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Abstract—
Graph database (DB) systems are increasing their popularity

in big-data analysis and machine learning particularly in the ar-
eas of e-commerce recommendation, fraud detection, and social-
media analytics. Speed-up and spatial scalability of their DB
transactions are pursued with various techniques such as index-
free access to graph components in Neo4j, graph sharding over
a cluster system in ArangoDB, and graph DB construction over
distributed memory in AnzoGraph. However, these techniques
have their respective challenges: difficulty in expanding an index-
free graph over distributed memory, slow-down in accessing
distributed disks, and a bottleneck incurred by repetitive master-
to-worker distributions of query pipelines.

As a solution to these problems, we are applying multi-agent
technologies to distributed graph DB construction: multiple user
processes over a cluster system maintain portion of distributed
graph in their cache space; their cache contents are synchronized
through a software-snooped write-back and write-update proto-
col; and a DB user from any cluster node dispatches an agent
that handles an independent graph query through navigating
over distributed graph. To follow current trends in graph DB
standardization, we adopt the Cypher language whose queries
are translated into agent code.

This paper presents a new distributed hash-map implementa-
tion and its application to our graph DB system; differentiates
it from Hazelcast from the viewpoints of its memory coherency
and access speed; describes our translator that generates agent
code from Cypher queries; and examines graph DB creation and
traversal performance of agents in comparison with Neo4j and
ArangoDB.

Index Terms—distributed shared graph, distributed hash map,
parallel graph computing, multi-agent systems, graph database
systems

I. INTRODUCTION

Emergent uses of graph database (DB) systems are being
highlighted for big-data analysis and graph-based machine
learning particularly in financial technology, marketing/retail,
and biological/health-care sciences [1], [2]. Graph DB has
been ranked as one of the fastest growing categories since
2013 [3]. Many existing and multi-model DB systems have
participated in the openCypher community1 to accept Cypher
graph queries. Speed-up and spatial scalability of their DB
transactions are pursued with various implementation tech-
niques such as index-free access to graph components in
Neo4j2, graph sharding over a cluster of distributed disks

1https://opencypher.org
2https://neo4j.com/

in ArangoDB3, and graph DB construction over distributed
memory in AnzoGraph4. However, these techniques have their
respective challenges in distributed graph computing. Index-
free graph traversals need a complex naming resolution of
remote vertices. Distributed disk accesses need an efficient
disk-cache mechanism. A master-worker model (taken by
AnzoGraph) may have a transactional bottleneck at the master
node that repeats dispatching each of query pipelines to the
corresponding worker.

As a solution to these problems, we are applying multi-agent
technologies to distributed graph DB construction. Our re-
search motivation is based on some findings of agents’ poten-
tial to analyze distributed data structures [4]. In contrast to data
streaming that is optimized to keep processing input data with
parallel and multithreaded compute instances, (e.g., lambda
expressions), agent-based approach sometimes works better on
finding topological attributes of a distributed data structure, in
particular graph by dispatching many agents over the structure
and having them collaborate toward a solution [5]. Needless
to say, agents do not always perform faster on parallel graph
analysis. Entire graph traversals and statistical analyses such as
biological network motif identifications cause an exponential
increase of agent population, thus wasting memory space [6].
However, limited graph traversals such as triangle count of
a social network [7] moderate rapid agent propagation, (e.g.,
three edge traversals in triangle count), which can complete
agent-based computation much quicker. We expect that most
graph DB queries are centered around up to several edge
traversals, each starting from different vertices. (An example
is finding the common ancestor of different user-associated
vertices.)

With this motivation, our research aims to address the
above-mentioned challenges of graph DB systems by de-
ploying agents as DB queries over a distributed in-memory
graph structure. We use our multi-agent spatial simulation
(MASS) library5 as an agent execution platform. MASS
distinguishes two classes: Agents and Places. The former
populates a collection of Agent instances with navigational and
behavioral autonomy, whereas the latter creates a distributed

3https://arangodb.com/
4https://cambridgesemantics.com/anzograph/
5http://depts.washington.edu/dslab/MASS/



array of Place instances over a cluster system. Our agent-
based graph DB system takes the following two approaches:
(1) re-implementing MASS Places as GraphPlaces that makes
a graph shared from and cached by multiple cluster-computing
users and (2) extending MASS Agent to GraphAgent that
navigates agents over GraphPlaces in response to Cypher
queries. While the project is halfway through to its ulti-
mate goal toward a construction of fault-tolerant and multi-
user DB system with graph data-science features, this paper
demonstrates two technical contributions to big graphs. One
is an implementation technique of high-performance graph
structure with a distributed hash map. Multiple user processes
consistently maintain portion of shared graph in their cache
space, using a software-snooped write-back and write-update
protocol. The other is a cypher query translation into agent
code that handles an entire query of multiple pipelines with an
agent and its spawned descendants. This technique allows each
user to submit an independent query agent from any cluster
computing node, thus eliminating the master node.

The rest of the paper is organized as follows: Section II
differentiates our agent-based graph DB construction from
graph streaming, distributed cache, and conventional graph
DB systems; Section III gives technical details of the cur-
rent MASS GraphPlaces and GraphAgent implementation;
Section IV demonstrates the promising performance of our
graph DB system in comparison with Hazelcast, Neo4j, and
ArangoDB; Section V concludes the discussion as identifying
our next work.

II. RELATED WORK

This section reviews the current trend of distributed graph
DB systems in the following three categories: graph streaming,
distributed cache, and parallelization of conventional graph DB
systems.

A. Graph Streaming

One straightforward attempt is to apply data-streaming tools
to big-graph computing. Running on top of Hadoop6, Apache
Giraph [8] solves graph problems using iterative MapReduce.
Gradoop [9] is based on Hadoop as well to stream and process
graph data with Flink7. CAPS [10] not only uses Spark SQL
but also accepts Cypher queries to conduct graph analysis.
However, these graph-streaming tools, in response to each
graph query, focus on performing a batched machine-learning
task on an entire graph data set such as Spark RDD rather
than handling simultaneous queries from multiple users.

B. Distributed Cache

As a key-value hash table is used as a traditional graph
implementation where a key indexes a vertex and its value
represents an adjacency list, distributed hash tables are a
natural extension to implementations of a distributed graph.
Hazelcast8 and Oracle Coherence [11] are used to facilitate

6https://hadoop.apache.org
7https://flink.apache.org
8https://hazelcast.com/

multi-model distributed key-value DB and thus are potential
to construct distributed graph DB. In fact, RedisGraph [12],
Memcached [13], and Terracotta with Ehcache [14] take
this implementation approach. However, their challenges are:
RedisGraph is limited to single-machine uses, whereas Mem-
cached and Ehcache maintain one copy of each vertex object
at one computing node [15], thus no backup copy stored for
fault tolerance purposes.

Since Hazelcast demonstrates its faster performance on
benchmarks than Oracle Coherence [16], we consider it as
a competitor against our graph DB system’s infrastructure and
therefore compare the basic graph-manipulating performance
between these two in Section IV.

C. Graph Database Systems

Being recognized for 17 years, Neo4j speeds up graph
transactions with two optimization techniques. One is index-
free adjacency that directly references from a given graph
vertex, (i.e., called node in Neo4j) to its neighbors. The other
is anchoring a frequently referred graph node whose edges
(called relationships in Neo4j) are minimal as compared to
the other nodes, which reduces unnecessary graph traverses.
While Neo4j covers distributed-computing, cloud-service envi-
ronments as aura DB, the main objective is availability through
its replica management rather than graph distribution.

Contrary to that, ArangoDB and AnzoGraph DB pursue
graph scalability over a cluster system. They both take master-
worker parallelization. ArangoDB divides a big graph into
multiple shards, each maintained by a different computing
node. SQL-based queries named AQL are first applied to
the leader and thereafter copied to all followers for parallel
transactions [17]. On the other hand, AnzoGraph DB focuses
more on high-speed and parallel execution of multiple queries,
using its distributed in-memory graph DB implementation. It
accepts RDF queries named SPARQL at the leader computing
node that parses each query, assembles multiple steps into
a stream, and copies it to all workers. They take charge of
processing those steps associated with their triples in parallel.

In Section IV, we compare Neo4j and ArangoDB with
our agent-based graph DB in graph construction and graph
traversal queries. The former measures disk-based versus in-
memory DB construction, whereas the latter observes different
strategies in graph traversals: those with index-free adjacency
in Neo4j, those through hash accesses to document collections
in ArangoDB, and those with agent propagation over a graph
in our approach.

D. Challenges and Approach

In summary, graph streaming benefits one-time, batched
machine-learning computation but does not always support
multi-user, simultaneous graph DB transactions. Index-free
graph structures realize the fastest search for graph compo-
nents but have difficulty in extending to cluster computing.
Query decomposition and distribution from the leader to
followers cause serialization and bottleneck overheads inherent
to the master-worker architecture.



Fig. 1. The MASS library with graph-computing features
.

To address these challenges, we take the following two
strategies. One allocates a different portion of a shared hash-
based graph to each computing node’s /dev/shm shared mem-
ory (or shared files in JVM), allows each user process to cache
recently accessed graph vertices in its memory, and maintains
their cache consistency with a software-controlled write-back
write-update cache protocol. The other strategy translates each
graph query into agent code and handles a whole query by
navigating an agent and its descendents over a graph. In the
next section, we explain the details of these implementation
strategies.

III. AGENT-BASED GRAPH DATABASE INFRASTRUCTURE

After a brief explanation on the MASS library, we give tech-
nical discussions on GraphPlaces as a multi-user distributed
shared graph and GraphAgent instances as query-executing
agents.

A. MASS Platform

The MASS library lines up three language versions: Java,
C++, and CUDA. For the parallelization purposes of agent-
based models (ABMs), MASS instantiates array elements from
the Places class, maps them over a cluster system or CUDA
device memory, populates mobile objects from the Agents
class, and observes their interactions. We use MASS Java for
our agent-based DB project. As illustrated in Figure 1, MASS
Java (simply referred to as MASS in the following discussions)
alleviates array-based graph simulation and enables run-time
graph modification by extending Places to GraphPlaces that
instantiates vertex elements from the VertexPlace class and
stores them in vectors, each maintained by a different com-
puting node [7]. The library also removes manual operations
on agent migration by extending Agent to the GraphAgent
class that automates each agent’s propagation along multiple
graph edges [18].

While MASS demonstrates parallel performance of graph
algorithms such as triangle count and disconnected compo-

Fig. 2. A multi-user distributed shared graph

nents [7], it is intended for single-user graph analysis. To
apply MASS to a multi-user graph DB infrastructure, we need
to facilitate multi-user access to GraphPlaces, to enhance its
availability and reliability features, and to have GraphAgent
understand graph DB queries.

B. Multi-User Distributed Shared Graph

Our implementation takes the following three techniques:
(1) mapping GraphPlaces onto /dev/shm that can be shared
among multi-user processes and that remains until the system
shut downs, (2) caching portion of GraphPlaces into each user
process and maintaining their cache consistency at software
level, and (3) allowing not only DB queries to identify a vertex
with its property but also agents to traverse over vertices with
their integer IDs.

As shown in Figure 2, each user process from its main()
launches remote processes with JSCH9 and establishes a TCP
network among all these processes. More specifically, this
initialization is achieved by an MASS.init() call. The main()
function then calls the GraphPlaces constructor that has all the
processes read an existing instance from the local /dev/shm
space or maps an empty instance to this space. While the
GraphPlaces implementation is based on a distributed key-
value hash map, its manipulation is made through typical graph
vertex and edge operations: loadNNNFile(filePath), getVer-
tex(property), addVertex(property), and deleteVertex(property),
each loading an NNN-formatted graph file data into Graph-
Places, identifying, adding, and deleting a vertex with a given
property.

Although the easiest graph-sharing implementation is hav-
ing each process directly read and write GraphPlaces on
/dev/shm, Java’s interface to /dev/shm is available only through
file I/O operations in contrast to native languages such as C++
and C that map the space to shared memory. As direct I/O ac-
cesses to /dev/shm cannot outperform conventional distributed
caches, (e.g., Hazelcast), GraphPlaces allows each user process

9http://www.jcraft.com/jsch/



to maintain recently accessed vertices into its private memory
cache. This however results in cache inconsistency among
user processes. A potential solution takes write-through and
write-invalidation cache protocols, each forcing a process to
directly modify the original copy of a vertex on /dev/shm and
to invalidate all the copies that the other processes maintain.
The main obstacle is that all must be done with file I/Os, which
would cancel out effects obtained from vertex caching.

As a solution, we adopt a software-controlled write-back
and write-update approach. During the course of execution,
a user process broadcasts to the others of its write action
to a specific vertex and the new value. We use Aeron10 for
FIFO-ordered reliable multicast messaging (See Figure 2).
Note that such a write-update message should be delivered
only within the same machine. This is because our agent-
based approach dispatches agents to remote vertices instead
of allowing a user process to cache remote copies. Assuming
that a process can hold an entire copy of a sub-graph mapped
to its local /dev/shm, our current implementation prompts a
process to write back all its dirty copies to /dev/shm when it
gets terminated.

A special attention must be paid when a user launches
new MASS processes through MASS.init(). It is not sufficient
to read vertex information only from the local /dev/shm,
anticipating that newer vertex copies may remain in other
processes. To solve this initialization problem, we use the finite
state machine depicted in Figure 3. When a process invokes
the GraphPlaces constructor, it reads the corresponding graph
instance from /dev/shm into the private memory space, as
making the state transition from INVALID to MAYBE OLD.
The process simultaneously broadcasts an initRequest message
to all the others on the same machine. The receivers enclose
their up-to-date vertex information in an initResponse message
and send it back to the process in initialization. This process
then updates its vertex copies with the first initResponse, as
moving to the UP TO DATE state. All the later messages are
simply discarded. Note that no initResponse messages leave
the process in MAYBE OLD. While the process stays in either
MAYBE OLD or UP TO DATE, it repeats broadcasting a
write-update message to the other processes for coherence-
maintenance purposes. Eventually, MASS.finish() moves all the
processes to the INVALID state as writing back their cache to
the local /dev/shm.

Graph DB in general indexes a vertex with a user-defined
label and additional properties, which means that such a
vertex ID should be of any data type. From this viewpoint,
GraphPlaces refers to each vertex, (i.e., a VertexPlace object),
using a Java Object ID. However, when agents migrate over a
cluster system, they need to uniquely identify their destination
vertices. Therefore, we should map a machine-local Java
Object ID to a system-wide integer ID. As shown in Figure 4,
MASS internally uses a system-wide distributed hash map
together with machine-local vectors, where a Java Object ID,
(e.g., the one obtained from a string) is mapped to a system-

10https://aeron.io

Fig. 3. A hash-map coherency protocol

Fig. 4. A graph construction from a hash-map

wide integer ID that is then used to index a VertexPlace object,
using Formula 1:

Index in V ector = b Integer ID

#Computing Node
c (1)

This two-step indexing mechanism allows agents to not
only jump to a VertexPlace with a user-provided label but
also compute graph algorithms only using integer IDs. For
instance, the number of triangles in a social network is counted
by walking agents twice from the current VertexPlace to its
neighbors with a lower integer ID and having their third walk
search for an edge back to their original VertexPlace. Figure 5
illustrates that two agents successfully identify triangles along
5 → 4 → 2 and 4 → 3 → 2 respectively, whereas another
agent that traverses along 3 → 2 → 1 fails in finding any
edge from vertex 1 back to 3. The main merit of this agent-
based triangle count is preventing double counts of the same
triangle.

C. Agent-Based Graph Query

To follow the concept of property graphs widely used in
graph DB systems, we further extend GraphPlaces to Proper-
tyGraphPlaces that instantiates vertices from PropertyVertex-
Place, an extension of VertexPlace and populates agents from



Fig. 5. Agent-based triangle count algorithm

TABLE I
AN ENHANCED PROPERTY GRAPH STRUCTURE LEVERAGING MASS

PropertyGraphAgent extended from the GraphAgent class.
Table I summarizes our enhanced property graph structure
leveraging the MASS library.

PropertyVertexPlace not only stores the original VertexPlace
data members - an integer ID, a label, and an integer ID list
of neighbors but also includes: vertex properties, outgoing
relationships, (i.e. edges to neighbors), and incoming rela-
tionships, (i.e., edges from neighbors). On the other hand,
PropertyGraphAgent introduces a new data member named
pathResult. It is used for agents to collect information about
the paths they traversed.

Figure 6 illustrates an example of PropertyGraphPlaces that
instantiates seven PropertyVertexPlace vertices and populates
a PropertyGraphAgent instance on each vertex. These agents
get started with an empty pathResult list. They build up their
pathResult as navigating over the graph, clone themselves
when encountering branches, and dispatch each clone to a
different edge with a duplicated pathResult.

Our graph DB system uses the Cypher query language. Each
Cypher query text eventually populates a group of new in-
stances from the PropertyGraphAgent class and deploys them
over PropertyGraphPlaces. This agent execution is planned
through the following Cypher processing pipeline:

1) Parsing Phase: converts a Cypher query text into a
parse tree, using ANTLR4 (ANother Tool for Language
Recognition, version four) [19] and its grammar file
tailored for Cypher, named Cypher.g4. In the parse tree,
each node represents a given query’s syntactic element
such as keywords, identifiers, operators, or expressions.

Fig. 6. A property graph representation for making a graph DB

2) Translation Phase: uses the openCypher Transpiler
library11 and its CypherVisitor interface for a parse-tree
translation into AST (abstract syntax tree). Each AST
tree node is transformed into one of the execution steps,
each corresponding to a different Cypher operator such
as CREATE, JOIN, MATCH, and RETURN.

3) Planning Phase: currently focuses on the MATCH,
CREATE, and DELETE Cypher clauses as well as
their execution plans. MATCH generates agent code to
deploy agents over a graph. CREATE and DELETE
are translated into PropertyGraphPlaces.addVertex() and
deleteVertex(). The agent code consists of the Proper-
tyGraphAgent constructor call and repetitive callAll()
and manageAll() invocations. The latter two functions
are MASS Agents’ base methods, each respectively
planning a next agent behavior and committing agent
cloning, termination, and migration.

4) Execution Phase: repeats the following agent-
deployment cycle until all the agents finish their graph
traversals. Each cycle gets started with callAll() to
have all agents check if their current vertices satisfy a
given MATCH query, followed by three manageAll()
invocations: the first call spawns the same number
of children as that of relationships emanating from
the current vertex; the second call kills those whose
relationship doesn’t match the query; and the third call
migrates each agent along its assigned relationship.

Figure 7 gives an example of agent deployment that executes
a Cypher query: MATCH (A:PERSON) → (B:PERSON) →
(C:PERSON). Agents populated at vertices with the Person
property survive for further graph navigation but only one
of them completes a successful traverse on A = ROB, B =
MARTIN, and C = CHARLIE.

Note that a complete explanation on our query-to-agent
translation is given in [20].

11https://github.com/microsoft/openCypherTranspiler



Fig. 7. Agent migration over a property graph

IV. EVALUATION

For the purpose of forecasting the promising performance of
our agent-based graph DB system, we focus on two benchmark
tests. One checks what graph operations make MASS superior
to Hazelcast as both implementations are based on distributed
cache. The other explores the depth of graph DB traversals
for benefiting MASS parallelization as compared to Neo4j and
ArangoDB.

Our performance evaluation is conducted over a cluster of
20 computing nodes, all connected to a 1Gbps LAN. Their
configurations are summarized in Table II. Among them, 12
computing nodes are VMs, each with four CPU cores and
16GB memory, virtualized from Xeon Gold 6130.

TABLE II
SYSTEM CONFIGURATION FOR PERFORMANCE EVALUATION

# computing CPU model machine type # CPU memory
nodes cores
12 Xeon 6130 @ 2.10GHz virtual 4 16GB
4 Xeon E5410 @ 2.33GHz physical 4 16GB
3 Xeon E5150 @ 2.66GHz physical 4 16GB
1 Xeon 5220R @ 2.2GHz virtual 4 16GB

A. Comparison with Hazelcast in Basic Graph Operations

Our performance comparison between MASS and Hazelcast
covers (1) vertex manipulations, (2) attribute retrievals, and (3)
graph loading and computing.

1) Vertex additions and retrievals: are measured for 3,000
versus 5,000 operations on top of one to four computing
nodes. The measurements are summarized in Figures 8 and 9
respectively. Regardless of the number of operations, we
observe the same performance trend in MASS and Hazelcast.

For vertex additions, while Hazelcast performs twice faster
than MASS for single-machine operations, it spends more than
twice time as MASS does with four computing nodes. On a
single machine, Hazelcast simply creates new vertices in its
single process, whereas a MASS process needs to broadcast
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Fig. 8. Vertex addition performance with one to four computing nodes
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Fig. 9. Vertex retrieval performance with one to four computing nodes

these operations as it has no knowledge of other processes
in existence. On the other hand, over four computing nodes,
Hazelcast not only identifies the owner of a new vertex but also
adds its backup to a different computing node. MASS vertex
addition is basically the same as its single-node execution
except choosing the computing node that should own a new
vertex.

For vertex retrievals, MASS outperforms Hazelcast regard-
less of the number of computing nodes. This is because MASS
simply retrieves a given vertex from memory without invoking
an Aeron broadcast while Hazelcast needs to identify the
owner of its IMap data.

2) Graph attribute retrievals: consider five attributes: (1)
neighbors of each vertex, (2) parents of each vertex, (3) grand
parents of each vertex, (4) vertices with the lowest degree, and
(5) those with the highest degree, each measured with one to
eight computing nodes. Figures 10-(a) through 10-(e) com-
pare MASS and Hazelcast performance for retrieving these
attributes respectively, from a graph with 100,000 vertices and
3,999,366 edges.

MASS outperforms Hazelcast in all the five benchmarks.
This is because MASS GraphPlaces has the callAll() method
that makes a simultaneous function call at all VertexPlace
objects and retrieves their values through one round-trip com-
munication between main() and all remote processes.

3) Graph loading and computing: constructs a graph from
a given file and counts the number of triangles in that graph.
Three files are prepared, each including a different size of
graph, as listed in Table III.

Figures 11-(a) through 11-(c) compare MASS and Hazelcast
when reading these three files and constructing the corre-
sponding graphs over one to 20 computing nodes. The results
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Fig. 10. Graph attribute retrieval performance with one to eight computing
nodes

TABLE III
THREE VARIABLE SIZES OF GRAPHS USED FOR MEASURING THEIR

CONSTRUCTION AND TRIANGLE-COUNT PERFORMANCE

files # vertices # edges # triangles
file 1 1,000 93,480 165,138
file 2 3,000 293,804 192,146
file 3 10,000 989,990 200,053

demonstrate that no matter what size the graph is and how
many computing nodes are used, MASS performs better
than Hazelcast. This is due to the difference between their
vertex-adding operations. Hazelcast needs to create original
and backup copies of vertices, each mapped to a different
computing node, whereas MASS processes write back all their
vertices to /dev/shm upon their termination.

We picks up triangle count as a graph-computing bench-
mark. MASS uses the agent-based algorithm as illustrated in
Figure 5. On the other hand, our Hazelcast version distributes
a triple-nested loop over a cluster system, in support with
Hazelcast’s aggregator API. As shown in Listing 1, each
computing node starts its triangle exploration from its assigned
key-value pairs in the most outer loop (line 4). Each time it
finds an edge going back to the original pair after two edge
traversals (line 7), the computing node increments triangles,
a distributed implementation of atomic integer (line 8). At the
end, the number of triangles must be divided by 6 to exclude
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Fig. 11. Graph construction over one to 20 computing nodes

duplicates (line 11).
Figure 12-(a) through 12-(c) show the parallel performance

of MASS and Hazelcast when counting the number of triangles
with one to 20 computing nodes.

For triangle count on a single machine, MASS runs slightly
faster than Hazelcast with a graph with 1,000 vertices since
both systems do not consume too much memory space.
However, as we increase the graph size, MASS slows down
its performance and eventually results in an out-of-memory
exception, due to its rapid growth of agent population.

For execution over multiple computing nodes, MASS out-
performs Hazelcast as it is optimized to prevent agents from
double-counting the same triangles. Needless to say, with
cache support such as Eclipse UnifiedMap, Hazelcast will be
able to run faster than MASS. From this viewpoint, remote
caching rather than agent dispatching should be considered as
one of our future plans for improving MASS performance.

Listing 1. Triangle count with Hazelcast
1 int triangle count( ) {
2 AtomicInteger triangles = new AtomicInteger( 0 );
3 public void accumulate( ) {
4 for v = 1 .. n {
5 for each neighbor u of v {
6 for each neighbor w of u {
7 if wv forms an edge {
8 triangles.incrementAndGet( );
9 } } } }

10 }
11 return triangles.get() / 6.
12 }

B. Comparison with Neo4j and ArangoDB in Graph Database
Queries

While our Cypher-to-agent translation supports only CRE-
ATE, DELETE, and MATCH clauses, thus still in middle
of lining up all the keywords, this section intends to check
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Fig. 12. Triangle count execution with one to 20 computing nodes

MASS-based graph DB system’s advantages in in-memory
distributed graph construction and parallel deployments of
agent-based MATCH queries.

To evaluate the spatial scalability of each graph DB system,
we capture the time it takes to create a different size of
graph via CSV importing, and the query execution time when
traversing the graph from depth 1 to depth 3. We consider
two cases of graph traversal queries: one repeats starting a
query from a random vertex, whereas the other exhausts an
entire graph DB with each query. As Neo4j and ArangoDB’s
free versions are restricted to single-machine uses, our DB
comparison work is conducted on one of our cluster nodes.

We use the Twitch Social Network dataset with 168,114
vertices and 6,797,557 edges [21], and generate four random
graphs of sizes 1K vertices and 257 edges, 10K vertices and
24K edges, 20K vertices and 92K edges, and 30K vertices and
204K edges. Our random graph generation is based on [22]
that has been developed in biological network motif analysis
for preserving the degree of each vertex.

Table IV shows the queries used for graph traversals. The
queries are written in Cypher for MASS and Neo4j as well as
in AQL for ArangoDB.

TABLE IV
QUERIES USED FOR GRAPH TRAVERSALS

Depth Cypher AQL
1 MATCH (a)→(b) FOR vertex in socialNodes

RETURN b FOR vertices, edges, paths = 1..1
OUTBOUND vertex GRAPH social

RETURN vertices
2 MATCH (a)→() →(b) FOR vertex in socialNodes

RETURN b FOR vertices, edges, paths = 2..2
OUTBOUND vertex GRAPH social

RETURN vertices
3 MATCH (a)→() → () →(b) FOR vertex in socialNodes

RETURN b FOR vertices, edges, paths = 3..3
OUTBOUND vertex GRAPH social

RETURN vertices
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Fig. 13. Graph DB construction performance

1) DB construction benchmark: measures the time it takes
for each graph DB system to create graphs of different sizes.
Figure 13 shows that, for larger graphs with 20K and 30K,
MASS-based graph DB system outperforms both Neo4j and
ArangoDB. Generally, Neo4j is the slowest for graph creation.
This is likely due to the way we store vertex and edge data, (i.e,
node and relationship in the following discussions whenever
referring to Neo4j) in each system. For Neo4j, data is stored
on the disk as a linked list, with each node pointing to its next
neighbor. Node and relationship data are stored in separate DB
files [23]. In ArangoDB, data is also stored on the disk but as
a JSON object referred to as a document [24]. Documents are
organized into collections where vertices and edges are stored
separately. MASS-based graph DB system stores vertices as
a PropertyVertexPlace object, with two separate hash-maps
to capture directed edge information. This data is stored in
memory, in contrast with the other two systems which store
data in the disk. The lengthier execution time for graph
creation in Neo4j is related to this linked list storage method.

2) Random DB-traversal benchmark: identifies the baseline
performance for each DB system to traverse graphs of 1K,
10K, 20K, and 30K vertices. By starting from a random vertex,
the data should not be available in cache or memory for the
disk-based solutions, assuming that many users simultaneously
send their independent queries, each irrelevant to others. This
helps highlight the differences between disk-based (Neo4j
and ArangoDB) and memory-based (MASS-graph DB system)
query times.

Figure 14 shows that MASS performs the worst for depth
1 and depth 2 traversals. For 20K and 30K graphs, at depth
3 traversal, we see that MASS outperforms both Neo4j and
ArangoDB. This is likely due to both Neo4j and ArangoDB
needing to access the disk to return data at depth 3 traversal.
The Neo4j and ArangoDB execution times for depths 1 and 2
will serve as the single-machine performance goal for MASS
as more enhancements and optimizations are made to the
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Fig. 14. Graph DB traversal depths 1-3 from random vertices

agents for graph traversal.

3) Entire DB-traversal benchmark: exhaustively checks all
potential relationships with depth 1, 2, and 3 over an entire
graph. We believe that this is one of the most intensive stress
test while it is not realistic in practical DB queries.

Figures 15-(a) to 15-(c) compare the query execution time
of MASS, Neo4j, and ArangoDB. As shown in Figure 15-
(a), MASS rapidly increases its depth-1 traversal time as
the graph size grows. This is because every single vertex
needs to propagate an agent to all its neighbors. The figure
also shows that ArangoDB is the most performant for depth
1 traversal. Figure 15-(b) however demonstrates that MASS
Graph DB system is more performant than ArangoDB for
depth-2 traversal. This is because the population of agents
drastically gets decreased on their further graph navigation.
Again in depth-3 traversals, as shown in Figure 15-(c), MASS
outperforms ArangoDB as ArangoDB runs out of memory.
Overall, Neo4j’s performance is relatively consistent and is
generally the most performant for graph traversal of any
depth. This is expected, as Neo4j data storage uses index-free
adjacency.

In contrast to a relational DB where performance is usually
dependent on the size of the tables, index-free adjacency in
Neo4j is dependent on the connectedness of the nodes in a
traversal. This results in Neo4j having fast and consistent query
execution times when traversing a graph of any size at any
depth level. ArangoDB’s graph traversal slows down for larger
graph sizes at depths greater than one. Graph traversal uses
the edge collection, which are documents stored as key-value
pairs. MASS DB system’s weakness in larger graph traversals
is caused by agent propagation from all vertices. We further
improves the MASS infrastructure to populate agents only at
applicable vertices.
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Fig. 15. Exhaustive graph DB traversal depths 1-3

V. CONCLUSION

Motivated from our former experience in deploying agents
to distributed data structures, this project aimed to apply
agents to an implementation of in-memory distributed graph
DB system. We developed a distributed key-value hash-map
as our DB system infrastructure. To support both property-
based vertex search and agent-based graph navigation, each
computing node maintains a vector of graph IDs in integer.
Multiple users share a graph on the /dev/shm directory but
cache graph vertices with a write-back and write-update pro-
tocol. We confirmed that this approach outperforms Hazelcast.
We have developed an ANTLR4-based translator to convert
Cypher queries into agent code so that agents navigate over
a graph DB to respond to their queries. Our comparison with
Neo4j and ArangoDB demonstrated that MASS-based graph
DB system performs competitively on random graph traversals
with depth 3 over a graph with 30K vertices.

However, our preliminary measurements also indicated two
challenges of our agent-based approach. One is that agent
deployment could not always outperform Hazelcast if Hazel-
cast developers would tune up their graph algorithms with
remote execution and local caching techniques. The other is
that agent-based graph traversals with depth 1 or 2 cannot
outperform Neo4j and ArangoDB at all, due to the current
agent population and execution control.

Based on these observations, we keep pursuing our agent-
based approach to distributed graph DB construction as work-
ing on the following five tasks: (1) to complete the translator
to convert all Cypher queries to agent code, (2) to line up more
graph DB benchmark queries, (3) to extend our performance
comparisons to cluster versions of Neo4j, ArangoDB, and
more graph DB systems such as AnzoGraph DB, (4) to
improve MASS GraphPlaces, VertexPlace, and GraphAgent
for their distribution, population, and control over a cluster



system, and (5) to develop machine-learning agents in graph
computing, including link predictions.
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