Agent-Based Parallelization of a Multi-Dimensional
Semantic Database Model

1%t Alex Li
Division of Computing and Software Systems
University of Washington Bothell
Bothell, WA 98011
0000-0002-4440-2082

Abstract—Responses to database queries that may be even
identical should vary if they are given under a different user
context. For instance, queries for wild animals in the context of
the ocean versus mountains should be different. Announced in
1993 [1], Mathematical Model of Meaning (MMM) provides users
with capabilities to extract data items tightly coupled under dif-
ferent semantic spaces. Such a space is created dynamically with
user-defined impression words to compute semantic equivalence
and similarity between data items. MMM computes semantic
correlations between the key and other data items to achieve
dynamic data querying. However, a semantic space creation and
a data correlative calculation are computationally demanding.
We consider MMM as a practical database application of multi-
agent technologies, construct a space over a cluster system, and
have multi-agents explore for a given target and its surrounding
data items. We use the Multi-Agent Spatial Simulation (MASS)
library to implement an agent-based semantic database system
and to measure its parallel execution. Compared to a sequential
MMM implementation, MASS-based parallelization yielded a 22-
time speedup when creating a space, mainly achieved with matrix
multiplication. MASS also reduced the time required for distance
sorting of multidimensional vectors by 23.7%.

Index Terms—agent-based modeling, mathematical model of
meaning, semantic database.

I. INTRODUCTION

If big-data computing needs to handle a structured dataset
such as a graph or a multi-dimensional space, it makes sense
to keep its structure in memory and dispatch agents into it
rather than decompose the structure and stream its data to
conventional analytic tools such as Spark! and Flink?. As we
previously proposed this agent-based analysis of structured
datasets [2], this paper intends to demonstrate agents’ appli-
cability to a practical information-retrieval system that deals
with high-dimensional semantic spaces.

We consider Mathematical Model of Meaning (MMM) [3]
that dynamically constructs a multi-dimensional semantic
space from user-given keywords and that responds to database
queries in the context of the semantic space. To facilitate
the space creation, MMM associates each data item with
features; defines interconnections among multiple items in a

This research was partially funded by University of Washington Bothell,
Computing and Software Systems Division’s RA-ship support.

Thttps://spark.apache.org/

Zhttps:/flink.apache.org/

2" Munehiro Fukuda
Division of Computing and Software Systems
University of Washington Bothell
Bothell, WA 98011
0000-0001-7285-2569

correlation matrix; and extracts a user-defined semantic space
by decomposing the matrix into an eigenvector and performing
Fourier expansion between user-provided impression words
and the eigenvectors. Given such a semantic space, MMM
calculates the Euclidean distance between a query data and all
the other items, which sorts out the closet data as the response.

MMM has two computational aspects: (1) multi-
dimensional space construction and (2) computational
demands in matrix operations and distance calculations. We
believe that agent-based data analysis is potential to support
these two computations. For a verification, we use the MASS
(Multi-Agent Spatial Simulation) library® to map semantic
spaces over a cluster system with Places objects and to move
Agents objects over the spaces for parallel computing. In
particular, we walk agents over a matrix, based on Cannon’s
algorithm [4] and propagate agents over a semantic space
from a test data in search for its closet data items.

This paper’s contributions are two-fold: (1) verifying a
practical use of agent behaviors (such as agent march and
propagation) as data-retrieving techniques applicable to a
semantic database and (2) demonstrating performance gains
through parallel computation among multi-agents, (i.e., a 22-
time speed-up in a space creation and a 23.7% reduction
of time required for database queries, both compared to the
corresponding sequential execution).

The rest of this paper is organized as follows: section 2
overviews MMM as an application we focus on; section 3
explains our agent-based parallelization techniques for seman-
tic space computation and data retrieval; section 4 demon-
strates the performance of agent-based parallelization; section
5 differentiates our MASS-parallelized semantic database from
other related systems; and section 6 concludes our discussions.

II. COMPUTATIONAL BASIS

This section intends to summarize MMM [3]’s computa-
tional basis that is needed for its parallelization with multi-
agents.

Traditional SQL-like database systems identify queried data
through pattern matching. SELECT and WHERE clauses are
used to filter data items through user-provided conditions.

3https://depts.washington.edu/dslab/MASS

[amoum average friend kind large nice importance size small

nice (o 0 1 1 0 0 0 0o 0

small | 1 1 0 0o 1 0 0 1 4

Fig. 1. A matrix to associate each data item with different features

They generally ignore the semantic meaning of data items.
Comparing with them, MMM allows users to query data
items through semantic associative searches where they are
projected onto semantic spaces. For this purpose, MMM takes
the following two steps: step I constructs a semantic space and
step 2 computes the distance between data items in a given
space.

A. Semantic Space Construction

A space construction gets started with formalizing an input
dataset into matrix A[m|[n| where all m data items are listed in
the row and their n features are distinguished in the column.
For instance, entries in a given English dictionary and their
explanatory words are considered as data items and their fea-
tures [5]. A more specific example is Random House Roget’s
Thesaurus that can be defined as A[11,000][2, 000, 000] with
11K entries and 2M synonyms/antonyms [6]. As shown in
Figure 1, each data item indicates the degree of its association
with a different feature, (e.g., 1, 0, and -1 as a positive, a
neutral, and a negative association).

From matrix A[m/|[n], MMM computes the Frobenius norm

V2 abs(A1)
normalizes A[m]|[n] by the vector of || F ||; and multiplies
it with its transpose matrix AT which obtains the final
correlation matrix AT A [3]. Its computational complexity
corresponds to O(m?).

MMM then decomposes the correlation matrix A7 A into
eigenvectors v that satisfies AT Av = Av. A user defines a
semantic context as a set of impression words (dg, d1, ..., d;—1)
where [< m, which is thus a subset of data items in the
original matrix A. For each impression word d; where 0 <
1 < |, MMM computes the Fourier expansion between d;’s
features A[d;][0] ~ A[d;][n — 1] and eigenvector v, which
results in d;j. This is the impression word d;’s coordinates in
the semantic space [3].

for each row, (i.e., data) with | F' || =

B. Data Retrieval

When retrieving user-desirable data items from a given
semantic space, MMM needs to calculate all the Euclidean
distances between any pair of data items x and y with
VYoo Ci(z[i] — y[i])? where x and y are coordinates in
a semantic space. C; is the weight i« of MMM’s so-called
semantic center. It is computed as an average of all impression
words’ coordinates in the space [3]. This distance calculation
is bound to O(m?).

MMM considers two data retrieval scenarios [5]. The first
is to identify the nearest neighbors from a given keyword P
in the semantic space created with impression words d;. This
corresponds to finding the data items closet to P in terms
of meaning. The second is to find top N data items from the
user-defined semantic space, where users provide no keywords
to query against. MMM sorts out top N items closer to the
collection of impression words d; that constitutes a semantic
space.

In summary, given m data items, MMM computational
complexity is bound to O(m?) in a semantic space creation,
(mostly in matrix multiplication) and O(m?) in each database
query, (i.e., data-to-data distance calculation). Its computa-
tional space can be framed in multi-dimensional arrays.

III. AGENT-BASED PARALLELIZATION

MMM'’s input matrix A and correlation matrix A7 A are
proportional to the number of data items and their features.
Furthermore, any additions or deletions of data items need a
O(m?) re-computation of the correlation matrix. This is our
motivation to maintain these matrices in distributed cache.
On the other hand, MMM’s semantic space is much lighter
in its creation as the number of user-provided impression
words is limited and the correlation matrix’s eigenvectors
are ready to use. However, the problem is repetitive queries
given to a semantic space, which currently needs O(m?)
Euclidean distance computation. Instead, our strategy injects
an agent into a semantic space and propagates its clones until
encountering closer data items.

We use the MASS library that instantiates a multi-
dimensional distributed array with Places and populates agents
over the array with Agents. Places can represent a multi-
dimensional semantic database and facilitate parallel function
calls of and data exchanges among array elements, (i.e., data
items), respectively through callAll() and exchangeAll(). On
the other hand, Agents can ramble over the database as queries.
They schedule their next search behaviors with callAll() and to
commit the actions with manageAll(). All MASS built-in func-
tions are executed in parallel over cluster computing nodes,
each with multi-cores and thus multithreaded. The following
two sub-sections give the details of MASS-parallelized MMM.

A. Semantic Space Creation

As described in Section II-A, MMM mainly takes two steps
to be ready for answering any semantic database queries: (step
1) a semantic space creation - further divided into sub-steps
(a) matrix multiplication and (b) eigenvalue decomposition;
and (step 2) Euclidean distance computations and data sorting.
Based on MMM’s computational examples in [1], we first im-
plemented MMM as a sequential Java program from scratch.
Figure 2 shows its execution time required for answering
the very first query on various datasets, each generated with
random double values.

Overall, step la costs the most computation time in MMM.
The matrix normalization and multiplication take over 90% of
the entire execution. The slowest is when an input matrix A

3000000

2500000

2000000

1500000

Execution Time (ms)

1000000

500000

0

10000_1000 10000_2000 20000_1000

Stepla mSteplb

20000_2000
W Step2

40000_1000 40000_2000

Fig. 2. Sequential MMM execution

A — T T
B :g:::: ADO AOI ADZ A03 T AOU T ADl T AOZ T ADS T
‘ BOD BOl BOZ BO3 BDO ‘Bll BZZ ‘ BSS
Ag «H Arr «— Als «— Az A A - ‘Au Az - ‘Am -
Byg By, Bl, Bi3 Byo ‘Bn B3, ‘ Bos
As ja - Az Ay ‘Azs A L ‘Au -«
BZD B‘Zl E 22 BZ3 BZO B31 BOZ Bl3
p p
Ay [A-n T Asd T Ass T Az T Ao <A |As T
By, By B3, Bas By, Boy By, Bys
i i
13t shift 2n and following shifts

Fig. 3. Cannon’s algorithm [4]

consists of 40,000 data items x 2,000 features, which takes
over 40 minutes to complete the calculation. Step 1b occupies
7% of the total time on average. The largest overheads were
observed when an input matrix A consists of 10,000 data
items x 2,000 features, which is 17%. Step 2 incurs negligible
overheads as compared to steps Ia and 1b while its overheads
are repetitive as numerous users issue database queries, which
we will address in Section III-B.

Given the above measurements, we consider the following
agent-based parallelization of semantic space creation.

1) Matrix multiplication: uses agents to implement Can-
non’s parallelization [4]. As shown in Figure 3, this
algorithm takes shift 1 and repetitive shift 2. Shift 1
aligns matrices A and B so that processor P; ; gets A;,
and B,;. Listing 1 describes agent migration in shift 1,
where agents with an even ID (line 4) will pick up matrix
A from the current place (lines 6-8), computes the left
place index (line 9), and migrate there (line 17), while
agents with an odd ID will take care of matrix B (lines
10-16). Thereafter, shift 2 moves each sub-matrix A one
step left and each sub-matrix B one step up. Upon each
shift, processor F; ; performs block multiplication. We
populate A and B agents, each repetitively performing
a pair of block shift and multiplication.

2) Parallel eigen-decomposition: might consider the block
householder transformation for parallel QR factor-
ization [7] where agents perform column-by-column
pipelined computation of QR decomposition on column
7 and matrix re-transformation on columns 1+1 ~ n—1,
as shown in Figure 4. However, the factorization sequen-
tially sweeps a given matrix columns from left to right.

spawn

e
p live, QR
decomposition Keep alive

deco

» »

Re-matriX Keep alive

‘.’ ."»

Fig. 4. Block householder transformation for parallel QR factorization [7]

»

Therefore, this parallelization strategy couldn’t substan-
tially reduce 17% overheads of the entire computation.

3) Parallel initialization of input matrix: uses the MASS
library’s parallel file I/O that partitions a big file into
smaller chunks, each loaded from a different computing
node into the respective stripe of Places objects. Despite
that MMM’s input matrix A is described in a CSV
format and thus each line length of the file is variable,
MASS equally partitions a given file by the number of
computing nodes. Therefore, the MASS library may split
a data item in its middle. To solve this problem, we add
paddings on each line to make sure that all lines of a
CSV file have the same length.

Listi Lo .
int row = place.getIndex()[0]; // retrieve the current place’s
int col = place.getlndex()[1]; // indexes: (row, col)
int size = place.getSize()[0];
if (agentAgentld()) % 2 ==0) {

// I'm an A agent to carry matrix A along the row
System.arraycopy(this.matrixToCarry, 0,

place.matrixA, 0, place.matrixA.length);
place.matrixA = null; // I'll take matrix A away

9 col=(row !=0) ?(size + col — row) % size : col;

10 } else {

11/ I'm a B agent to carry matrix B along the column

12 System.arraycopy(this.matrixToCarry, 0,

13 place.matrixB, 0, place.matrixB.length);

14 place.matrixB = null; // I'll take matrix B away

15 row = (row !=0) ? (size + row — col) % size : row;

00NN B W=

17 migrate(col, row); // ready to migrate

B. Data Retrieval

Our measurement found that the slowest response time
in one data-retrieval operation (including Euclidean distance
calculation and data sorting) was only 1,607 milliseconds.
However, as the number of data items gets increased from
10,000 to 20,000, this operation slows down by 1.6 times. An
increase of 1,000 to 2,000 features even shows a five-time
performance deterioration. Since data retrieval is repetitive
and main operations in databases, we parallelize data retrieval
using agent propagation, as shown in Figure 5.

Contrary to MMM'’s exhaustive point-to-point Euclidean
distance calculation (Figure 5-(a)), we start propagating agents
from the location of a test data item over a given semantic
space. The more data items in the space, the quicker agents
collide with any other data items (Figure 5-(b)). Of importance

a) Math-based data retrieval b) Agent-based data retrieval

,~*"d2 (fresh)
S @

Sort: d4, d3, d5, d6, d7. Use agent propagation and collision.

c) How about many features,
each with a few scales?

[T Te Lo [s oo Lo
10 1 s 3 ,l
05+ =3,

* d4’s attributes

+d3’s attributes

agent propagation

Fig. 5. Agent propagation over a semantic space

is how to implement such agent propagation in a higher-
dimensional space. Figure 5-(c) describes how to address the
problem. The agent propagation takes the following four steps:

1) Create places[s][f] where f = #features and s =
#scales per feature. Figure 5-(c) shows a creation of
places[3][8], as data items are associated with eight
features, each distinguishing its intensity with scales 0.0,
0.5, and 1.0, thus with three scales.

Populate agents, each starting from places|i][j] where a
test data has feature 5 with its scale value 7. Note that an
agent does not have to be spawned at every single feature
j but can cover a group of features k£ through to [where
0 < k <1 < f for the purpose of saving #agents to
spawn. In Listing 2, feature_min and feature_mazx
corresponds to k and [, respectively.

Move agents vertically from one scale to another on
s. Listing 2 illustrates their migration algorithm. Upon
encountering a new data item (lines 3-5), an agent
calculates its distance from the test data (line 6).
However, we should let the agent react to only data
items within the range from m/#agents x agentI D
to m/#agents x (agentID + 1), where m = #data
items. This migration and computation scheme prevents
multiple agents from discovering the same data item.
Thereafter, the agent migrates to a next scale (lines 10-
12).

Stop agent propagation when agents complete visiting
all places[s][f] or find a given number of top data items.

2)

3)

4)

// this = this agent
for(int i = this.feature_min; i < this.feature_max; i++) {
if(valueMap.containsKey(i)) { // encounter a new data item
double[] value =
place.getFromRandomAccessFile(datafile, i, this.dataSize);
double distance = calculateDistance(place.keyData, value);
this.results.put(i, distance);

0 NN R WD ==

—_
o o

int newY = currY;
int newX = (currX + 1) % this.levels;
migrate(newY, newX); // move horizontally along feature Y

_ —
[

IV. PARALLEL PERFORMANCE

We conducted experiments on top of a Linux cluster at
the University of Washington Bothell. The system has eight
computing nodes, each with 4-core Intel(R) Xeon(R) Gold
6130 CPU and 20GB memory space. The Java version of
MASS library was configured with 4GB initial heap size and
12GB maximum heap space. The testing dataset was randomly
generated in double precision.

A. Semantic Space Creation

Figure 6 visualizes the execution time of matrix multipli-
cation. The matrix size is 2,048 x 2,048. We include time
elapsed for MASS initialization, Places initialization, file read
operations, and actual calculation. MASS sets up a cluster
system with MASS.init(). During this initialization stage,
MASS establishes an SSH connection between the master
node and each worker node, and exchanges messages between
the nodes to verify their connections. The Places initialization
time includes their range partition over computing nodes and
their instantiation on different computing nodes.

As compared to the sequential execution that needs 115,694
milliseconds, MASS achieved the entire execution within
20,371 and 20,588 milliseconds, using or without using
parallel I/O respectively. The computation time itself takes
only 5,223 milliseconds, using four computing nodes, which
reduces 95% of the sequential execution (or runs 22 times
faster). This is because MASS not only facilitates distributed
memory space but also has a multi-core capability, thus
fully using 4 x 4 CPU cores, which achieves super-linear
improvements in its execution performance.

The main problem in MASS is its SSH and Places initial-
ization. The overheads do not drastically change regardless
of the number of computing nodes while we can still expect
further speedups of the entire computation as we use more
computing nodes. A more explicit solution is to overlap the
Places initialization and computation in a pipelined fashion,
as MASS currently facilitates pipelined graph streaming which
partially performs graph computing while constructing a next
portion of a given graph [8].

B. Data Retrieval

As shown in Figure 7, the retrieval performance of MASS
library depends on the size of an input matrix A. MASS
cannot outperform the sequential execution when sorting and
retrieving top data items from a small size of matrix such as

Matrix Calculation Benchmarks

Execution Time (ms)

MASS(Tmp Folder w/ parallel 10)

WMASS Initialization Time

MASS(Tmp Folder w/o parallel 10)

W MASS Place Initialization

Sequential

File Reading Time Calculation Time

Fig. 6. Matrix multiplication benchmarks

Data Sorting using Random Access File
12000

10000 9549

8000 7285

6000 5208

I ;

20000*2000

Execution Time (ms)

4000

2000

0
50000*2000

m MASS m Sequential

Fig. 7. Data sorting with memory space

20,000 data items x2,000 features. It runs 38.8% slower than
the sequential execution. However, if the matrix size gets 2.5
times larger, (i.e., increased to 50,000 items while keeping
the same number of features, (i.e., 2,000), MASS agents can
keep their propagation overheads within 1.4-times slow-down,
which is from 5,208 milliseconds to 7,285 milliseconds. On
the other hand, the sequential execution takes 9,549 millisec-
onds as compared to 3,750 milliseconds in the smaller matrix,
thus resulting in a 2.5-time, linear increase of overheads.

This is because MASS agent propagation can identify a
smaller number of top candidate data items, (e.g., 3,831 in
the larger matrix) while the sequential execution needs to
exhaustively sort all 50,000 data items.

V. RELATED WORK

This section summarizes some notable parallel database sys-
tems, semantic database examples, and agent-based ensemble
of multiple database systems. Thereafter, we differentiate our
agent-based MMM parallelization from these related systems.

A. Parallel Database

There are three types of architecture for parallel databases:
shared-disk, shared-memory, and shared-nothing architec-
tures [9]. Shared-memory architecture facilitates a global

memory to all computing nodes. In [10], authors propose
multiple algorithms that use remote direct memory access
(RDMA) in parallel database systems. The work dynam-
ically manages RDMA-registered memory to improve the
database performance. A shared-disk parallel database system
is proposed in [11]. Shared-disk systems manage to lower
communication overheads as compared to other architectures.
Especially for reading operations, the systems spread the
operations over multiple nodes to reduce the response time.

Our MMM and MASS integrated solution is a shared-
nothing architecture. The advantage of shared-nothing ar-
chitecture realizes high extensibility and high availability.
Compared with other shared-nothing architecture, such as
MySQL Cluster*, MASS is easier to scale up the system
without manually partitioning data over a parallel system. Our
approach is also differentiated from the viewpoint of initiating
agent propagation from a test data rather than screening all
potential data items. Since each agent injection represents a
different database query, multiple transactions can be carried
out in parallel.

B. Semantic Database

Semantic Data Model (SDM), introduced by Michael Ham-
mer, provides a high-level semantic-based modeling mech-
anism to capture and express the structural formalism for
databases [12]. SDM facilitates data querying from different
perspectives, where users can query data items by declaring
their views of a large database. Although SDM leads to some
redundancy of data storage by providing multiple perspectives
of a database, users can still benefit from its enriched relation-
ship schema to better understand the data in a natural way.

In World Wide Web, W3C introduced the standard of Web
Ontology Language (OWL) and the Resource Description
Format (RDF) to realize a semantic web. The purpose of in-
troducing a semantic web is to have machines understand and
interpret complex human requests based on their meaning®.
OWL and RDF use a triplet of (subject, predicate, object).
The subject and object denote resources. The predicate tells
subject-object relationship and describes their traits or aspects.
OWL and RDF utilize a meta-data model to express semantic
meaning in web resources and various syntax notations to
make the semantic meaning understandable by machines. With
a growing amount of web information being processed and
extracted, the most useful and related information can be
filtered by domains. Also, web crawlers can be beneficial
from the semantic web information. In [13], a semantic-based
model to represent multimedia big data is proposed. The work
describes a property-based graph which allows users to express
the concept and relationship between multimedia data items. A
graph database is utilized to save data items in a key-value pair
format and to traverse their connections. Their work presents
a machine-understandable representation which organizes the
semantic associations between multimedia data items.

“https://www.mysql.com/products/cluster/
Shttps://www.w3.org/standards/semanticweb/

Most semantic database models highly rely on either tra-
ditional models in the relational database architecture or on
models of resources and their relationship [13]. In addition,
some semantic databases are limited to specific domains where
they usually do not provide a general semantic database
solution. Contrary to them, MMM does not rely on any
relational database. A group of features represents the value
of data items. In addition, MMM can realize the dynamic
projection to a semantic space from user-given context words.

C. Agent-based Database

Most uses of agents in database or data-storing systems
focus on orchestrating multiple databases or backup storages
but not on parallel data retrieval within each computing node.
Agent-based backup [14] monitors and maintains the data con-
sistency among multiple storages. Archiware is a commercial
system to facilitate secured, recoverable, and distributed data
backup without using a centralized manager®.

Agent-based data mining [15] dispatches an agent to each
of remote and different databases where it performs mining
algorithms best fit to the respective dataset. The mined results
are collected by an aggregation agent and are presented to the
user. Similarly, agent-based data reduction carries out multi-
database mining but also conducts reductive computation with
agents before presenting the final results back to users [16].

Our parallelization approach is different from these agent-
based databases in the viewpoint of how to involve agents into
data retrieval or mining. Contrary to the related systems that
use agents for inter-database monitoring, task coordination,
and/or reductive computation, our agent-based MMM paral-
lelization injects agents into a semantic space to retrieve data
through agent propagation. Therefore, our approach can even
parallelize data retrieval within a single database system.

VI. CONCLUSION

We used two agent-based parallelization techniques to scale
up and to accelerate an MMM semantic database. One is
agent-based matrix computation. Upon any modifications of
data items (including data insertions, deletions, and feature
updates), MMM needs a significant amount of mathematical
computation to construct a correlation matrix and compute
its eigenvectors. It takes over 40 minutes for an input matrix
of 40,000 data items x 2,000 features. We applied agents
to Cannon’s algorithm to speed up matrix multiplication 22
times faster. The other technique is agent propagation over
a semantic space to find data items closer to a test item,
which is quicker than exhaustive data sorting by the sequential
program. Although the performance improvement with agent
propagation is only 23.7%, we expect that this would support
larger datasets more efficiently.

While we used MASS for parallelizing a multi-dimensional
semantic database, any other multi-agent systems such as
RepastHPC [17] are applicable to our parallelization work as
far as they can dispatch agents over a logical space that is
mapped to a cluster system.

Shttps://www.archiware.com/

Finally, our future work includes the following two tasks:
(1) pursuing further speed-up with agent-based parallelization
of eigenvector decomposition and (2) measuring the maximum
query-handling throughput of MASS-based MMM.

ACKNOWLEDGMENTS

We would like to extend our deep appreciation to Prof.
Yasushi Kiyoki and his research group at Keio University at
Shonan Fujisawa Campus, Japan for all their technical advice
on our Java implementation of MMM algorithms as well as
their support for our verification work.

REFERENCES

[1] T. Kitagawa and Y. Kiyoki, “A mathematical model of meaning and
its application to multidatabase systems,” in RIDE-MS '03: 3rd Interna-
tional Workshop on Research Issues in Data Engineering: Interoperabil-
ity in Multidatabase Systems, Vienna, Austria, April 1993, pp. 130-135.

[2] M. Fukuda, C. Gordon, U. Mert, and M. Sell, “Agent-Based Compu-
tational Framework for Distributed Analysis,” IEEE Computer, vol. 53,
no. 3, pp. 16-25, 2020.

[3] Y. Kiyoki, T. Kitagawa, and T. Hayama, “A metadatabase system for
semantic image search by a mathematical model of meaning,” ACM
SIGMOD RECORD, vol. 23, pp. 34-41, December 1994.

[4] H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized cannon’s algo-
rithm for parallel matrix multiplication,” in //th international conference
on Supercomputing, New York, NY, July 1997, pp. 44-51.

[5] Y. Kiyoki and X. Chen, “A semantic associative computation method for
automatic decorative-multimedia creation with “kansei” information,” in
6th Asia-Pacific Conference on Conceptual Modeling (APCCM 2009),
Wellington, New Zealand, January 2009, pp. 7-15.

[6] Random House, Roget’s Thesaurus. New York: Ballantine Books, 2001.

[7]1 F. Rotella and 1. Zambettakis, “Block householder transformation for
parallel qr factorization,” Applied Mathematics Letters, vol. 12, pp. 29—
34, May 1999.

[8] Y. Hong and M. Fukuda, “Pipelining Graph Construction and Agent-
based Computation over Distributed Memory,” in 9th Int’l Workshop on
BigGraphs’22. 1EEE, December 2022, pp. 4616-4624.

[9]1 A. S. Talwadker, “Survey of performance issues in parallel database

systems,” Journal of Computing Sciences in Colleges, vol. 18, pp. 5-9,

June 2003.

F. Liu, L. Yin, and S. Blanas, “Design and evaluation of an rdma-aware

data shuffling operator for parallel database systems,” ACM Transactions

on Database Systems, vol. 44, no. 4, pp. 1-45, December 2019.

[11] E. Rahm, “Parallel query processing in shared disk database systems,”

ACM SIGMOD RECORD, vol. 22, pp. 32-37, December 1993.

M. Hammer and D. McLeod, “The semantic data model: a modelling

mechanism for data base applications,” in ACM SIGMOD International

Conference on Management of Data - SIGMOD 78, Austin, TX, 1978,

pp. 26-36.

A. M. Rinaldi and C. Russo, “A semantic-based model to represent

multimedia big data,” in 10th International Conference on Management

of Digital EcoSystems, Tokyo Japan, September 2018, p. 31-38.

H.-M. Lee and C.-H. Yang, “A distributed backup agent based on grid

computing architecture,” in 9th international conference on Knowledge-

Based Intelligent Information and Engineering Systems - Volume Part

11, September 2005, pp. 1252-1257.

P. Yang, L. Tao, L. Xu, and Z. Zhang, “Multiagent framework for bio-

data mining,” in International Conference on Rough Sets and Knowledge

Technology, Gold Coast, Australia, July 2009, pp. 200-2007.

I. Czarnowski and P. Jedrzejowicz, “Instance reduction approach to ma-

chine learning and multi-database mining,” Annales UMCS Informatica

Al vol. 4, no. 1, pp. 60-71, 2006.

RepastHPC, “Accessed on: June 8, 2023.

https://repast.github.io/repast_hpc.html.”

(10]

[12]

[13]

[14]

[15]
[16]
Available:

[17] [Online].

