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Abstract. Agent-based models (ABMs) need to populate a mega num-
ber of agents over a scalable simulation space in order to handle practical
problems, (e.g., metropolitan traffic simulation and nationwide epidemic
prediction). Although parallel and distributed simulation have steadily
addressed their computational needs, non-computing scientists still tend
to use GUI-rich, easy-to-use ABM interpretive platforms. This paper
intends to identify the difficulty in using the current parallel ABM sim-
ulators and to propose their future improvements. For this purpose, we
surveyed different ABM applications, modeled them as seven benchmark
test cases, used them to analyze the agent descriptivity of parallel ABM
simulators, and evaluated their execution performance affected by the
current implementations.
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1 Introduction

Agent-based models (ABMs) have been highlighted as micro-simulation that
models microscopic events, (e.g., transport simulation involving traffic lights,
constructions, and pedestrian movements) and that observes an emergent col-
lective group behavior of many simulation entities (which are called agents).
Since not all scientists are computing specialists, GUI-rich, easy-to-use ABM
interpretive platforms including NetLogo1, Repast Symphony2, and MASON3

have attracted them for the last 10+ years.
Emergent worldwide tensions including globalization, urbanization, popula-

tion increase, and Internet dissemination require the ABM problem size to be
scaled up, which increases computation time unacceptably. For instance, FluTE,
an influenza epidemic simulation model [7] takes 2 hours to simulate an un-
mitigated epidemic in 10 million people. Scientists have noticed that parallel
computing is imperative for large-scale simulations of ABMs [8]. However ABM

1 http://ccl.northwestern.edu/netlogo/
2 https://repast.github.io/repast simphony.html
3 https://cs.gmu.edu/˜eclab/projects/mason/
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interpretive platforms are difficult to parallelize or to speed up. In fact, NetLogo
has not yet been parallelized. D-MASON4, a distributed version of MASON has
been no longer maintained for the last four years.

Contrary to these interpretive platforms, FLAME5 and RepastHPC6 are
C/C++-based platforms that facilitate ABM parallelization over a cluster sys-
tem and have successfully promoted scalable computing. EURANCE is a mas-
sively parallel agent-based simulation of European economy where FLAME pop-
ulated 3,500 through to 500,000 agents [10]. RepastHPC has been tested for
scalability on Blue Gene/P and achieved exascale computing on Illinois electric
power transmission grid and services [26]. Despite that, as mentioned above,
many scientists are still using NetLogo and Repast Symphony.

From our programming experiences with FLAME and RepastHPC [6], we
observe two hurdles for non-computing specialists to clear when using these two
systems: (1) tolerating limited flexibilities in programming and (2) understanding
parallel-computing concepts. Based on their own design philosophy, FLAME and
RepastHPC give a specific programming framework that guarantees automatic
parallelization of user applications as far as they are coded in accordance with the
framework. However, their learning curves are very steep. Moreover, users still
need to understand underlying parallel-computing platforms such as message
boards in FLAME and MPI in RepastHPC.

Given these backgrounds, we have surveyed programming styles in various
ABM applications in Section 2; focused on two C++-based ABM parallel sim-
ulators in Section 3, which are RepastHPC and MASS, (the latter of which is
our own simulator [6]); developed a benchmark test set based on the survey
and identified challenges in current parallel ABM platforms from the viewpoint
of both programmability and execution performance in Section 4; and clarified
their challenges and sought for future solutions in Section 5.

2 Challenges in Agent-Based Modeling

This section surveys ABMs, examines potential parallelizations with conven-
tional ABM platforms, and clarifies their challenges in parallelization.

2.1 ABM Applications

We are looking at ABMs in social, behavioral and economic (SBE) sciences
as well as biological, ecological, and city-planning applications that are tightly
coupled with SBE. Although our survey is still in progress, the following samples
some ABM applications in each scientific discipline.

1. Social science

4 https://sites.google.com/site/distributedmason/
5 http://www.flame.ac.uk
6 https://repast.github.io/repast hpc.html



Agent Descriptivity Benchmark 3

(a) Social Network Modeling: simulates activities among and event influence
to online communities [1, 9]. It can be modeled as a network of agents,
each exchanging information along links with its neighbors.

2. Behavioral science
(a) Flows: observe the dynamics of indoor and outdoor pedestrian crowd7

and metropolitan emergency evacuation [20, 21]. These simulations use
cellular automata or observe agent movement over a 2D gird.

(b) Organizations: forecast the team productivity for certain operations. For
instance, Virtual Design Team (VDT) models a hierarchical software
developer team that moves from one to another product phase [19].

3. Economic science
(a) Markets: include bank bail-in/out [18] and Internet service provider

(ISP) markets [3], both observing interactions among clusters of agents.
The former distinguishes three clusters: firms, banks, and households,
whereas the latter creates different ISP markets where customer agents
move from one to another.

(b) Diffusions: are quite closer to social network modeling where a product
adoption is modeled as a word-of-mouth diffusion on social networks [3].

4. Biological/Ecological sciences
(a) Cell-level simulation: simulates the growth of synapses [17], identifies

control mechanism of granuloma formation by TB bacteria, macrophages
and T-cells [25], and cell-level blood flow throughout the microvascula-
ture network [27].

(b) Ecosystems: simulate an emergent collective group behavior of artificial
lives. The examples include Wa-Tor: an ecological war between sharks
and fish [11] and Sugarscape: an artificial society [12], both based on
agent migration over a 2D space. Conway’s Game of Life, a well-known
cellular automata game [14] could be considered as an artificial life.

(c) Epidemic simulation: predicts a pandemic of a given disease such as
dengue fever [16] and influenza [7]. They move agents from one to another
community.

5. Urban planning
(a) Transport simulation: predicts traffic flows under a given condition. The

major simulators are TRANSIMS [2] and MATSim8, each based on cel-
lular automata and a queuing network respectively.

(b) Land use simulation: simulates agent behaviors over households, busi-
nesses, and land areas9. The model is generally combined with transport
simulation.

Apparently, some of these applications are based on a similar computing
model in terms of how agents are spawned and interact with each other over their
shared space. Therefore, we have categorized them from scientific disciplines into
computing models from the viewpoints of static versus dynamic agents as well
as based on the structure of their shared space:

7 http://pedsim.silmaril.org/
8 http://www.matsim.org
9 http://www.urbansim.com
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1. Static agents: have no mobility over a simulation space.
(a) Clustered agents: form one or more groups, each exchanging events with

others and sharing them among its internal agents (Figure 1-(a)). Market
simulation is this model.

(b) Cellular automata: consider each cell as a static agent that communicates
with its neighbors (Figure 1-(b)). This model includes Conway’s Game
of Life and TRANSIMS.

(c) Network of agents: is a more generalized form of cellular automata by
replacing a 2D/3D grid with a network (Figure 1-(c)). Social network
modeling and economic diffusions belong to this category.

(d) Agents with dynamic communication: stay static but extend its com-
munication paths to further agents as seen in the growth of synapses
(Figure 1-(d)).

(a) Clustered agents (b) Cellular automata

(c) Network of agents (d) Dynamic communication

Fig. 1. Categorization for static agents

2. Dynamic agents: have navigational autonomy over a space.
(a) Agent migration over grid: moves agents over a 2D or a 3D space as

shown in Figure 2-(a). Most ABM applications in biology and ecology
can be categorized in this model.

(b) Agent migration over network: walks or drives agents over a network (of
roads or microvasculature) as illustrated in Figure 2-(b)).

(c) Group migration over multi phases: is a very special case in agent migra-
tion that corresponds to VDT. Figure 2-(c) models a developer team’s
transition from one to another product phase.
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(a) Migration over grid (b) Migration over network (c) Group migration

Fig. 2. Categorization for dynamic agents

We understand that several more computing surveys on ABM research areas
and applications have been already published10 [4, 3, 24, 13], and thus we need to
cover all these surveyed models. However, our preliminary ABM categorization
shown above can serve as a useful tool for our initial review on how efficiently
conventional approaches have parallelized these computing models and what
challenges still lie for ABM parallelization. Below we look into conventional
approaches to ABM parallelization.

2.2 Conventional Approaches

As ABM scientists have confronted issues of scaling up their model size and cal-
ibrating their models from previous runs, (which were predicted as of 2002 [15]),
they began to focus on parallel computing that is effective to increase both com-
putation speed and space. The majority of ABM platforms based on interpretive
languages such as Java and Logo suffer from their slower code interpretation than
native mode execution, generally by one order of magnitude. Their paralleliza-
tion is normally limited to multithreading built in their language, and is thus
based on the shared-memory programming paradigm. To stay in minor changes
for parallelization, D-MASON, (i.e., a distributed version of MASON) uses a cen-
tralized communication server that maintains the consistency of agent migration
and communication, which contributes to only spatial scalability. Therefore, in-
terpretive ABM platforms are generally bound to inherent slow execution and
multithreading.

There are several parallel and distributed ABM systems that have addressed
ABM computational needs in both speed and space by implementing a native-
mode execution platform over a cluster of computing nodes [23]. Among them,
RepastHPC is an MPI-supported C++ system where Context is an execution
environment that populates agents over a given Projection instance such as a
shared grid and space. However, one of RepastHPC’s drawbacks is its heavy
dependence on MPI, which results in a steep learning curve for users.

Another native-mode parallel platform is FLAME. Since FLAME users write
their simulation in C, for object-based programming purposes, they need to

10 http://www2.econ.iastate.edu/tesfatsi/ace.htm
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declare all agents and environment variables in XML, in a similar way to C++
header files. Although the environment variables are used to shape a simulation
space, FLAME does not instantiate any actual space in memory. Instead, agents
are capable of broadcasting their messages among one another through message
boards, each launched at a different MPI rank. Contrary to RepastHPC, FLAME
is considered as a collection of communicating, state-transitting agents statically
mapped over MPI ranks. From this viewpoint, FLAME would burden ABM
designers with application-level manipulation of dynamic agents.

Some mobile agents were capable of creating trees or logical networks over a
cluster system. Olden recursively created new tree branches, spawned and moved
child threads along the branches, and let them execute a new function [22].
WAVE enabled its interpretive agents to create new network links/nodes and to
dispatch their offsprings [5]. Their drawbacks are slow execution due to thread
migration, interpretive execution, and overheads incurred by logical network
creation.

These circumstances motivate us to examine common issues in parallelizing
ABMs by developing a benchmark test set and to address them by proposing
solutions to existing parallel platforms such as RepastHPC as well as enhancing
our own MASS library as a general-purpose simulation environment.

3 Parallel ABM Simulators with Agent Mobility over
Virtual Space

We focus on two parallel ABM platforms, MASS and RepastHPC, both of which
facilitate agent mobility and thus cover execution of not only static but also
dynamic agents.

3.1 MASS Library

We have developed and released to the public the MASS (Multi-Agent Spatial
Simulation) library in Java and C++. The library has two key classes: Places
and Agents. Places is a multi-dimensional array of elements that are dynamically
allocated over a cluster of multi-core computing nodes. Each element is called a
place, is pointed to by a set of network-independent array indices, and is capable
of making a parallel function call with Places.callAll(place.functionId), ex-
changing information with any other places through exchangeAll(), and facilitat-
ing visibility between neighboring places with exchangeBoundary(). Agents are a
set of execution instances that can reside on a place, autonomously migrate to any
other places with array indices through Agent.migrate() and Agents.manageAll(),
and indirectly interact with other agents through variables local to the current
place. Parallelization with the MASS library uses a set of multi-threaded com-
municating processes that are forked over a cluster of multi-core computing
nodes with libssh2 in C++ and are connected to each other through TCP sock-
ets. Multi-threads take charge of parallel method invocation and information
exchange among places and agents.
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3.2 RepastHPC

RepastHPC is an agent-based modeling and simulation framework that is im-
plemented in C++ on top of MPI to facilitate high-performance parallel and
distributed simulation. Agents are implemented as objects (C++ classes), each
identified with a unique repast::AgentId and maintaining its state represented
by the variables in the classes. The agent behavior is described by the functions in
those classes. A Context is used to encompass the population of agents. Each con-
text can only contain a single type of agents. When an agent is created, it is added
to a Context with addAgent(). When they die, they are then removed from the
Context with removeAgent(). Context also takes charge of moving agents over a
shared space, using move() and balance(). RepastHPC distinguishes various sim-
ulation spaces called Projections, including SharedNetwork, SharedDiscreteSpace,
SharedContinuousSpace, DiffusionLayerND, and ValueLayerND, each respectively
modeling a different simulation space: a 2D/3D shared discrete space, a shard
contiguous space, an N-dimensional layer of diffusing values over a space, and an
N-dimensional array of values accessed by agents. These spaces provide agents
with Moore2DGridQuery and RepastEdgeContentManager classes to find their
neighbors within a closer distance or reachable through an agent network edge.
RepastHPC utilizes a dynamic discrete-event scheduler with conservative syn-
chronization. Events are scheduled to occur at a specific tick which is also used
to determine order.

4 Comparisons

This section compares MASS and RepastHPC for agent and spatial descriptivity
to identify what they lack for attracting attention from non-computing users.
Thereafter, our benchmark test cases examine execution overheads incurred by
their implementation when they run in parallel.

4.1 Analysis of Agent and Spatial Descriptivity

Six different types of applications have been chosen from Section 2.2, simplified
as a general benchmark test, and coded in MASS C++ and RepastHPC11: Bank
bail-in/out (Bank) as clustered agents, Game of Life (Life) as cellular automata,
social network (SocialNet) as a network of agents, BrainGrid (Brain) as agents
with dynamic communication, Tuberculosis simulation (TB) as agent migration
over grid, and multi-agent transport simulation (Transport) as agent migration
over network. Note that the seventh test case, (i.e., group migration) is still in
progress.

Tables 1 and 2 summarize the model descriptivity of these six test cases in
terms of simulation space and agent managements respectively. In space manage-
ment, while RepastHPC facilitates both multi-dimensional spaces and any graph
topologies as a simulation space, MASS must manage to emulate graphs using

11 https://bitbucket.org/mass application developers/
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its Places array structure. On the other hand, RepastHPC supports only passive
space for agents to store, retrieve, and share data, whereas Places in MASS can
behave as a static collection of elements actively performing computation.

Features Appl. MASS RepastHPC

Creation
Arrays Life, TB + Yes, with Places + Yes, with SharedDiscreteSpace

Brain,Bank
Graphs SocialNet − Mimicked by Places, using + Yes, with successors in the

Transport neighbors in exchangeAll() agentNetwork class
Addressing

Space Life, TB − Only array indices allowed + Yes, with SharedDiscreteSpace
Brain,Bank and SharedContinuousSpace

Graphs SocialNet − Mimicked by neighbors in + Yes, with successors in the
exchangeAll() agentNetwork class

Communication
In array Life, TB + Yes, with exchangeBoundary() + Yes, with moor2Dspace()

Brain
Over graph SocialNet − Mimicked by neighbors in + Yes, with agentNetwork and

exchangeAll() DiffusionLayerND.diffusion()
Space & agents Transport + Yes, through Place.agents and − From agent to space only with

TB, Bank Agent.place pointers ValueLayerND.get/setValueAt()
Computation All + Yes, with Places.callAll() − Performed by agents only. No

active space concepts

Table 1. Spatial management

In agent management, RepastHPC needs user interventions to facilitate run-
time agent creation and termination although it can populate agents over an
entire space from the hawk’s viewpoint, whose merits and demerits are opposite
in MASS. Due to their different design concepts, MASS allows different classes
of agents to behave on the same Places, whereas RepastHPC allows different
Contexts to share the same ValueLayerND space. As MASS cannot create a
network of agents, their direct communication is not supported. On the other
hand, as RepastHPC supports read-only ghost space, agents may get collided
onto the same logical location, which must be handled at a user level.

In entire simulation management as summarized in Table 3, MASS focuses on
hiding the underlying parallel platforms from ABM applications much more than
facilitating user-friendly event scheduling and data collection. On other hand,
RepastHPC exposes users to underlying parallel platforms. They must under-
stand MPI and handle agent/data packing, transfer, and unpacking. They must
also maintain agent lists in Context and examine one after another agent, which
is tedious and difficult to parallelize. None of both supports strong migration.

Table 4 compares MASS C++ and RepastHPC in lines of code (LoC) nec-
essary to describe the test cases. In general, MASS C++ can describe these six
test cases in 64% through 94% of the corresponding RepastHPC’s code. However,
this is because RepastHPC needs to add MPI-parallel and message pack/unpack
code. In fact, RepastHPC can describe agent behavior in less LoC than MASS
C++ when agents are static in space.
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Features Appl. MASS RepastHPC

Creation
Population All − Individually with Agent.map + Entirely with Context.addAgent()
Multiclasses Transport + Yes, with new Places() − One class of agents per context

TB but ValueLayerND shared among
multiple contexts

Runtime TB + Yes, with Agent.spawn() − Marked as dead at a user level,
and Agent.kill() then removed by agentRemove()

Communication
Direct Social − No support + Yes, through the agentNetwork class
Indirect Transport + Yes, through Place.agents or + Yes, through the moore2Dspace class

TB Place-local variables
Broadcast Bank + Yes, by sending a financial − Emulated by having a firm/bank

messenger to an agent cluster contact each of agents in their cluster
Computation All + Yes, with Agents.callAll() + Yes, RepastHPCAgent.play()
Migration Transport

TB
Autonomy + Yes, with Agent.migrate() + Yes, with RepastHPCAgent.move()
Strong migration − No, weak migration only − No, weak migration only
Collision + Yes, supported by system − No, user emulation using the

moore2Dspace class

Table 2. Agent management

Features MASS RepastHPC

Scenario control − main() describes an entire scenario. + Context registers discrete events.
Parallelization + Multi-processes spawned by libssh2 + Multi-processes spawned by MPI

+ Multithreading supported − No multithreading for agent manipu-
lation within each Context

+ System-supported agent/data transfer − User-operated data pack/unpack
− Synchronization required for agents + Synchronization eased with sequential

to access the same place agent manipulation within Context
Outputs − MASS.log() collects data per process. + repast::DataSet::record() collects

data at rank 0.
− Both give users a burden to keep track of a specific agent.

Table 3. Entire simulation management

In summary, there is still some room for improvement in ABM parallelization
before it attracts non-computing users: (1) underlying parallel platform should
be masked as observed in MASS and initialization/data collection should be cen-
tralized as observed in RepastHPC; (2) ABM code can be further simplified with
a plenty of simulation features including: discrete event scheduling, contiguous
simulation space, graph construction, active computation in space, and more
advanced agent mobility such as strong migration and agent collision avoidance.

4.2 Execution Performance

We evaluated the parallel performance of MASS and RepastHPC, using the
University of Washington, Bothell’s shared Linux cluster: 16 Dell Optiplex 710
desktops, each with an Intel i7-3770 Quad-Core CPU at 3.40 GHz and 16 GB
RAM. Figure 3 shows the results of the six test cases. Bank, Life, BrainGrid,
and SocialNet are static agents, while Transport and TB are dynamic agents. We
adjusted their space size to 100×100 ∼ 1000×1000 and # agents to 200 ∼ 162000
so that all tests complete below 35 seconds for their sequential execution.
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Bank Life BrainGrid Social Net Transport TB
Code MASS Repast MASS Repast MASS Repast MASS Repast MASS Repast MASS Repast

Env/Space 302 400 107 386 120 386 114 409 344 398 424 407
Agents 227 194 223 131 467 240 332 161 185 307 143 200
Total 529 594 330 517 587 626 446 575 529 705 567 607
Ratio for entire code 0.89 1.00 0.64 1.00 0.94 1.00 0.78 1.00 0.75 1.00 0.93 1.00
Ratio for agent code 1.17 1.00 1.71 1.00 1.95 1.00 2.00 1.00 0.60 1.00 0.72 1.00

Table 4. Lines of code in MASS C++ and RepastHPC

In static agents, Bank gathers agents in groups and thus showed less spa-
tial parallelism. For better performance, agents must be handled with multi-
threading. Life demonstrated their super-linear performance due to more space
made available with multiple nodes. BrainGrid did not perform better with 4+
nodes, because its computation completed quickly with the current random ini-
tialization of neurons. SocialNet was executed much faster, using RepastHPC’s
agentNetwork class that supports a graph of static agents. In dynamic agents,
while Transport showed its clear CPU scalability, TB suffered from unbalanced
load over 4+ computing nodes, because its agents tend to come together, which
should be addressed with dynamic load balancing. It is inevitable that RepastHPC
performs slower than MASS (except SocialNet) due to its MPI-based implemen-
tation and user-level agent serialization, whereas MASS directly uses sockets and
automates all the serialization.

In summary, although a cluster system facilitates more computing resources
in CPUs and memory that allow a simulation space and # agents to scale up,
parallel simulators need to balance initial and dynamic distribution of a space
and agents over cluster nodes, and should utilize CPU cores more efficiently.
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Fig. 3. ABM execution performance
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5 Conclusions

We surveyed ABM applications in SBE, biological and ecological sciences, and
urban planning; categorized into seven models from the viewpoint of agent mobil-
ity; and analyzed MASS and RepastHPC for their agent and spatial descriptivity
as well as measured performance overheads incurred by their implementation.

Based on our agent descriptivity analysis, we proposed that parallel ABM
simulators should hide parallel-computing constructs from non-computing users,
enrich simulation-space topological and computational features, and improve
agent mobility as they can mimic human, animal, and moving objects. Our per-
formance evaluation demonstrated substantial performance improvements with
two cluster nodes but not always with 4+ nodes. For further scalable computa-
tion, ABM simulators should efficiently handle agents with CPU cores and to
distribute a simulation space and agents uniformly over a cluster system, which
balances computation and communication over computing nodes.

To pursue this research project, we will complete the VDT model as the
seventh test case; fine-tune the complexity of all the seven test cases for covering
more realistic agent behaviors; extend our performance evaluation to 32 ways,
(i.e., 8 cluster nodes × 4 CPU cores per node); and develop agent annotations
and sub-classes that predefine typical agent behavior at the system level.
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