computation (line 8 in Listing 2). As we are planning to
merge GraphPlaces and CytoscapeListener into the interactive
version of MASS [49] running on top of JShell [50], a user
will be able to checkpoint the on-going graph computation on
JShell and to view the latest status through Cytoscape.

Listine 2. MASS main fo i ith C
1import MASS.x;
2public class GraphVisualization {
3 public void main(String[] args) {
MASS.init();
GraphPlaces graph
= new GraphPlaces(1, "EmptyGraph", 100);
MASSListener listener = new CytoscapeListener(graph);
...; // Graph computation
9 listener.finish();
10 MASS .finish();

1})

[cBEN B NV N

To implement the above Cytoscape-MASS interaction, we
need to address two technical challenges: (1) graph model
conversion from MASS to Cytoscape for visualizing a graph
and (2) Cytoscape-initiated on-the-fly interaction with MASS,
(i.e., runtime getGraph/setGraph invocations against MASS).
The following describes our solutions to these two challenges:

1) Graph model conversion from MASS to Cytoscape: The
Cytoscape graph model does not use an adjacency matrix
nor adjacency lists. Instead, it uses two separate tables: one
for vertices and the other for edges. While each table row
corresponds to a different entity - either a vertex or an edge
- the table columns encode the vertex or edge attributes. The
plug-in developers are given the ability to add custom columns
to the tables but are limited to primitive types and lists of

getGraph command

C k
Y r Gra es
setGraph comm‘
{ raphModel |
- ~J
Cytoscape

Fig. 3. Communication between MASS and Cytoscape

primitive types. To convert MASS GraphPlaces into Cytoscape
graph model, the default columns on both the vertex (node in
Cytoscape) and edge tables are adequate. Another challenge
we faced is the styling of vertices as they appear in Cytoscape.
The default visual representation of vertices is not entirely
representative of a unique vertex in a network, so a simple
styling transform is applied to incoming graph data to assign
names and interactions to the vertices.

2) Cytoscape-Initiated Interaction with MASS: Cytoscape
needs to invoke getGraph and setGraph commands in the
MASS cluster and to elicit responses. For this purpose, we
elected to implement a simple remote-procedure call (RPC)
interface in CytoscapeListener. This implementation allows
Cytoscape to send a command to MASS as a simple string,
which prompts CytoscapeListener to parse the command and
to respond accordingly. Figure 3 illustrates RPC calls from
Cytoscape to CytoscapeListener in MASS.

These RPC calls are actually made from Cytoscape’s im-
port/export plug-ins that are implemented in support with
Open Service Gateway Initiative (OSGI) [51]’s modularized
Java components. A Cytoscape plug-in is principally built out
of three required classes: an activator, a task factory, and
a task. Our import-network and export-network plug-ins are
implemented as follows:

o Activator: works as an entry point of a plug-in, assigns
services to a given factory, and associates the factory a
menu option.

— Import-network plug-in: creates M ASS—sImport Network

menu option.

— Export-network plug-in: creates M ASS— Export Network

menu option.

o Factory: upon a call from a user’s menu selection, creates
an instance of Task class to process a request.

— Import-network plug-in: passes required Cytoscape APIs

to an import-network task

— Export-network plug-in: passes required Cytoscape APIs

to an export-network task

o Task: runs an actual plug-in logic.

— Import-network plug-in: sends getGraph to MASS and
de-serializes a graph message into CyNetwork.

— Export-network plug-in: sends setGraph to MASS, seri-
alizes CyNetwork, and forwards it to MASS.

% MASS
|\mp0rt Networkl l\mportNetworkTaskFactoryl l\mpcrtNetworkTaskI l!lytcscapeustemerm Graphl
Cytoscape User

MASS -> Import Network

ImportNetworkTask#run

getGraph

getGraph

Retrieve MASS Graph as GraphModel

GraphModel

GraphModel

Create CyNetwork based on GraphMode|

€ f t 1 ‘

Cytosca%pe User I\mpurt Networkl l \mportNetworkTaskFactoryI I\mpor‘fNetwork‘raskI l Cytoscapeustemerﬁ

Fig. 4. An interaction diagram for importing a MASS graph into Cytoscape

e Edt View Select Layout Apps Toas Help
> BB LY QAQQAQ ¢
Control Panel - it
Network | sy | seect | amatation |

B e q‘ UMA

VA 10F 1 Netmork selcted. 8= (/N N 11 T8 TR
 etork DK ¥ A ,v'}‘"g/"‘\‘\l.

2\

o @

Mmoo = (2]

RO
\}

A
\‘\\h A

Y

O

N
'

oM+ @=~/e
& stwednane | name |4 agems
oty o 10.1.2.3.4

Node Table [Edge Table | Network Table |

& | [= | © unsilencing event source: Network default node @ vemory.

Fig. 5. HIPPIE current dataset imported from MASS into Cytoscape

Figure 4 is an interaction diagram for a Cytoscape user to
visualize a MASS GraphPlaces object in Cytoscape. As shown
in Figure 5, a snapshot of Cytoscape’s GUI, by selecting the
“Import Network” menu option, Cytoscape’s import-network
plug-in kicks off the ImportNetworkTask module that sends a
getGraph request to MASS CytoscapeListener to retrieve its
in-memory graph. The plug-in then de-serializes the MASS
response into a Cytoscape representation of the graph: a
CyNetwork. To achieve a simple and consistent visualization
of a graph, a few minor styles were applied to the Cytoscape
nodes created (see Figure 5: vertices with neighbors in blue
rectangles, those with no neighbors in red circles, and a user-
clicked vertex in a yellow rectangle).

IV. EVALUATION

We have implemented, verified the functionality of, and
evaluated the execution performance of all the MASS li-
brary’s graph features, including its interface to Cytoscape.
The functional tests covered all file formats of input data in
CSV, HIPPIE, MATSim XML, and KEYVALUE. Figure 5

shows a scenario of loading the hippie_current.txt dataset [47],
(a biological network) into the MASS library’s GraphPlaces,
activating Cytoscape’s import-network plug-in, and visualizing
the graph on the display. Further functional tests have been
conducted with our benchmark test set from [7].

For performance measurements, we developed two pro-
grams: (1) incremental construction of a complete graph and
(2) KD tree construction used for range search of 2D data
points. All the experiments were conducted over a cluster
of 14 computing nodes made available by the University of
Washington Bothell. Four are physical machines, each with 8-
core 2.33GHz CPU (Intel Xeon E5410) with 16GB memory,
whereas the other ten are virtual machines, each with 4-
core 2.10GHz (Intel Xeon Gold 6130) with 16, 18, or 20GB
memory.

A. Incremental Graph Construction

This performance comparison increases the size of a
complete graph every 100 vertices. We consider two time-
measurement options: (1) time elapsed to add 100 vertices
and their associated edges to the graph and (2) time elapsed
not only to add vertices/edges but also to retrieve the entire
graph back to the main function. The former corresponds to
batched computation, whereas the latter assumes interactive
computation where users repeat checking their graph modifi-
cation.

We coded this incremental graph construction in MASS, In-
cRDD [32], and Spark/GraphX, and compared their execution
time. Listings 3, 4, and 5 summarize their code, respectively.
While MASS and IncRDD can add vertices and edges to their
original graph (lines 2-5 in Listing 3 and lines 2-4 in Listing 4
respectively), GraphX needs to construct a new RDD every
time it increases the graph size (lines 1-7 in Listing 5). In these
code snippets, blue lines are inserted for time-measurement
option 2 that retrieves the constructed graph back to the main
program. Contrary to MASS and IncRDD that retrieve an
entire graph in one line, GraphX must retrieve vertices and
edges into their respective RDD.

1 GraphPlaces graph = new GraphPlaces(0, "TestGraph", 100);
2for (int i = 0; i < count; i++) { // count = 100

3 graph.addVertex(start + 1);

4 for (int n = 0; n < size + count; n++)

5 if (n != start + i) graph.addEdge(start + i, n);

6}
7GraphModel alllnMain = graph.getGraph();

1IncRDD graphRDD = generateGraph(sc, model);

2List<Object> neighbors

3 = new ArrayList<>(current_size + count — 1); // count = 100
4graphRDD = verticesIncRDD.add((int)id, neighbors);
sscala.Tuple2[] verticesEdges = (scala.Tuple2[])graphRDD.collect();

1List<Edge<String>> edges = new ArrayList<>();
2List<Tuple2<Object, String>> vertices = ...;

3JavaRDD <Tuple2 <Object, String>> verticesRDD

4 = sc.parallelize(vertices);
sJavaRDD < Edge<String>> edgesRDD = sc.parallelize(edges);

6 Graph<String, String> graphRDD

7 = Graph.apply(verticesRDD.rdd(), edgesRDD.rdd(), ...)
gvertices = ((scala.Tuple2[]) graph.vertices().collect());

9edges = (org.apache.spark.graphx.Edge []) graph.edges().collect();

1) Performance of Incremental Graph Construction Only:
Figures 6(a) and 6(b) compare MASS versus IncRDD and
MASS versus GraphX performance, respectively, in incremen-
tal graph construction by repetitively adding 100 vertices up
to 4,500. MASS halves its execution time when increasing
the number of computing nodes from one to two, but beyond
two nodes, its time reduction slows down. This is because,
while an entire graph is distributed over the cluster system,
MASS uses Hazelcast’s distributed hash to have all computing
nodes examine the message to check if they should add a new
vertex or edge to their own sub-graph, (which is a typical
approach as shown by Iwabuchi et. al. [52]). Conversely,
both IncRDD and GraphX fluctuate their execution time
mostly slower than MASS, due to the nature of Spark’s data
partition and shuffle operations. Figure 6(c) focuses on one-
by-one vertex additions up to 4,500 vertices on top of each
software tool when increasing the number of cluster nodes
from 1 to 14. IncRDD outperforms MASS with one and two
computing nodes but performs approximately 25% slower or
more beyond two computing nodes. GraphX performs 50%+
slower than MASS with multiple computing nodes. Figure 6(c)
also confirms Cuckoo Hashing allows IncRDD to perform
faster than GraphX.

2) Performance of Incremental Graph Construction and
Retrieval Back to the Main Program: Figures 7(a) and 7(b)
compare MASS versus IncRDD and MASS versus GraphX
performance, respectively, in both graph construction and re-
trieval by repetitively adding 100 vertices. Since MASS incurs
overheads largely for de-serializing GraphPlaces vertex/edge
information into a user-defined array at the main program,
it cannot demonstrate better parallel performance. Similarly
IncRDD does not show apparent parallelization effects. It
increases its execution time even more than proportional to
the graph size. In contrast, because GraphX performs collect()
at each partition and its main program only gathers them up,
it can improve its parallel performance. In fact, as shown in
Figure 7(c), GraphX outperforms MASS beyond four cluster
nodes when incrementally adding a new vertex to a graph and
retrieving all its vertices/edges back to the main program.

B. Agent-Based KD Tree Construction

The range-searching problem constructs a a multidimen-
sional binary tree (KD tree) and has each query traverse only
the branches in its range. We focus on a 2D problem, so that
each range query includes four values: x- minimum, maximum
and y- minimum, maximum coordinates in a plane. KD tree
for 2D points is a modified 2D binary search tree (BST), which
alternates x- and y- coordinates as a key for inserting elements.
The alternating sequence starts with the x-coordinate. The

IncRdd —
MASS

2} 72}
© ©
c c
Q Q
Q [}
[«F] [«}]
w w
(a) MASS versus IncRDD in repetitive 100-vertex additions (a) MASS versus IncRDD in repetitive 100-vertex additions
Spark ——
SS
35 -
30+
ég 20| > ig
20+ e f
8 1t i Tigi!zséﬁgﬂggﬁhlﬂ" 8
g 0 e S
w 5 5 iy pr
0
0%
0
S .
nodes Insertions * 100

(b) MASS versus Spark/GraphX in repetitive 100-vertex additions

: . ‘ 1600 ‘ ‘ ‘ ‘ :
140 - MASS |
Spark —— 1400
ai20f IncRDD —— | =
o 01200
o} 0]
2100} | <4000
0} 0]
€ sl] S
= = 800
c c
O 60| i [e]
= £ 600
o o
L 40}) 2 400
) o
20 I M’/’/\; 200 | ‘ |
0 2 12 14 B 2 12 14

4 6 8 10 4 6 8 10
computing nodes # computing nodes

(¢) A comparison of MASS, IncRDD, and Spark/GraphX in one-by-one (c) A comparison of MASS, IncRDD, and Spark/GraphX in one-by-one
vertex additions up to 4,500 vertices vertex additions up to 4,500 vertices

Fig. 6. Incremental graph construction only Fig. 7. Incremental graph construction and retrieval

construction of KD tree consists of recursively partitioning the
plane into two half-planes, where the point positioned at the
bisector line is the next point to be inserted into the tree with
respect to x and y dimensions. Each bisector line is determined
after sorting the points by x or y coordinate depending on
the next dimension of the KD tree level. The bisector line
is determined by dividing the number of points by two. We
chose to use a balanced BST for the KD tree due to sorting,
bisector lines, and x and y dimension alternations.

Listings 6 and 7 show abstract code of MASS-based and
MapReduce/Spark-based KD tree construction and one-time
range search respectively. MASS mimics a tree with Graph-
Places (lines 6-11 in Listing 6) and thereafter disseminates
agents along the tree branches in a given range (lines 21-25).
On the other hand, MapReduce and Spark partition a collection
of points into small slices (line 4 in Listing 7). For each slice,
they build a KD tree (line 8) and perform range search on it
(lines 9-11).

1 public class KDTreeMASS {
2 public void main(String[] args) {

3 Read input points (x, y) from an input file.

4 Create and sort a list of points by x coordinate.
5 MASS.init();

6 GraphPlaces kdtree

7 = new GraphPlaces(1, "KDTree", #points);
8 for (each : points) {

9 kdtree.add Vertex(each);

10 kdtree.addEdge();

12 Agents searcher = new Agents(2, "Searcher", kdtree, 1);
13 crawler.doWhile(()—>crawlers.hasAgents()); /one—time search
14 MASS .finish();

15})

16 public class Searcher extends Agent {

17 @onCreation public void init(destination) {

18 migrate(destination) / if NULL, it’s the root.

)
20 @onAurrival public void walk() {
21 if (the current vertex is in the range) {

22 add it to my_range_list;

23 if (left_subtree) spawn(left_subtree);

24 if (right_subtree) migrate(right_subtree);
25 else return my_range_list;

26} }}

1 public class KDTreeSpark {

2 public void main(String[] args) {

3 Read input points (X, y) from an input file.
4 Partition points into small slices.

5 for (each : partitions) {

6 Sort points by x coordinate.

7 Remove duplicate points if any.

8 Build KD tree of points.

9 Perform range search on KD tree. // one—time search
10 Store the discovered points in a local list.

11 return the local list.

12

13 Collect all search result points from each partition.

14} }

Figure 8(a) compares MASS, MapReduce, and Spark when
constructing a KD tree with 10K data points. MASS out-
performs MapReduce and Spark. This is because the MASS

Spark
MapReduce

EXECUTION TIME (SEC)

=0=MASS

o B N W A U oo N

2 3 4

NUMBER OF WORKER NODES

(a) MASS versus MapReduce/Spark using 10K data points

500

MASS 50K pts ———
MASS 500K pts ——

00 -

6 . 8 10 12
computing nodes

(b) MASS performance using 50K and 500K data points

Fig. 8. KD tree construction

library’s graph construction heavily relies on Hazelcast’s dis-
tributed hash and multicast whose overheads are negligible
with a small number of computing nodes. On the other hand,
MapReduce and Spark still needs to repeat point sorting and
duplicate removals within each partition. Figure 8(b) measures
the MASS library’s performance to handle 50K and 500K
points over 2 to 12 computing nodes. The larger number of
points, the more apparent MASS slows down in proportional
to the number of computing nodes. This shows the necessity of
switching our vertex/edge distribution strategy from the TCP-
based to the UDP-based Hazelcast multicast or to our own
multicast implementation.

V. CONCLUSION

To pursue our research focused on agent-based data discov-
ery of structured datasets, we implemented a framework to
construct, visualize, and further edit a graph on top of the
MASS library. The performance comparison with GraphX,
IncRDD, Spark, and MapReduce demonstrated the efficiency
of MASS graph features to incrementally construct a graph
in memory but pointed out the necessity of revising the cur-
rent TCP-based vertex/edge distribution. As a practical graph
application, we will re-implement an agent-based biological
network motif search [45]. We are also extending the MASS
library to cover trees, quad-trees, and 2D/3D contiguous spaces

for spatial and geometric data analysis. Finally, note that
the MASS library and all its benchmark test programs are
accessible through the MASS library’s website [10].

[1]
[2]

[3]
[4]

[5]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

MapReduce, “Accessed on: August 10, 2020. [Online]. Available:
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/.”
Spark, “Accessed on: August 10, 2020. [Online]. Available:
http://spark.apache.org/.”

Storm, “http://storm.apache.org/.”

J. Buck et al., “SciHadoop: Array-based Query Processing in Hadoop,”
in Proceedings of SC’2011, 2011, doi:10.1145/2063384.2063473.
Unidata — NetCDF, “Accessed on: August 10, 2020. [online]. available:
https://www.unidata.ucar.edu/software/netcdf/.”

Spark GraphX, “Accessed on: August 10, 2020. [Online]. Available:
https://spark.apache.org/graphx/.”

M. Fukuda, C. Gordon, U. Mert, and M. Sell, “Agent-Based Compu-
tational Framework for Distributed Analysis,” IEEE Computer, vol. 53,
no. 3, pp. 16-25, 2020.

Y. Shih et al., “Translation of String-and-Pin-based Shortest Path Search
into Data-Scalable Agent-based Computational Models,” in Proceedings
of Winter Simulation Conference, Gothenburg, Sweden, December 2018,
pp. 881-892.

C. Gordon et al., “Implementation techniques to parallelize agent-based
graph analysis,” in Int’l Workshops of PAAMS 2019, Highlights of
Practical Applications of Survivable Agents and Multi-Agent Systems,
Avila, Spain, June 2019, pp. 3-14.
MASS: A Parallel Library for
lation, “Accessed on: August 10,
http://depts.washington.edu/dslab/mass/.”
S. Gokulramkumar, “Agent Based Parallelization of Computationl Ge-
ometry Algorithms,” Master’s thesis, University of Washington Bothell,
June 2020.

C. Liu, “Development of Application Programs Oriented to Agent-Based
Data Analysis,” University of Washington Bothell, Tech. Rep., March
2020.

J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Apra, “Advances, Applications and Performance of the Global Arrays
Shared Memory Programming Toolkit,” International Journal of High
Performance Computing Applications, vol. Vol.20, no. No.2, pp. 203—
231, 2006.

Repast HPC, “Accessed on: August 10, 2020. [Online]. Available:
https://repast.github.io/repast_hpc.html.”

HIPPIE, “Accessed on: August 10, 2020. [online]. available:
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/index.php.”
MATSIM Multi-Agent Transport Simulation,
“https://www.matsim.org/.”

Cytoscape: An Open Source Platform for Complex Network Analysis
and Visualization, “Accessed on: August 10, 2020. [online]. available:
http://cytoscape.org.”

N. Minar and other, “The Swarm Simulation System: A Toolkit for
Building Multi-Agent Simulations,” Santa Fe Institute, Tech. Rep. SFI
WORKING PAPER: 1996-06-042, 1996.

J. Kennedy et al., “Particle swarm optimization,” in Proceedings of the
IEEE International Conference on Neural Networks IV, 1995, pp. 1942—
1948.

S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper optimization algo-
rithm: Theory and application,” Advances in Engineering Software, vol.
105, pp. 30-47, 2017.

C. Blum, “Ant colony optimization: introduction and recent trends,”
Physics of Life Reviews, vol. 2, no. 4, pp. 353-373, 2005.

A. W. McNabb, C. K. Monson, and K. D. Seppi, “Parallel PSO
using MapReduce,” in Proc. of 2007 IEEE Congress on Evolutionary
Computation, Singapore, September 2007, pp. 7-14.

A. Sieminski and M. Kopel, “Comparing efficiency of aco parallel
implementations,” Journal of Intelligent and Fuzzy Systems, vol. 32,
no. 2, pp. 1377-1388, 2017.

M. Jayakumar and R. Tyagi, “Particle swarm optimization using spark
framework,” University of Bonn, Tech. Rep., July 2019.

Y. Karouani and Z. Elhoussaine, “Efficient spark-based framework
for solving the traveling salesman problem using a distributed swarm
intelligence method,” in 2018 Int’l Conf on Intelligent Systems and
Computer Vision (ISCV), Fez, Morocco, April 2018, pp. 1-6.

Multi-Agent Spatial ~ Simu-
2020. [online]. available:

[26]
[27]

[28]

[29]

(30]

(31]
[32]
[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

FLAME, “Accessed on: August 10, 2020. [online]. available:
http://www.flame.ac.uk.”
J. Lin et al., Data-Intensive Text Processing with MapReduce. Morgan

& Claypool Publishers, 2010.

C. E. Tsourakakis, “Data Mining with MAPREDUCE: Graph
and Tensor Algorithms with Applications,” Accessed on: August
10, 2020. [Online]. Available: https://www.ml.cmu.edu/research/dap-
papers/tsourakakisdap.pdf, 2010.
Tez, “Accessed on: August
https://tez.apache.org.”

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proc. of SIGMOD’10. Indianapolis, IN: ACM, June
2010, pp. 135-145.

M. Parsian, Data Algorithms: Recipes for Scaling Up with Hadoop and
Spark. O’Reilly, 2015.

P. D. Prakash, “IncRDD: Incremental Updates for RDD in Apache
Spark,” Master’s thesis, The University of Texas at Dallas, May 2017.
R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, p. 122-144, May 2004.

M. E. Belviranli, S. Lee, and J. S. Vetter, “Designing Algorithms
for the EMU Migrating-threads-based Architecture,” in Proceedings
of the 22nd IEEE High Performance extreme Computing Conference
(HPEC), Waltham, MA, Septmeber 2018, pp. 1-7, doi: 10.1109/H-
PEC.2018.8 547 571.

U. Borstnik, J. VandeVondeleb, V. Webera, and J. Huttera, “Sparse
matrix multiplication: The distributed block-compressed sparse row
library,” Parallel Computing, vol. 40, no. 5-6, p. 47-58, 2014.

Intel Cilk Plus, “Accessed on: August 10, 2020. [online]. available:
https://www.cilkplus.org.”

S. Luke, C. Cioffi-revilla, L. Panait, and K. Sullivan, “MASON, A
Multiagent Simulation Environment,” Simulation, vol. 81, no. 7, pp.
517-527, 2005.

Repast Simphony, “Accessed on: August 10, 2020. [online]. available:
https://repast.github.io/repast_simphony.html.”

G. A. Pavlopoulos, D. Paez-Espino, N. C. Kyrpides, and I. II-
iopoulos, “Empirical Comparison of Visualization Tools for Larger-
Scale Network Analysis,” Advances in Bioinformatics, vol. 2017, p.
https://doi.org/10.1155/2017/1278932, July 2017.

Data Visualization Software — Tulip, “Accessed on: August 10, 2020.
[online]. available: https:/tulip.labri.fr/tulipdrupal/.”

Gephi - The Open Graph Viz Platform, “Accessed on: August 10, 2020.
[online]. available: http://gephi.org.”

Pajek/PajekXXL/Pajek3XL, “Accessed on: August 10, 2020. [online].
available: http://mrvar.fdv.uni-lj.si/pajek/.”

J. Leskovec, “Stanford Large Network Dataset Collection,”
Accessed on: August 10, 2020. [Online]. Available:
https://snap.stanford.edu/biodata/datasets/10028/10028-PP-Miner.html.
STRING: functional protein association networks, “Accessed on: August
10, 2020. [online]. available: https://string-db.org/.”

A. Andersen, W. Kim, and M. Fukuda, “Mass-based nemoprofile con-
struction for an efficient network motif search,” in IEEE International
Conference on Big Data and Cloud Computing in Bioinformatics -
BDCloud 2016, Atlanta, GA, October 2016, pp. 601-606.

M. Sell and M. Fukuda, “Agent programmability enhancement for
rambling over a scientific dataset,” in Int’l Conference, PAAMS 2020,
Advances in Practical Applications of Agents, Multi-Agent Systems, and
Thrustworthiness, L’ Aquila, Italy, October 2020, pp. 251-263.

HIPPIE current TAB, “Accessed on: May 20, 2020. [online]. available:
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/hippie_current.txt.”
Hazelcast, “Accessed on: May 14, 2020. [Online]. Available:
https://hazelcast.com/.”

N. Alghamdi, “Supporting Interactive Computing Features for MASS
Library: Rollback and Monitoring System,” University of Washington
Bothell, MS Capstone Final Report, 2020.

Oracle, Java Platform, Standard Edition Java Shell User’s Guide.
Oracle, Accessed on: August 11, 2020. [Online]. Avaiable:
https://docs.oracle.com/javase/10/jshell, 2018.

OSGi Alliance, “Accessed on: August 10, 2020. [Online]. Available:
osgi.org.”

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and
S. Matsuoka, “Towards a distributed large-scale dynamic graph data
store,” in 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops - IPDPSW, Chicago, IL, May 2017, pp. 892-901.

10, 2020. [Online]. Available:

