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Abstract—AgentTeamwork-Lite is a mobile-agent-based job
scheduling and monitoring framework that has been developed
in the concept of field-based job dispatch and migration where
agents migrate over a computing-resource field to highest per-
formance computing nodes for executing their user jobs as
if they were electrons sliding down on an electric field. The
agents keep monitoring their computing-resource field and move
their user jobs to better computing nodes. This paper presents
the system design, execution model of the framework, and our
performance evaluation using two applications: the Wave2D MPI-
parallelized wave-propagation simulation and the Mandelbrot
fractal generator benchmark programs.

I. INTRODUCTION

The recent emergence of cloud services [1] has allowed
more users to access parallel-computing resources by simply
purchasing as many compute instances as needed, thus without
any initial hardware investment. Since such cloud services
also facilitate common programming and job scheduling en-
vironments such as OpenMP [2], MPI [3], OpenPBS [4], and
Condor [5], users can easily develop and execute their parallel
applications. However, the more users compete computing
resources, the more load unbalance tends to occur at run
time, which may unnecessarily delay any jobs. Needless to
say, we need a run-time environment to reallocate a user job
to faster or lighter loaded computing nodes. However, unless
an application is parallelized with paradigm-oriented libraries
such as MapReduce [6], most cloud services follow a cen-
tralized scheduling strategy that statically allocates computing
resources to a job upon its invocation. Therefore the job tends
to keep running on the same set of computing nodes even in
the case if they may no longer meet the user-specified resource
criteria. This motivated us to develop a migration-based job-
scheduling tool to work with conventional parallel applications,
(e.g. MPI programs).

We previously developed the AgentTeamwork parallel-
computing middleware system [7] that used mobile agents
to dispatch, launch, monitor, and move a user job at remote
computing nodes, particularly focusing on fault tolerance. The
problem of its implementation was the use of a static list
of computing nodes for resuming a parallel-computing job at
more robust nodes upon abnormality. We slimmed the system
down by removing its expensive fault-tolerance feature but
facilitated performance-oriented job migration to light-loaded
nodes as AgentTeamwork-Lite. The project goal through the
AgentTeamwork-Lite framework development focuses on

• Developing an algorithm to form the best computing
node itinerary based on resource information (CPU
and memory),

• Enhancing AgentTeamwork to schedule and to move
a job, based on dynamically evaluated criteria,

• Finding out the job migration cost and the best timing
to migrate a job

• Demonstrating the performance gain of field-based job
migration scheduling over default scheduling.

This research project contributes towards high performance
computing where job migration is commonly used. All com-
plex scientific applications including the ones discussed above
can be benefited from this research. It also relieves users
from handling job coordination which includes process com-
munication, synchronization, and dynamic load balancing. To
demonstrate the efficiency of our migration-based scheduling
algorithm, we have compared execution performance between
our migration algorithm and the default job scheduling, (i.e.,
static) in terms of serial and parallel program execution.

The rest of this paper is structured as follows: Section 2
discusses the system design, performance-affecting factors, and
our migration algorithm; Section 3 shows our performance
evaluation; Section 4 differentiates AgentTeamwork-Lite from
the related work; and Section 5 concludes our discussions with
the future work to be done.

II. METHODS

This section describes challenges and solutions in dynamic
job scheduling, the AgentFramework-Lite design, and its mi-
gration algorithm.

A. Challenges and Solution in Job Scheduling and Coordina-
tion

Run-time job scheduling and migration has the three fol-
lowing challenges.

1) Centralized scheduling: Most job schedulers use the
master node to keep track of each job execution. This
centralization behaves as a performance bottleneck
and a focal point of errors.

2) Static scheduling: Conventional parallel applications
such as MPI programs keep running on the same
machines until the end of the computation. This
static scheduling causes a run-time mismatch between
resource requirements and availability.

3) Job migration: In general, a parallel job requires a
user or a job scheduler to declare machines to be used
in a configuration file such as mpd.hosts in MPI. Job
migration must be able to change this configuration
file dynamically.



To address the above challenges, we have designed Agent
Teamwork-Lite: a field-based job dispatch and migration
framework. It consists of mobile agents to broadcast resource
information with UDP messages, to build an itinerary of the
best computing nodes, and to monitor and move job execution
to light-loaded nodes. The framework is designed with the
following design principles.

1) Decentralized grid: Each participating node peri-
odically advertises its resource information with a
UDP message so as to virtually create a computing-
resource potential field, which eliminates the master
node, adds new nodes, and remove unavailable nodes
in a distributed fashion.

2) Resource criteria: - Based on the computing-resource
potential field, each node finds where a job should
migrate. Therefore, users do not need to specify
destination nodes to run their job.

3) Job migration: - A mobile agent automatically carries
an assigned user job with it, regenerates a configu-
ration file for new destinations, and resumes the job
at the destination nodes. Therefore, all users have to
do is what data to capture and to retrieve upon a
migration.

B. System Design

AgentTeamwork-Lite is an enhancement to AgentTeam-
work. It reuses the AgentTeamwork execution platform and
agent framework. The main focus of AgentTeamwork-Lite is
self-organizing resource management and performance-centric
job migration. It consists of six execution layers as described
in Figure 1.

Layer 0: The hardware layer represents a list of computer
nodes connected to Local Area Network. Each segment repre-
sents a subnet. They are interconnected by WAN.

Layer 1: The UDP-broadcast space is an AgentTeamwork-
specific message broadcast layer that allows each computing
node to exchange resource information with UDP messages.
In general, UDP messages are limited within a single subnet.
However, our broadcast layer facilitates UDP broadcast across
subnets by establishing a TCP link between two representative
nodes in any pair of subnets.

Layer 2: UWAgents is a Java-based mobile-agent execution
platform we developed as part of AgentTeamwork [8]. Each
computing node runs a daemon process (named UWPlace) to
exchange agents.

Layer 3: The computing-resource potential field consists of
Potential-Field Agents (PFAgents) launched on a UWPlace
daemon at each node. A PFAgent periodically broadcasts its
local computing resource information including CPU power,
available memory size, and disk space. Such information is
broadcast in a UDP packet through the same subnet, relayed
to remote subnets through UDP relay nodes, and eventually
delivered to all remote nodes to calculate the best resource
itinerary.

Layer 4: Commander and sentinel agents accept and move a
user job respectively. Receiving a user job from a commander,
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Fig. 1. Execution layer.

a sentinel migrates over the computing-resource field to the
highest performance computing nodes for executing the job as
if they were electrons sliding down on an electric field. The
sentinel agent keeps interacting with PFAgents to move the on-
going job to even better nodes until it notifies the commander
of the job completion.

Layer 5: Middleware libraries includes MPI [3], OpenMP [2],
and MASS [9] (which we developed for parallel simulation)
libraries. The sentinel agent should support the resource file
creation that is required by these middleware libraries.

Layer 6: The application layer corresponds to user programs.
They are responsible for periodical snapshot capturing for job
migration purposes.

C. Performance-Affecting Factors in Job Execution

We define the measure of job execution performance as
the time elapsed for a job to run until its completion. Job
execution performance depends on system capability and pro-
gram behavior. System capability can be pre-determined with
a few system attributes including CPU and memory. However,
program behavior is hard to predict due to its dependency
on an application and run-time environments. Although CPU
and memory factors have a direct impact on job execution
performance, they do not have an equal impact. To study
their correlation, we measured job execution performance by
running a real application in a controlled environment. The
application execution time was measured under the following
three conditions: (1) no CPU and memory load, (2) 80%
CPU load only, and (3) 80% memory load only. For all the
experiments shown in the rest of this paper, we have used
computing nodes, each with the specification summarized in
Table I.

Table II shows average job execution time of Mandelbrot
and Wave2D MPI, each respectively running with a single
and three computing nodes. In Mandelbrot, (i.e., a sequential
program), the average time among five executions under no
load, 80% memory load, and 80% CPU load was 13.99, 14.06,



Resources Specification
CPU Xeon @ 1.8GHz with 1MB cache
#Cores 4 in total
Memory 2GB
Network 1Gbps

TABLE I. COMPUTING NODE SPECIFICATION USED FOR ALL
EXPERIMENTS

and 14.26 minutes respectively. This experiment indicates that
CPU load affected job execution time approximately 3.8 times
more than memory load. In Wave2D MPI, (i.e., a parallel
program), the average execution time under no load, 80%
memory load, and 80% CPU load was 15.09, 15.58, and 17.09
minutes respectively. The parallel execution showed the similar
trend: 80% of CPU load affected job execution four times more
than 80% memory load.

Execution Sequential Parallel
Programs Mandelbrot Wave2D MPI

min (slow-down) min (slow-down)
No load 13.99 15.09
80% Memory 14.06 (0.5%) 15.58 (3.2%)
80% CPU 14.26 (1.7%) 17.04 (12.9%)
Slow-down ratio 1.7/0.5 = 3.8 12.9/3.2 = 4.0

TABLE II. EXECUTION PERFORMANCE UNDER DIFFERENT CPU AND
MEMORY LOADS

These experiments indicate that CPU and memory load do
not have an equal impact to application execution time. The
ratio between CPU and memory factors varies between appli-
cations and nodes. However, CPU load affects job execution
at least three times more than memory load. Hence, we will
give a three-time higher weight to CPU power than memory
power when ranking each computing node. At the same time,
we have confirmed that both CPU and memory loads do not
affect job execution performance until their utilization exceeds
80%.

D. Migration Algorithm

We define our migration algorithm as a policy to govern
job migration, basically to determine a timing and a destination
to migrate, (i.e., when and where to migrate) a job.

1) When to migrate
It is determined by the rank of the current executing
node. A PFAgent calculates its local node i’s rank
from the system information as follows

ri = cpu idle[%] +
memory free[%]

3
(1)

In Linux, the “sar 1 1” (system activity report)
command gives the CPU load information in the last
one minute. The CPU idle percentage is calculated by
parsing the sar output. The “ps aux” (process status)
command gives the details of all processes of all users
in terms of CPU and memory information. Memory
free percentage is computed from its output column
“RSS” (real memory size). Based on our experiments
in Section II-C, we have given a three-time higher
weight to CPU than memory. Since our experiments
have also confirmed that 80% or more CPU and

memory utilization, (in other words, 20% or less CPU
and memory availability) slows down job execution,
we should move a job when the current node rank
drops down below rank = 20% + (20%/3) = 26%
or less. However, there is a time lag: each PFAgent
broadcasts its local system information every 60 sec-
onds and estimates the best node every two minutes.
Therefore, we should add some buffer to this rank.
For this reason, we decided to move a job when the
current node’s rank drops down to or below 45, (i.e.,
rank(ri) ≤ 45%).

2) Where to migrate
80% CPU load on a 1GHz CPU is not the same as
80% CPU load on a 2GHz CPU. Hence, we cannot
depend on each node’s individual rank to determine
the best node. We need to find out each node’s relative
rank with respect to its peers. The relative rank (Ri)
of node i is calculated as follows.
CPU power (ci) of a node i is calculated as:

ci = cpu idle[%]×#CPUs×#cores×cpu speed (2)

The CPU idle percentage is calculated from “sar”
output together with other CPU-related information,
the number of CPUs (#CPUs), the number of CPU
cores (#cores), and the CPU speed, all calculated
from the Linux system file “proc/cpuinfo”.
Memory power(mi) of a node i is calculated as:

mi = mem free[%]× total memory (3)

Total memory is calculated from linux command
“free -m”. Finally, relative rank(Ri) is defined as:

Ri =
cpu power(ci)

max(cpu power)
+

mem power(mi)
max (mem power)

3.0
(4)

Here max(cpupower) and max(mempower) refer to
the maximum CPU power and maximum memory
power among all the nodes in a user-defined cloud
space. Once all the relative ranks are calculated, each
PFAgent sorts them in a descending order. The top
node in the sorted list is the highest performance
computing node. In summary, a node’s individual
rank (ri) and relative rank (Ri) are used respectively
when and where to migrate.

III. PERFORMANCE EVALUATION

This section compares default versus our migration-
based scheduling, and discusses about AgentTeamwork-Lite’s
scheduling costs.

A. Default versus Migration-based Scheduling

We have used Wave2DMPI and Mandelbrot as benchmark
applications to study difference between AgentTeamwork-
Lite’s migration-based job scheduling and the default (i.e.,
static) job scheduling in terms of execution. The default
scheduling uses the same set of computing nodes until the
completion of a given job, whereas migration-based scheduling
moves the job execution to better performing nodes.



Fig. 2. Wave2DMPI default vs. migration-based scheduling execution.

Fig. 3. Wave2DMPI execution nodes’ rank (in default scheduling).

Wave2DMPI is a two dimensional wave simulation pro-
gram based on Schroedinger’s equation that calculates the
wave height on each cell, using its surrounding cells’ wave
height. This application is parallelized with the Java MPI
libraries [10]. The parallelization approach partitions a sim-
ulation space in smaller stripes, each assigned to a different
node.

Figure 2 compares the Wave2DMPI’s execution time with
the default scheduling and migration-based scheduling. This
job was executed with three computing nodes, and the simu-
lation size was set to 1000× 1000 units. The figure indicates
that migration-based scheduling completes the job execution
approximately 40% faster than the default scheduling.

Figure 3 records snapshots of the three computing nodes’
individual rank (ri) that participated in the default scheduling
when executing Wave2DMPI. During the course of execution,
the nodes’ ranks kept fluctuating due to their varying system
performance. In the most time, the individual rank (ri) of
these nodes was hovering around 40, which means that other
applications running on these nodes consumed the system
resources heavily (approximately 80%). This clearly explains
why we observed the longer execution time with the default
scheduling.

Figure 4 recorded the history of job migration when we
executed Wave2DMPI with AgentTeamwork-Lite’s migration-
based scheduling. It uses a combination of preemptive and non-
preemptive job migration. Preemptive job migration means
that a job is preempted, forced to migrate, and resumed at
a different node. Non-preemptive job migration takes place

Fig. 4. Job migration history in Wave2D with migration-based scheduling.

before job execution (i.e., initial job execution). In the figure,
a job was initially submitted to node uw1-320-00, which
spawned commander and sentinel agents. Since the sentinel
agent detected a better computing node than uw1-320-00, it
migrated to a next node in the itinerary which was uw1-
320-22 (in non-preemptive migration), created a resource file,
(i.e., mpd.hosts), and started the execution. After a while, the
sentinel agent detected that the current executing node’s (i.e.,
uw1-320-22’s) individual rank (ri) dropped below 46%, thus
suspended the job execution, and migrated to a next node
in the itinerary which was uw1-320-19. Since this migration
enabled the program to execute on better computing nodes, its
execution time was faster than the default scheduling.

We have also conducted performance evaluation with a
sequential application (i.e., a Mandelbrot fractal generator).
Fractals are a geometric shape where each pixel refers to a
point in a Mandelbrot set [11]. A point is considered to be in
the Mandelbrot set if it converges to a given number after a
predefined number of iterations, which requires computational
intensive calculation. For example, a 600 × 800 pixel image
can use up to maximum iterations of 500,000 for each of its
pixel. This program is developed in Java.

Figure 5 compares Mandelbrot’s execution time between
the default scheduling and migration-based scheduling. This
job was executed with a single computing node to generate
a 1000 × 1000 pixel fractal image with the max iterations
set to 200,000. The figure indicates that the migration-based
scheduling completed the job execution approximately 15%
faster than the default scheduling.

Figure 6 records the snapshots of the computing node’s
individual rank (ri) that executed the Mandelbrot fractal with
the default scheduling when executing the Mandelbrot fractal.



Fig. 5. Mandelbrot fractal execution with default vs. migration-based
scheduling.

Fig. 6. Node rank transition in Mandelbrot fractal execution with default
scheduling.

Before executing the job, the node’s individual rank (ri) was
at 50, but during program execution, it dropped down below
10. At the end of the execution, the rank came back to 50
again. Most likely Mandelbrot consumed the system resources
heavily that caused the individual rank to drop from 50 to 10.

Figure 7 recorded the history of job migration when we
executed Mandelbrot with AgentTeamwork-Lite’s migration-
based scheduling. In the figure, a job was initially submitted
to node UW1-320-00 that spawned a commander and sentinel
agents. Since the sentinel agent detected that there were higher-
ranked nodes than UW1-320-00, it migrated to one of these
promising nodes in the itinerary which was UW1-320-20, and
started the job execution there. After a while, the individual
rank (ri) of node UW1-320-20 dropped below 46%. Therefore,
the sentinel agent suspended the job execution and migrated
to a higher-ranked node in the itinerary, which was UW1-
320-16. Even with the sequential job execution, we confirmed
that AgentTeamwork-Lite’s migration-based job scheduling
executed job faster than the default scheduling.

B. AgentTeamwork-Lite Overhead

We analyzed AgentTeamwork-Lite’s overhead in terms of
job execution cost and migration cost. The job execution cost
is the time elapsed to run a job until its completion. The
time observed with AgentTeamwork-Lite is a few seconds
more as compared to direct execution. Since the sentinel agent
checks the job completion at a regular interval (i.e., every two
seconds), the commander agent will always receive a delayed

Fig. 7. Job migration history in Mandelbrot with migration-based scheduling.

Fig. 8. Direct vs. AgentTeamwork-Lite execution.

job-completion message that can be up to the maximum of two
seconds. Figure 8 compares the Wave2DMPI’s execution time
between the direct and AgentTeamwork-Lite’s execution. The
average time difference between direct and AgentTeamwork-
Lite’s execution is 24 seconds, which corresponds to only
3.17% of the direct execution time.

The job migration cost is the total time involved in sus-
pending the job execution and resuming it at a different node.
Since a job is periodically check-pointed at the user level,
the job-capturing overhead depends on a user program. For
migration, the sentinel agent simply exits from the current
executing node and starts at a remote node. When the sentinel
agent resumes at a remote node, it passes additional command-
line switch “resume” to the user program that resumes the
program execution with latest data snapshot at the user level.
(Therefore, the data retrieval also depends on a user program.)
Hence, the sentinel’s job migration cost itself is in a negligible
amount (i.e., several hundred milliseconds). Figure 9 shows a
sentinel agent’s job migration cost when running Wave2DMPI
with AgentTeamwork-Lite.

IV. RELATED WORK

AgentTeamwork-Lite is differentiated from the following
systems in terms of migration-based scheduling, parallel ap-
plication scheduling, and resource discovery.

GridLab Resource Management System (GRMS) is an
open source dynamic grid (re-)scheduling system with job
migration [12], based on Globus Toolkit 2.4 [13]. GRMS
connects to the low-level Globus services that are deployed
onto remote resources through Java and C APIs. With these



Fig. 9. Job migration cost of Wave2DMPI.

services, system designers can implement various rescheduling
policy plug-ins. Both AgentTeamwork-Lite and GRMS use
migration-based job scheduling. The difference is that GRMS
initiates job migration when the system suffers from the
lack of resources and thus reallocates a substantial amount
of resources from the current to a pending job, whereas
AgentTeamwork-Lite aims at improving the execution time
of the current job. Another difference is that GRMS requires
a user to specify resource requirements along with a job
submission, whereas AgentTeamwork-Lite does not use user-
specific requirements. In GRMS, the resource discovery mod-
ule uses both central (GIIS) and local information services
(GRIS), whereas in AgentTeamwork-Lite, resource discovery
is achieved among PFAgents through their message broadcast.

Condor is a workload management system specialized
for compute intensive jobs [14]. A condor-pool consists of
(1) a master node that runs as a central manager and (2) a
number of other machines that join the pool as participating
resources. The central manager periodically receives status
updates from the other machines, and performs match-making
between a new job and the most suitable computing node.
Condor moves a job execution when the current executing
node does not meet user-specified resource requirements. A
system-level checkpoint is generated whenever it detects to
move a job from one to another machine. A program must be
linkage-edited with the Condor compiler in order for Condor
to intercept system calls and to capture on-going computation.
However, the program should not invoke multi-process calls
(namely fork(), system(), etc.), inter-process communi-
cation, network communication, alarms, and timers. Hence,
Condor does not currently support job migration for parallel
applications. (Note that Condor-MW used to support master-
worker parallel programs where the master process had to take
care of all snapshots of the worker processes.) Contrary to
Condor, AgentTeamwork-Lite performs decentralized resource
monitoring with distributed PFAgents. Since AgentTeamwork-
Lite uses application-level multi-process check-pointing and
dynamically changes a configuration file such as MPI’s
mpd.host, it supports job migration for parallel applications.

V. CONCLUSIONS

This paper presented AgentTeamwork-Lite’s system design
and its execution model. Our field-based job dispatch and
migration relieves users from specifying computing resource
requirements for their job execution. Our analysis has also

demonstrated advantages of AgentTeamwork-Lite’s migration-
based job scheduling over default scheduling. At present we
have completed the AgentTeamwork-Lite web portal where we
can schedule computing jobs within the UW Bothell campus.
Our future plan includes (1) automating computation check-
pointing, (2) testing AgentTeamwork-Lite with cloud services
such as Amazon EC2, and (3) supporting more parallel li-
braries such as GlobalArray [15] and our MASS library [9].
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