
A Mobile-Agent-Based PC Grid

Munehiro Fukuda Yuichiro Tanaka Naoya Suzuki Lubomir F. Bic
Shinya Kobayashi

Computing & Software Systems, University of Washington, Bothell mfukuda@u.washington.edu
Fujitsu Corp., Japan tanaka@fujitsu.co.jp

Information Sciences & Electronics University of Tsukuba, Japan nas@is.tsukuba.ac.jp
Information & Computer Science, University of California, Irvine bic@ics.uci.edu

Computer Science, Ehime University kob@cs.ehime-u.ac.jp

Abstract

This paper proposes a mobile-agent-based middleware
that benefits remote computer users who wish to mutually
offer their desktop computing resource to other Internet
group members while their computers are not being used.
Key to this resource exchange grid is the use of mobile
agents. Each agent represents a client user, carries his/her
job requests, searches for resources available for the re-
quest, executes the job at suitable computers, and migrates
it to others when the current ones have become unavailable
for use. All the features of job migration will be encapsu-
lated in a user program wrapper that is implemented on a
Java layer between a mobile agent and the corresponding
user program. The wrapper maintains the complete exe-
cution state of the user program, is carried by the mobile
agent upon a job migration, and restores its user program at
its destination. For this purpose, a user program is prepro-
cessed with JavaCC and ANTLR to include check-pointing
functions before its execution. These functions periodically
save the execution state of a user program into its corre-
sponding program wrapper, which can thus be carried by
an agent smoothly.

1 Introduction

In spite of its ambitious goals, grid computing still ben-
efits only a handful of researchers who are free to forage
among supercomputers and high-performance workstations
for their computation-intensive projects. The majority of
users, on the other hand, have few opportunities to access
such computing facilities and are assumed to pay little at-
tention to computational grids in favor of their own desk-
top computing environments. However, if they could autho-
rize each other to mutually use their computers, a collection

of such desktop machines would consistently provide them
with an enormous computing resource, especially for their
time-critical needs (e.g., running multi-user game software,
backing up their files upon computer replacement, running
scientific simulations as instructive laboratory assignments,
and stock market analysis). As one example, Bayanihan
Computing.NET [17] is an academic endeavor that has been
launched to collect and to use desktop computers for grid
computing.

As an attractive option for forming a computational grid
of desktop computers, we focus on an arrangement analo-
gous to moderated Internet discussion groups, where mem-
bers can offer their resources to their group members when
they leave their computers unattended. To join such a com-
putational grid, a user would provide a group moderator
with his/her identity, computing resource information, and
lease conditions. Resource search could take the same form
as signing into a discussion group, followed by searching
for group members to discuss with. At a first glance, the
only important problem seems to be finding a method for
job deployment to remote machines. However, desktop
computers belonging to an Internet discussion group bring
up aspects that are quite different from those connected us-
ing a SAN or LAN: they are powered on and off without
a prior notice, they are under the full control of their own-
ers, they may be located behind a gateway and thus have a
private IP address, and their resource information may not
be properly registered with the Internet group. One solu-
tion is periodic resource mining or job status probing con-
ducted by job coordinating brokers, such as a web server in
Bayanihan Computing.NET or a collection of static agents
in NetSolve [15].

Contrary to this solution, our approach is to have a mo-
bile agent represent a client user and coordinate his/her job
over a computational grid of desktop computers. Mobile
agents are capable of autonomously navigating over net-
works and launching network tasks, with which a user job

can mine available resources and migrate from one com-
puter to another whenever the current resource becomes un-
available. A central technical challenge is user process mi-
gration, extending its target to multiple processes working
together in parallel, thus communicating with each other,
which requires not only capturing a process state but also
forwarding messages to migrating processes. We plan to
encapsulate these migration features in a Java user program
wrapper between the agent and the corresponding user pro-
gram. This wrapper will capture the state and all messages
to the user program, and will be carried by the agent upon
job migration. For this purpose, a user program is prepro-
cessed using JavaCC [12] and ANTLR [1] to implicitly in-
teract with the user program wrapper.

As preliminary work, we have developed the first pro-
totype that deploys a mobile agent to a PC cluster best fit-
ting the client’s request, executes a multiprocessor job there,
and has the agent bring back the results. In this paper,
we discuss our motivation for using mobile agents and the
overview of our proposed system in Section 2, explain the
key design in Section 3, show our preliminary and on-going
work in Section 4, differentiate our design from other re-
lated work in Section 5, and present our final comments,
future work and potential applications in Section 6.

2 Motivation and System Overview

We focus on the following three middleware features
necessary to form a computational grid of desktop com-
puters distributed over the Internet: (1) searching for and
allocating to a job a system resource that may change dy-
namically, (2) migrating a process to a newly available
machine, in particular when the current machine is at-
tended by its owner or even powered off, (3) supporting
network-transparent communication among migrating pro-
cesses, some of which may run at a machine located behind
a gateway or a firewall.

Mobile agents, since their emergence in the mid 90’s,
have been considered as a mechanism to automate infor-
mation retrieval, e-commerce, and network device manage-
ment. Unfortunately, since almost all of those application
domains are feasible using traditional client-server script
programming and too broad to dispatch mobile agents, they
have yet to find their ”killer applications”. However, we
feel that mobile agents can reach their potential by im-
plementing the above middleware features for the follow-
ing reasons: (1) all desktop computers in a grid are pre-
registered to a trusted Internet group, which thus firmly de-
fines the range where mobile agents may migrated as well
as the interface through which they communicate; (2) their
state-capturing and migration mechanisms help a user job
to smoothly check-point and migrate to another site; and (3)
with an HTTP-tunneling transfer technique, mobile agents

Resource
Database

PC Cluster

LAN

Moderated Internet Group

Client PC

1. Search for PCs

2. Launch Jobs

3. Support User CommunicationUser
Process

User
Process

Figure 1. The proposed PC grid overview.

may carry with them messages exchanged among comput-
ers that are engaged in the same job. Although the tradi-
tional scripts could still address some of the problems dis-
cussed above, mobile agents can demonstrate their superior-
ity in dispatching, check-pointing, and migrating user jobs.

Figure 1 shows an overview of the middleware for a com-
putational grid of desktop computers implemented with mo-
bile agents, each carrying out a job submitted from its client
user. A computation scenario in our proposed middleware
is as follows:

To form a PC grid society, a moderator starts an Inter-
net group that maintains each group member’s information
in its database. Needless to say, multiple Internet groups
can be organized using the Globus Metacomputing Direc-
tory Service (MDS) [5]. Each user creates a guest account,
runs a web server, registers his/her computer information to
the Internet group, and receives a mobile-agent execution
engine that can be triggered through a web access. After
signing into a grid Internet group, a user invokes a mobile
agent that opens a menu window to prompt for user instruc-
tions for resource search. A user job and its related file
names will be passed to the mobile agent.

Upon job submission, a mobile agent accesses the group
database to look for computers satisfying its client request.
In cases where there are no such machines, the agent re-
peatedly visits other group databases by traversing MDS
or every participating computer until it mines the machine
best fitted to run a job. For migration, the agent uses an
HTTP tunneling technique in which the agent is delivered
as an HTTP message and thereafter is resumed by a servlet
at each destination. All the information retrieved through
resource search could be reflected to the group database.

Upon locating a computer to run a user job, the mobile
agent uploads all files necessary for execution from its client

2

to this target computer. If the client needs two or more ma-
chines, the agent spawns child agents and dispatches each
child to a different computer where it in turn launches and
monitors a user process. When a remote computer becomes
unavailable during job execution, the monitoring mobile
agent migrates the corresponding process to another avail-
able machine. Such process migration requires an execu-
tion snapshot. For this purpose, a language preprocessor
is needed to automatically insert check-pointing functions
into user source code at compilation time. A back-up snap-
shot is periodically stored in several machines in the grid, so
that a mobile agent can retrieve a suspended process from
the latest snapshot. Upon a termination of the client’s job,
a mobile agent carries back to the client all updated files
including computation results.

3 Key Design

As shown in Figure 2, our proposed system consists
of four layers: (1) a collection of client nodes and group
servers, all connected to a network, (2) mobile agents rep-
resenting a client user and taking care of its job execution,
(3) Java wrappers, each wrapping a user program, and (4)
user programs written in Java or C/C++.

There are five technical challenges to implement our
mobile-agent-based middleware. The first is how to de-
ploy mobile agents to remote computers under the famil-
iar restriction where only a few common TCP/IP ports are
available for use. The second is how to take process snap-
shots. Our strategy is to insert snapshot functions into a
user program at compile time, and thus the third challenge
is how to preprocess a user program. Since we assume each
participating desktop computer may be powered off at any
time, process snapshots must be maintained in a distributed
fashion and retrieved by mobile agents at newly available
machines. This is the fourth challenges. Finally, the fifth
challenge is how to facilitate communication among pro-
cesses that execute the same job but may be migrated. The
following introduces our solutions to these technical issues.

3.1 Agent Transfer

The current security trend closes all but a few major
TCP/IP ports, such as sftp, ssh, and http. It is therefore
getting infeasible to assign a new port to agent transfer.
In addition, a user may be reluctant to run an additional
daemon process in charge of handling mobile agents. An
HTTP tunneling technique addresses this problem by en-
closing a mobile agent into an HTTP message and sending
it to a destination HTTP server. For this purpose, an HTTP
server at each desktop machine must prepare a specific web
page where a servlet receives, extracts and interprets such

Resource
Database

Snapshot
Methods

Messaging
Methods

User program wrapper

Snapshot
Methods

Messaging
Methods

User program wrapper

JNI

JavaCC

Java RMI

JNI

JavaCC

Java RMI

HTTP tunneled Agent/Message Transfer HTTP tunneled Agent/Message Transfer

ANTLR/JNIANTLR/JNI

User Programs

User Program
Wrapper

Mobile Agents

Physical Layer

Program Program
Java User Java User

Program
C/C++ User

Program
C/C++ User

Figure 2. The four-layered PC grid environ-
ment.

HTTP-enclosed mobile agents. For security, we will actu-
ally use secured HTTP communications and the Apache-
SSL server, both of which deal with client/server authenti-
cation and spontaneous message encryption.

3.2 Execution Check-Pointing

Our check-pointing scheme is to insert state-capturing
functions into a user source code with a language prepro-
cessor. Since a user program itself is not a mobile agent
and thus does not include any migration-initiation state-
ments, such as go() or hop(), we must insert such state-
ments between consecutive blocks of computation, such
as for/while loops. For this purpose, we plan to use two
compiler-compiler tools: ANTLR for C/C++ and JavaCC
for Java source code. The reason we include Java is that we
assume two levels of job execution. One is native execu-
tion where applications are coded in C/C++, possibly using
PVM and MPI, compiled thoroughly, and executed directly.
The other is Java-based execution where applications are
outlined in Java or even in JPVM to invoke existing C/C++
library modules and executables.

Our blueprint for check-pointing is based on the four lev-
els of implementation: mobile agents, user-program wrap-
pers, Java user programs, and C/C++ user programs.
Mobile agent level: The mobile agent is mainly in charge
of job coordination, i.e., controlling where and when to run
a user job. The actual check-pointing work will be per-
formed above the mobile agent level.
User-program wrapper level: This is a Java object, in-
stantiated by a mobile agent at a remote computer. The
user-program wrapper monitors the execution state of a user

3

process and funnels all TCP/rsh-based messages from the
user process to it. The wrapper thereafter transfers those
messages to the mobile agent that can then deliver the mes-
sages to other computers participating in the same job exe-
cution. For this purpose, a wrapper provides state-capturing
and message-forwarding methods that are to be called from
the user program. Whenever a process needs to be migrated,
the mobile agent serializes, carries with it, and de-serializes
this wrapper object to a new destination, from which the
process can be resumed.
Java user program level: A user program may be outlined
in Java to execute precompiled native code, in which case
a snapshot can be taken between any two native code invo-
cations (but not during each native execution). This will
be implemented by inserting the user-program wrapper’s
check-pointing methods into the Java source code. At a very
early stage of our implementation, a user will be advised to
manually add such methods in his/her Java program, how-
ever our ultimate implementation will use JavaCC for auto-
matic method insertions.

Similar to most existing Java-based mobile agents [16,
14], the main restrictions are two-fold: one is that all child
Java threads will be terminated upon a migration, and the
other is that all I/O operations local to the previous machine
will not be forwarded.
C/C++ user program level: A user program may be en-
tirely coded in C/C++ and executed in native mode. Our im-
plementation at this level takes the same strategy as the Java
user program level, and uses ANTLR and JNI to automat-
ically insert user program wrapper’s methods into C/C++
source. This state-capturing however incurrs more restric-
tions in multithreading, I/O, memory, and IPC operations
than the Java level.

We will address some of those restrictions, using our
former research outcome. Multithreading at native level
is made mobile with our M++ self-migrating threads [7].
Given a user program spawning pthreads, our language pre-
processor will convert all those pthread functions to the
corresponding M++ thread functions that internally cap-
ture each thread status with setjmp and longjmp functions.
Dynamic memory can be also carried with a user program
by facilitating the allocation and deallocation of a system-
predefined data type whose instances are all serialized upon
a migration [6].

As a result, the proposed system applies some restric-
tions to Java and native programs as summarized in Table 1.

3.3 User Program Preprocessing

Java and C/C++ applications must be preprocessed with
our JavaCC/ANTLR-based preprocessor to include check-
pointing methods, with which the corresponding user-
program wrapper takes an execution snapshot. The imple-

Items Java level Native level
Threads Terminated upon a process Emulated by M++ threads

migration but restricted to homo-
geneous architecture

Local I/O Not forwarded Not forwarded
Memory Serializable objects only System-predefined objects

only
IPC TCP messages only TCP messages only

Unix pipe/msq excluded

Table 1. Programming restrictions.

mentation of check-pointing methods is a similar issue in
strong migration of mobile agents. There are three possible
implementations:

1. Inserting setjmp and longjump: These functions are
effective for saving and resuming an execution envi-
ronment, including a program counter [7]. They are
however available only for native programs based on a
homogeneous architecture.

2. Inserting if-else clauses: Upon its initial execution, a
user program executes the if clause that takes a snap-
shot of variables. Upon migration, the else clause is
chosen to restore the variables [11]. This scheme is
useful for Java, which does not allow manipulation of
a program counter.

3. Dividing user code: This is our original algorithm
implemented in the UCI-MESSENGERS mobile agent
system [2, 22]. A user program is divided into two
different functions before and after a state-capturing
statement. A process initiates its migration upon ter-
mination of the first function execution, and it calls the
second function after it has migrated.

We will take the options 1 and 3 for capturing execution
state at native and Java level respectively. Option 1 allows
C/C++ user programs to migrate within only homogeneous
desktop machines, which is not a severe restriction, if we
take into a consideration the following two factors: a plenty
of homogeneous desktop computers are to join a grid, and
we can remove overhead, such as program recompilation
and data conversion, incurred by process migration to het-
erogeneous computers.

3.4 Snapshot and Consistent Cut Maintenance

All snapshots taken by each user-program wrapper must
be maintained in non-volatile storage for anticipated job re-
covery. To avoid disk overflow or any failure stops, such
snapshot maintenance should involve more computers than
a single client or group server.

The quorum-based protocol is a well-known replication
algorithm that can retrieve the latest snapshot from a group

4

of back-up storage devices. One easy implementation is
saving/retrieving a snapshot copy into/from more than half
of all participating processes. However, as more computers
are involved in the same job, the required communications
also become more frequent. To address this problem, we
need to restrict the number of snapshot-maintaining com-
puters ultimately down to those communicating with each
other within a certain time quantum. This may, on the other
hand, retrieve an older snapshot (although this occurs only
in pathological cases). We have started to evaluate such
miss-retrieval possibilities under various conditions. In our
proposed middleware, a mobile agent receives user input
that accepts or rejects future possibility of an older snap-
shot retrieval and repetition of identical computation. In the
latter case, the agent uses the quorum-based protocol for
snapshot maintenance.

To safely garbage-collect unnecessary old snapshot from
back-up storage, we plan to use the global consistent cut al-
gorithm we have proposed in [13]. This algorithm logically
forms a hierarchical ring connection of computers, each re-
porting its latest snapshot to and receiving a new consistent
cut from the upper layer of the ring. The top ring includes
multiple machines, so that no one centralizes all snapshots.
Furthermore, each ring is re-configurable when detecting
faulty computers. While we have shown (by simulation) its
performance to be competitive with other major algorithms,
this mobile-agent-based middleware will be its first practi-
cal implementation and empirical evaluation.

3.5 Inter-Process Communication

Since a process may migrate to another site or may run
at a machine located behind a gateway, thus with a private
IP address, it can be quite difficult to locate a user pro-
cess with a physical IP address. Instead, we propose that
each process involved in the same job be addressed with
a sequential number only valid inside this job, (termed a
middleware-unique ID). Such ID must be translated into an
appropriate IP address every time a job is migrated. If a
mobile agent has launched a user job at a computer resid-
ing behind a gateway, namely one that is IP-masquerading,
it first sends an empty message to the group server or the
client machine, so that the masquerading machine is given
a temporary IP address and is thereafter identified from out-
side of the gateway.

The user-program wrapper is in charge of supporting
inter-process communication based on middleware-unique
IDs. A user process calls the wrapper’s message-forwarding
method, passing the middleware-unique ID of its destina-
tion process. Each message is first passed to the correspond-
ing mobile agent that tracks all machines participating in the
same job execution. This means that the agent maintains a
table that translates a middleware-unique ID to the corre-

sponding IP address. The agent then delivers the message
over HTTP to the actual destination.

Previously, the Mach operating system has supported
such location-independent IPC mechanism in its port mi-
gration mechanism [10] that broadcasts the latest port posi-
tion to every node in the system with a periodic token mes-
sage. This may however not be extensible to a grid mid-
dleware. Some scalable algorithms have been introduced
in [18] for message delivery: (1) tracing the footprints of a
migrating process en route to the latest destination, (2) hav-
ing a central server forward a message to the latest destina-
tion, and (3) inquiring of the latest destination from where
the process was originated only when a message has been
returned. Because of the distributed and independent na-
ture, we will extend algorithm 3. Our extension is that,
whenever a mobile agent migrates its user process to an-
other machine, it reports the new address to only those that
have communicated with this process within a certain time
quantum. This does not require that any machine become a
single point of data collection. If a job runs as multiple pro-
cesses, some of them must communicate with each another
at least once, which guarantees that each process destina-
tion is tracked by mobile agents managing those processes.
One drawback to this is that, when a process initiates its
first communication with another process that might have
been migrated somewhere, it must query the correct loca-
tion from all processes.

4 Project Status

4.1 Preliminary Experiment

We have developed a CoordAgent prototype [8], which
deploys a mobile agent to a PC cluster best fitting its client’s
request, executes a multiprocessor job there, and has the
agent bring back the results. The CoordAgent system con-
sists of five main modules: (1) XML as a resource descrip-
tion language, (2) servlets as user and system administra-
tor interface, (3) per-cluster agents as resource managers,
(4) mobile agents as user representatives, and (5) FastCGI
processes as inter-cluster communication proxies. Broadly
speaking, each user orders a job request through a servlet
that converts it into XML and deploys a mobile agent with
this XML description. The agent negotiates with a per-
cluster agent every time it visits a new cluster, launches a
user job, and reports results to the client.

The CoordAgent system is based on a cluster configura-
tion that may consist of multiple computing nodes; all these
nodes have the identical CPU architecture; they are under
the control of NFS; and at least one of them has a public
IP address, and thus is accessible from the external network
(termed a cluster gateway). Figure 3 illustrates the environ-
ment presented in the gateway of each cluster. (Non-shaded

5

tree
DOM

Operating Systems

Navigation

Navigation

Users
Administrators

Each Cluster

Resource Database
(Java)

Voyager ORB

Agent
Per-Cluster

User Mobile
Agent

System Mobile
Agent

Resource.xml
Status.xml
Global.xml

User Interface
Servlet

System Interface
Servelt

Web Server

Figure 3. Prototype configuration.

components have been designed by us, while shaded ones
are freeware.) The Voyager ORB [16] was used as the un-
derlying mobile agent workbench. The main reason behind
this choice was its dynamic aggregation feature permitting
mobile agents to dynamically load new class objects into
themselves and thus used to evolve agent behavior in re-
sponse to runtime system reconfiguration. On top of the
Voyager ORB is a per-cluster agent that schedules a user
job launched from his/her mobile agent. In addition, each
cluster gateway is supposed to run an HTTP server where
two servlets are registered to provide interface to users and
administrators respectively. The former submits a user mo-
bile agent upon receiving a job request, while the latter may
deploy a system mobile agent in case the remote clusters
need to update their configuration. Those two types of mo-
bile agents navigate over a predefined region of clusters to
complete their missions.

We have evaluated the preliminary system performance
using one front-end desktop computer and three clusters,
each specified in Table 2. The experiment was to submit
a parallel program that randomly exchanges MPI messages
among processors. As shown in Figure 4, such job sub-
mission has requested four nodes of a cluster that is based
on the Intel-386 architecture, controlled by Solaris, and
equipped with 128M-byte memory per node. The user in-
terface servlet converts this request into a job-descriptive
DOM tree and passes it to a user mobile agent. Through
network navigation, a user mobile agent finds that Cluster
1 satisfies this job request, executes an MPI program there,
and displays a result onto a monitor. It took 100.53 seconds
for this MPI program to complete its execution at Cluster
1. The turn-around time from the agent deployment to the

Resource types Cluster 1 Cluster 2 Cluster 3
CPU architecture 386 Sparc 386
#Nodes 8 8 12
Memory 128 64 256
Network card Myrinet Ethernet Myrinet
Bandwidth (Mbps) 1000 100 1000
OS type Solaris Solaris Linux
OS version 2.7 2.7 2.47
Application MPI MPI OpenMP

M++ OpenMP

Table 2. Experimental machine specification.

outcome presentation was 109.29 seconds. Therefore, the
CoordAgent system itself incurred 8.76 seconds as its over-
head, which occupied only 8% of the total cost. It is true
that such overhead depends on application size, server per-
formance, and network latency. More overhead is antici-
pated as we plan to have an agent migrate its correspond-
ing user process to a more suitable machine at run time.
Therefore, in order to complete a full implementation of the
proposed middleware, we need additional performance im-
provement and software development as discussed in the
following subsection.

4.2 Current Status

Based on the preliminary experiment, we have started
our implementation of the proposed middleware with the
following work:

1. Resource database reconstruction:

In the CoordAgent prototype, a user mobile agent had
to visit each cluster until finding the one best suited
to execute its user job. This resource search is obvi-
ously not scalable for a grid environment involving a
large number of desktop computers. Therefore, as in
the specification of the proposed middleware, a grid re-
source database is necessary to manage all the resource
information on a group of grid-participating machines,
which will allow a mobile agent to reach suitable com-
puters in most cases immediately after visiting the
database. However, we still have each machine main-
tain its local resource database that is useful for a user
mobile agent to monitor the local resource.

Another problem is XML-based resource descriptions.
XML files may be still feasible for describing a client’s
job request but not for all computing resource of the
participating computers. Because of this reason, such
resource information should be maintained using a

6

Figure 4. A job submission.

more performance-oriented database with JBDC inter-
face.

2. Mobile-agent workbench re-development:
The CoordAgent prototype used the Voyager ORB
as our underlying mobile-agent workbench in order
to take advantage of its dynamic aggregation feature.
However, to complete the proposed middleware, we
must encapsulate a mobile agent in an HTTP mes-
sage and keep track of the latest position of all mobile
agents involved in the same user job. It is not realistic
to modify Voyager to meet our specification, especially
in the current situation where it is now provided only
on a commercial basis. Therefore, we decided to mod-
ify UCI-MESSENGERS, our original C-based mobile
agent system, into a Java-based system and to enhance
its features.

Although our implementation is still in a very prelimi-
nary stage, the current status includes: MESSENGERS’ mi-
gration features have been re-implemented on a Java layer;
grid and local resource databases are under construction us-
ing MySQL; and a user program wrapper is in a design
phase.

5 Related Work

This section differentiates our system from other middle-
ware systems based on process migration or agents.

Process Migration: The Condor system [4] is one of the
most popular job schedulers/dispatchers used in collections
of distributed workstations and dedicated clusters. It is
based on process migration. Running on each computing
node, the Condor daemon locates and dispatches a submit-
ted job to the node best suited to performing the job. If a par-
ticipating node has been overloaded or can no longer keep
providing its requested resource, the Condor daemon takes a
snapshot of the job and resumes it on another node. Job sub-
mission takes a description including not only the requested
computing resource, (e.g., OS type, number of processors,
etc.) but also job dependencies and suspension/resumption
control.

Due to its snapshot algorithm using a process core dump,
Condor is suitable for scheduling a collection of indepen-
dent processes in a batched manner. However, some appli-
cations may need to run interactive, communicating, and/or
multithreading processes. Our proposed middleware will
address such execution by having a mobile agent maintain
a communication channel with its client user and spawns
child agents, each managing one user process and support-
ing inter-process communication.
Agent-Based Resource Allocators: NetSolve is a well-
known system that uses an agent-based approach for re-
source allocation [15]. The system provides user programs
with an RPC environment. A NetSolve agent accepts client
requests and dispatches each request to the most suitable
server. Working at a particular site, it maintains a di-
rectory of available remote resources and monitors their
status. Each agent dynamically locates the servers for,
flexibly marshals arguments of, and schedules the sequen-
tial/parallel invocation of desired RPCs.

The main difference with our proposed middleware is
that a NetSolve agent is local to one site and intended to
orchestrate each application’s RPCs over the network, while
we use mobile agents to dispatch an entire job.
Mobile-Agent-Based Software Installation: MASA is a
proposed system that allows those involved in IT manage-
ment to dispatch their mobile agents to a target machine
where the agents refer to a site-specific access list, authorize
each others, and complete a software installation coopera-
tively [21]. Notable is their emphasis on multiple authoriza-
tion that is situation-sensitive but not task-oriented. Such
a software installation will be performed successfully only
when all agents representing an IT manager, an installer,
and users have agreed to the installation in a predefined se-
quence.

In MASA, mobile agents representing different users
perform a task at a specific site cooperatively. On the other
hand, each mobile agent in our middleware searches avail-
able sites and launches a parallel job there by spawning
child agents.
Mobile-Agent-Based Process Management: Catalina: a

7

smart application control and management [9], an active
grid-monitoring system using MAP agents [20], and a grid-
computing model with J-SEAL2 [3] are mobile-agent-based
systems proposed for computational grids.

In Catalina, an application-delegated manager (ADM)
assigned to each application launches a mobile agent termed
a task agent to monitor and manage each task execution.
Their agents are characterized as sentinels reporting their
job status to and ordered a next behavior by ADM, the
commander which centralizes the entire system’s status.
Each agent of Catalina is capable of monitoring and check-
pointing its job, so that a job can be resumed at another
available computing node for the purpose of fault tolerance
and load balancing. Since ADM works as a message center
and a snapshot database, it is in charge of not only relaying
all messages delivered to each job but also collecting all job
execution history.

In MAP, each agent has its different mission — such as
network monitoring or event handling. Cooperative work
among such independent agents maintains quality of ser-
vice in executing an entire user application. The system fo-
cuses on improving network performance rather than taking
care of each user’s job execution, and therefore its main task
is system monitoring and message rerouting. MAP uses a
central directory for resource search and a static resource
allocation algorithm.

In J-SEAL2, a client user contacts an operator, a job-
coordinating server for dispatching his/her job to a group
of available computing nodes termed donators. The opera-
tor deploys a J-SEAL2 agent, termed a deployment mobile
agent to each donator. A deployment agent passes its user
job to the donator where a mediator process controls job
launching, monitoring, suspension, and resumption. The
deployment mobile agent reports back job execution sta-
tus and results to the operator that makes further decision
on job management. This computation model assumes that
each mobile agent acts as a relay between the operator and
the donators.

These systems’ design principle overlaps with our pro-
posed middleware in terms of using mobile agents, how-
ever the originality of our approach lies in having each mo-
bile agent independently and entirely take care of a differ-
ent client job from resource search to job migration. We are
more concerned with job migration in order to cope with
computing nodes that are powered off frequently.

6 Conclusions

This paper has proposed a mobile-agent-based middle-
ware that mainly benefits remote desktop computer users as
a mutual computing-resource exchange. The project com-
bines the enhancement of a mobile agent platform and the

behavioral design of mobile agents to keep allocating com-
puting resources available to a user job.

Our target is distributed computing applications that tend
to execute a long-running process or to repeat the same
computation with different parameters over a collection of
computing nodes. These include distributed scientific data
management, parallel and distributed simulation, and in-
structive laboratory work in distance education. As a par-
ticular application, the proposed middleware will be used to
build UW Bothell’s LOGOS system [19] that automates a se-
ries of scientific data management processes such as query
interpretation, knowledge (in the form of rules), data, and
algorithm retrieval, plan generation, and data analysis, in
each phase of which mobile agents will allocate computing
nodes best fitting LOGOS’ variety of requirements.

Based on our preliminary experiments, we have started
updating CoordAgent toward the proposed middleware.
The entire system including a user program wrapper, a lan-
guage preprocessor, and check-pointing/snapshot mainte-
nance features will be implemented in collaboration among
UW Bothell, UC Irvine, and Ehime University.

References

[1] ANTLR Website. http://www.antlr.org/.
[2] L. F. Bic, M. Fukuda, and M. B. Dillencourt. Distributed

computing using autonomous objects. IEEE Computer,
Vol.29(No.8):55–61, August 1996.

[3] W. Binder, G. D. M. Scrugendo, and J. Hulaas. Towards a
secure and efficient model for grid computing using mobile
code. In Proc. 8th ECOOP Workshop on Mobile Object Sys-
tems: Agent Application and New Frontiers, Malaga, Spain,
June 2002.

[4] Condor Project. http://www.cs.wisc.edu/condor/.
[5] I. Foster and C. Kesselman. The Globus Project: A Status

Report. In Proc. IPPS/SPDP’98 Heterogeneous Computing
Workshop, pages 4–18, 1998.

[6] M. Fukuda, N. Suzuki, and L. F. Bic. Introducing dynamic
data structure into mobile agents. In Proc. of the 1999 Int’l
Conf. on Parallel and Distributed Processing Techniques
and Applications - PDPTA’99, pages 1854–1860, Las Ve-
gas, NV, June 1999.

[7] M. Fukuda, N. Suzuki, L. M. Campos, and S. Kobayashi.
Programmability and performance of m++ self-migrating
threads. In Proc. the IEEE Int’l Conference on Cluster Com-
puting - Cluster2001, pages 331–340, Newport Beach, CA,
October 2001. IEEE-CS.

[8] M. Fukuda, Y. Tanaka, L. M. Campos, and S. Kobayashi.
Inter-cluster job coordination using mobile agents. In Proc.
3rd Int’l Workshop on Active Middleware Services, San
Francisco, CA, August 2001. IEEE CS.

[9] S. Hariri, M. Djunaedi, Y. Kim, R. P. Nellipudi, A. K. Ra-
jagopalan, P. vdlamani, and Y. Zhang. CATALINA: A smart
application control and management environment. In 2nd
Int’l Workshop on Active Middleware Services, 2000.

8

[10] J. B. III. A fast mach network ipc implementation. In Proc.
2nd USENIX Mach Symposium, pages 1–10, Monterey, CA,
November 1991. USENIX Association.

[11] T. Illmann, F. Kargl, M. Weber, and T. Kruger. Mi-
gration of mobile agents in java: Problems, classifica-
tion and solutions. In Proc. of the Int’l ICSC Sympo-
sium on Multi-Agents and Mobile Agents in Virtual Orga-
nizationa and E-Commerce (MAMA’00), Wollongong, Aus-
trallia, http://cia.informatik.uni-ulm.de/papers/mama00.pdf,
December 2000. Springer.

[12] JavaCC. http://www.webgain.com/products/java cc/.
[13] S. Kobayashi and M. Fukuda. Hierachical multi rings gvt

algorithm for time warp mechanism. IPSJ Transactions,
Vol.41(No.11):3161–3172, November 2000.

[14] D. B. Lange and M. Oshima. Programming and Deploying
Java Mobile Agents with Aglets. Addison Wesley Profes-
sional, 1998.

[15] NetSolve Web Site. http://icl.cs.utk.edu/netsolve/.
[16] Objectspace. Voyager orb 3.3. Developer guide, Dallas, TX,

1999.
[17] Project Bayanihan: Web-Based Volunteer Computing Using

Java. http://www.cag.lcs.mit.edu/bayanihan/.
[18] P. K. Shinha. Distributed Operating Systems: Concepts

and Design, chapter 8.2.2, Process Migration Mechanisms,
pages 384–393. IEEE CS Press, New York, 1997.

[19] M. Stiber, G. J. D. Swanberg, J. Miller, M. Ellisman,
S. Young, and R. Jain. LOGOS: A system for neurobio-
logical structure/function analysis. In Proc. 9th Int’l Conf.
Scientific & Statistical Database Management, pages 212–
222, Olympia, WA, July 1997.

[20] O. Tomarchio, L. Vita, and A. Puliafito. Active monitoring
in grid environments using mobile agent technology. In 2nd
Int’l Workshop on Active Middleware Services, 2000.

[21] G. Vogt. Delegation of tasks and rights. In Proc. the 12th
Annual IFIP/IEEE Int’l Workshop on Distributed Systems:
Operations & Management DSOM 2001, pages 327–337,
Nance, France, October 2001. INRIA.

[22] C. Wicke, L. F. Bic, M. B. Dillencourt, and M. Fukuda.
Automatic state capture of self-migrating computations
in MESSENGERS. In Proc. 2nd International Workshop,
MA’98, pages 68–79, Shuttgart, Germany, September 1998.
Springer.

9

