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Abstract—Breadth-first search is used as a brute-forth ap-
proach to parallelizing graph computations over a distributed
graph structure such as the shortest path, closeness centrality,
and betweenness centrality search. As a smart alternative, we
integrate Q-learning capabilities into agents, dispatch them over
a distributed graph, have them populate the Q-table, and ac-
celerate their graph computations. We developed the Q-learning
agents with the multi-agent spatial simulation (MASS) library
and measured their parallel performance when running over a
distributed graph with 16K or more vertices. This paper identifies
the graph scalability, static/dynamic graph structures, application
types, and Q-learning hyperparameters that take advantage of
Q-learning agents for parallel graph computing.

Keywords-Q learning; agent-based modeling; cluster computing;
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I. INTRODUCTION

Graphs play a critical role in data representation across
diverse domains, such as social networks, transportation sys-
tems, and biological networks. The exponential growth of
graph sizes and complexity necessitates scalable solutions to
handle vast datasets. Distributed frameworks, such as Google’s
Pregel [1] and Apache Spark GraphX [2], address this need
by partitioning graph data across multiple computing nodes
for parallel processing. While these solutions provide robust
support for large-scale static graphs, their predefined com-
putation models fall short when adapting to dynamic graph
environments.

In contrast, reinforcement learning, particularly Q-learning,
introduces a paradigm shift by enabling agents to learn
graph structures and adapt their strategies dynamically. Q-
learning’s flexibility demonstrates a promising approach to
handling static and dynamic graphs, especially in scenarios
with frequent and unpredictable topology changes. To evaluate
the Q-learning agents’ adaptability, flexibility, and parallel
performance, we implemented them within the Multi-Agent
Spatial Simulation (MASS) Java library [3].

Our work applied MASS-enabled Q-learning agents to
three fundamental graph problems: shortest path, closeness
centrality, and betweenness centrality. Experimental results
demonstrated the efficiency of this approach, including per-
formance gains of 66% to 99% and a 190% reduction in
training time when executed on eight computing nodes. These
improvements highlight the potential of combining distributed
Q-learning agents to effectively tackle graph analysis.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work on parallel graph computing,

reinforcement learning, and dynamic graph processing. Sec-
tion III details the design and implementation of Q-learning
agents within the MASS framework. Section IV presents
the experimental setup and results, comparing Q-learning-
based solutions with existing MASS implementations. Finally,
Section V concludes our work on distributed graph computing
using Q-learning agents.

II. RELATED WORK

This section reviews some libraries and algorithms related to
our MASS-parallelized Q-learning agents from the following
three viewpoints: (1) parallel graph computing, (2) Q-learning
graph computing, and (3) tolerance to dynamic graphs.

A. Parallel graph computing

The exponential growth of graph sizes has necessitated
distributed platforms, such as Google Pregel [1] and Spark
GraphX [2], to handle large-scale graph computations. In
Pregel, the master computing node partitions a graph dataset
across worker computing nodes for parallel computation.
Pregel simulates message propagation or breadth-first search
over the graph in iterative supersteps, where each vertex ex-
changes messages with its neighbors. GraphX utilizes a similar
vertex-centric message propagation approach, facilitated by the
Pregel API and enhanced through Spark’s Resilient Distributed
Datasets, enabling efficient in-memory computation and fault
tolerance.

While GraphX and Pregel are robust for static graphs, they
struggle with dynamic environments where changes in the
graph necessitate complete recomputation. Depending on the
size of the graph, this can result in significant computational
costs as the frameworks have no native mechanism to respond
incrementally to these changes. In this way, adaptive solutions
have a significant advantage over purely static implementa-
tions.

B. Q-Learning Graph Computing

Q-learning [4] has seen wide adoption in reinforcement
learning due to its ability to learn and adapt to unknown
environments and derive optimal policies for navigating them,
particularly in the shortest path problem. In this context, graph
vertices represent states, edges represent possible actions, and
rewards are based on the edge weights. As the Q-learning
agent navigates the graph, it iteratively populates the Q-table,
capturing the optimal policies for efficient traversal.
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In literature, Q-learning has successfully addressed the
shortest path problem. Sun [5] utilized Q-learning to navigate
a static city graph, demonstrating its effectiveness in road
network-like graph structures. Wang et al. [6], applied Q-
learning to autonomous robots in a grid-like environment,
prioritizing the shortest path and obstacle avoidance. The study
highlighted Q-learning’s ability to enable intelligent decision-
making in uncertain environments driven by learned agent
intelligence. Nannapaneni [7] introduced a novel path-routing
algorithm based on a modified Q-learning algorithm for dy-
namic network packet routing, underscoring its adaptability to
evolving environments. However, these studies often focus on
small graphs with fixed hyperparameters on single-machine
setups.

Two extensions of the shortest path search are closeness and
betweenness centrality computation [8]. The former computes
the shortest path from each vertex u to all other vertices
v, sums all the path lengths, and takes its reciprocal with
C(u) = N−1

sum(u) . The latter determines all shortest paths
between each pair of vertices u and v in a graph, counts how
many paths pass through a given vertex, and computes the
centrality with B(s) =

∑
u̸=s̸=v

σuv(s)
σuv

, where σuv is the total
number of the shortest paths from vertex u to vertex v, and
σuv(s) is the number of those paths passing through s. For
dynamic graphs, recalculating these metrics with each change
can be computationally expensive. Parallel approaches, such as
using landmarking techniques [9] or GPU acceleration [10],
have been proposed to address this complexity. However, these
methods often require extensive preprocessing or specialized
hardware, limiting their practicality.

C. Dynamic graphs

Dynamic graphs, where changes to the graph’s vertices or
edges occur over time, better emulate real-world situations
like those in traffic networks. Changes to the graph can be
incremental, adding vertices and edges or increasing weights,
or decremental, removing vertices and edges or decreasing
weights [11]. Traditional algorithms, such as Dijkstra’s or
Bellman-Ford, are designed for static graphs as they require
complete recomputation for each change. This recomputa-
tion becomes prohibitively expensive when handling frequent
changes.

To address the challenges associated with dynamic graphs,
several approaches have been explored. Early efforts adapted
traditional algorithms like A* [12] for incremental changes.
Techniques like those employed in Dynamic Dijkstra’s [13]
and D* [14] utilized incremental search strategies that recom-
pute only affected portions of the graph. Subsequent methods
used landmark-based techniques [15] for real-time shortest
path approximation and distributed techniques [16] to partition
the graph data and subgraph computation across a distributed
cluster of computing nodes. While these approaches improve
performance, they often rely on knowledge of where changes
occur, which is impractical for unpredictable, real-world en-
vironments. Additionally, landmarking requires extensive pre-
processing to select landmark vertices accurately. Our work

focuses on measuring dynamic performance without prior
knowledge of graph changes or the underlying structure of
the graph.

D. Challenges and Agent-based Solutions

Our project seeks to expand on these studies by exploring
a diverse range of graph sizes, assessing the performance of
Q-learning on dynamic graphs using the MASS framework,
and improving the algorithm’s efficiency through performance-
based hyperparameter tuning and MASS-enabled agent fea-
tures. For this purpose, we take the following four strategies:

1) MASS constructs and maintains a distributed graph over
a cluster system for repetitive graph computing [17].

2) MASS agents build a Q-table over a distributed graph
and dynamically tune hyperparameters during training.

3) MASS facilitates dynamic graphs by adding or deleting
vertices and their edges.

4) MASS agents adapt to graph changes by reaching semi-
optimal solutions when the initial graph structure is
altered.

III. AN IMPLEMENTATION OF Q-LEARNING AGENTS

This section details the Q-learning algorithm for the shortest
path problem and its application to closeness and betweenness
centrality. It also covers the implementation details for the Q-
learning shortest path, closeness centrality, and betweenness
centrality in MASS, including MASS-specific performance
improvements.

A. MASS Library

The MASS Java Library [3] uses two primary components:
Places and Agents. Places represent individual data members
of a larger dataset, whereas Agents comprise individual agent
execution entities that traverse Place objects to perform com-
putation. Individual Place objects are allocated across a spe-
cific number of computing nodes within a cluster and can be
referenced using a universally recognized set of coordinates.

After mapping each Place within the cluster, they are
assigned to threads, allowing them to communicate with other
Place objects and the agents residing on them. Agents are
organized into groups on each computing node and can move
between nodes using serialization and TCP communication.

The MASS library has been extended to support explicit
graph structures in a multi-node cluster. GraphPlaces, an
extension of the original Places class, consists of Vertex-
Place objects that store graph vertex information. Graphs can
be manually created by invoking the addVertex() and
addEdge() methods, or users can load graph data from a
supported graph format, including Hippe, Matsim, or a few
propriety formats [17]. MASS enables parallel file processing,
making graph creation far more efficient than serial methods.
Keeping with its tradition of distributed cluster computing,
vertices are balanced across the entire cluster in a round-robin
fashion to ensure an even distribution of graph data between
all the cluster nodes.



B. Algorithm Design

The Q-learning shortest path algorithm models the environ-
ment as a graph G = (V,E), where vertices V are states
and edges E are actions connecting them. An agent learns
the optimal path by iteratively updating the Q-table Q(s, a),
which stores the value of taking action a in state s. The Q-
value update rule is given by:

Q(s, a)← Q(s, a) + α
[
r + γmax

a
Q(s′, a)−Q(s, a)

]
Here, α is the learning rate, γ is the discount factor, and r

is the reward received for the state transition. Rewards guide
the agent by assigning penalties for non-terminal states as
the edge cost, a positive reward for reaching the destination,
and a penalty for encountering dead ends. The parameter ϵ
controls the exploration-exploitation tradeoff in an epsilon-
greedy action selection process (see Figures 1 and 2), where
agents explore new paths with probability ϵ and exploit the
highest Q-value action otherwise. Training continues until the
Q-values converge or the maximum number of episodes is met.

To improve on traditional Q-learning, dynamic hyperpa-
rameter tuning is utilized to enhance learning efficiency and
adaptiveness. This approach uses a distributed reward win-
dow, a linked list that stores cumulative rewards received
during training episodes. If the current average reward in the
window decreases relative to the previous average, α and
ϵ are increased to promote exploration. In contrast, if the
reward improves, these parameters are decreased to stabilize
learning and encourage exploitation. This dynamic adjustment
enables agents to adapt to changing performance, improving
convergence and efficiency compared to fixed parameter decay.

Beyond finding the shortest path, the Q-table also enables
suboptimal path enumeration. By defining a Q-value and path
length threshold, agents can explore alternative paths within
a certain percentage of the optimal Q-value and path length.
This flexibility allows the agent to identify viable alternative
routes in the event of changes in the graph structure, such as
blocked paths or updated edge weights. The Q-table’s compre-
hensive knowledge provides a robust basis for exploring these
alternative paths without requiring additional training.

The Q-learning shortest path algorithm naturally extends
to calculating graph centrality metrics like closeness and
betweenness. In MASS, this is achieved by assigning a Q-
learning agent to each source-destination pair, with Q-tables
organized in a two-dimensional array of hashmaps at each
vertex. For betweenness centrality, agents are further tasked
with enumerating all optimal paths between vertex pairs.

C. Algorithm Implementation with MASS

The MASS library streamlines the application of the Q-
learning shortest path algorithm by distributing computation
and facilitating multi-agent collaboration. The algorithm is
built upon the fundamental abstractions of MASS: Places
and Agents, utilizing the graph-specific extension of Places,
GraphPlaces, to enable easy-to-use MASS graph functionality.
Furthermore, the Node class, representing individual graph

nodes and an extension of VertexPlace, is created to incor-
porate Q-learning functionality related to distributed Q-table
storage and dynamic hyperparameter tuning.

Figure 1. Action Selection algorithm in the Q-learning process.

The primary agent, QLAgent, navigates the graph, updates
Q-values, and dynamically adjusts hyperparameters based on
feedback from the reward window. During training, the QLA-
gent iteratively explores the graph, storing the learned values
in the distributed Q-tables. The action selection process is
handled by the chooseAction function, detailed in Fig-
ure 1, which implements the epsilon-greedy policy to balance
exploring new actions and exploiting the highest-value actions
stored in the Q-table. At the end of each episode, the QLAgent
evaluates its performance and fine-tunes its hyperparameters
using the adjustAlphaEpsilon function, described in
Figure 2. This adaptive function increases exploration and
learning rates when performance declines and decreases when
performance improves, ensuring efficient learning throughout
the training process. The adjustment factors of 1.035 and 0.95
for α and ϵ were identified through manual testing as values
that provide balanced yet gradual change without excessive
oscillation. Once training is complete, the QLAgent uses the
learned values from the Q-table to identify the optimal path.

Figure 2. Dynamic α and ϵ tuning algorithm.

Suboptimal paths are explored using the PathAgent, a sim-
plified version of the QLAgent designed for path enumeration.
The PathAgent identifies routes within user-defined Q-value



and path length thresholds, enabling the discovery of both
optimal and viable alternative paths.

MASS significantly enhances Q-learning performance on
large-scale graphs by optimizing resource utilization and scal-
ability. The distributed architecture efficiently shares memory
and computational load across computing nodes and enables
the sparse Q-table representation focused on only relevant
state-action pairs. Moreover, MASS’s multi-agent training
support allows numerous agents to explore the graph si-
multaneously, accelerating the training process and ensuring
comprehensive graph coverage.

IV. EVALUATION

This section presents the experimental results for the Q-
learning shortest path, closeness, and betweenness central-
ity applications, comparing their performance against current
MASS implementations. Experiments were conducted on the
CSSMPI cluster at the University of Washington Bothell,
comprising eight virtual machines allocated four cores at
2.10GHz from an Intel Xeon Gold 6130 processor and 16GB
of RAM. The MASS Q-learning applications utilized MASS
Java Core version 1.4.3, enhanced by Fastutil version 8.5.8
for optimized data structures. Performance metrics focus on
training time, adaptability for dynamic graph changes, and
efficiency improvements through multi-agent training.

TABLE I. GRAPH DATASETS PROPERTIES

Dataset Vertices Edges Avg Deg Max Deg
Synthetic (Shortest) 500-16K 63K-64M 126-4038 189-5833
Road Networks 1861-19K 4K-50K 2.35-5.3 5-10
Synthetic (Centrality) 8-256 16-16K 2-64 3-97

Table I summarizes the datasets used for evaluation, in-
cluding synthetic graphs for shortest path testing, real-world
road network graphs for dynamic performance analysis, and
synthetic centrality graphs for closeness and betweenness
centrality testing.

A. Shortest Path

Figure 3 demonstrates the training performance of the Q-
learning shortest-path application on synthetic graphs. The
application performs best on single-node executions for graphs
up to 8000 vertices, as the need for communication between
nodes in the cluster is minimized. For the 16,000-vertex graph,
multi-node execution becomes necessary, with eight comput-
ing nodes achieving optimal performance due to distributed
agent coordination and parallel execution.

After training, the Q-learning shortest path algorithm sig-
nificantly outperforms the current MASS shortest path imple-
mentation in output speed, as shown in Figure 4. The trained
QLAgent efficiently navigates the graph using the trained Q-
table to produce the shortest path, demonstrating the inherent
advantage of pre-trained Q-learning models.

Dynamic benchmarking evaluates the adaptability of the Q-
learning application to graph changes. Figure 5 compares Q-
learning performance with the current MASS shortest path

Figure 3. MASS Q-learning Shortest Path Synthetic Training Time

Figure 4. MASS Shortest Path vs. MASS Q-learning Shortest Path

application when faced with the removal of a single vertex.
The Q-learning implementation excels in well-connected syn-
thetic graphs, quickly adapting to minor changes due to the
knowledge stored in the Q-table. More substantial disruptions,
such as the removal of five vertices, resulted in increased
retraining times, thereby making rerunning the current MASS
implementation more efficient for significant changes.

B. Closeness and Betweenness Centrality

The Q-learning approach for centrality analysis demon-
strates potential but faces scalability challenges. For closeness
centrality, training individual Q-tables for all vertex pairs re-
sulted in quadratic scaling with the number of vertices, making
the approach inefficient for larger graphs as shown in Figure 6.
Similarly, betweenness centrality incurred additional overhead
from enumerating all shortest paths between vertex pairs,
further amplifying scalability issues. The scalability issues and
the need to retrain extensively for dynamic graph changes
made the Q-learning approach less competitive compared to
the current MASS implementation.

Overall, while the Q-learning-based centrality method
showed promise for small, static graphs, its scalability and



Figure 5. MASS vs. MASS Q-learning Shortest Path One Vertex Removal

Figure 6. MASS vs. MASS Q-learning Closeness and Betweenness Centrality

adaptability fell short of the success in the shortest path
application. Future work could explore hybrid approaches or
optimizations, such as combining Q-learning with heuristics
or leveraging pre-computed graph partitions, to address these
limitations and improve centrality analysis performance.

C. MASS Enabled Q-learning Performance Improvements

The Q-learning shortest path application incorporates key
innovations enabled by the MASS framework: multi-agent
training, distributed reward window, and dynamic hyperpa-
rameter tuning. Multi-agent training, facilitated by MASS’s
distributed multi-agent architecture, significantly reduces train-
ing times by allowing agents to operate in parallel across
all computing nodes. As shown in Figure 7, this approach
achieved a 190% reduction in training time on an 8-node
cluster with 1750 training agents compared to a single agent
execution. The MASS framework facilitates this improvement
by efficiently managing agent migration, synchronization, and
data sharing across distributed nodes, enabling seamless multi-
agent parallelism.

In multi-agent Q-learning scenarios, a considerable chal-
lenge is the need for agents to share the knowledge gained
during training, often requiring costly synchronization meth-

Figure 7. MASS Q-learning Shortest Path Multi-Agent Training Time

ods. Our implementation of a distributed reward window,
enabled by the MASS framework, was a key enhancement
to the Q-learning applications. Figure 8 illustrates that the
distributed reward window allows agents to share their cumula-
tive episodic rewards without costly synchronization methods,
enabling efficient hyperparameter tuning and reducing train-
ing times. MASS’s distributed architecture provides a simple
and effective mechanism for aggregating these rewards. By
streamlining communication and eliminating costly synchro-
nization overhead, the distributed reward window significantly
increases the scalability and efficiency of Q-learning as applied
to large-scale graph analysis.

Figure 8. MASS Q-learning Independent vs. Distributed Reward Window

Dynamic hyperparameter tuning further enhances the train-
ing process by adjusting exploration and learning rates based
on the aggregated rewards from the distributed reward window.
Figure 9 demonstrates how this capability minimizes unneces-
sary computations, reducing overall training time without com-
promising accuracy. By leveraging MASS’s robust distributed
communication and state management features, agents can
adapt their hyperparameters dynamically, ensuring a balanced
and efficient approach between exploration and exploitation.

These improvements underscore the critical role of the
MASS framework in enhancing the Q-learning implementa-



Figure 9. MASS Q-learning Static vs. Dynamic Hyperparameter Tuning

tions. By providing a robust distributed parallel environment,
MASS enables efficient multi-agent operations, adaptive learn-
ing, and scalable performance for large-scale graph analysis.

V. CONCLUSION AND FUTURE WORK

We successfully demonstrated the capability of MASS to
accelerate reinforcement learning algorithms like Q-learning
through its distributed and parallel multi-agent programming
paradigm. In our experimentation, MASS’s multi-agent fac-
ulties resulted in up to a 190% reduction in training time
compared to a single agent, and the distributed architecture
enabled Q-learning for large-scale graph analysis. MASS’s
ability to support distributed graph computing and facilitate
adaptive learning presents a promising framework for future
multi-agent machine learning applications. Furthermore, the
Q-learning applications, particularly the shortest path imple-
mentation, exhibited promising performance, especially in
their adaptability to dynamic data, and served to highlight
where MASS can be improved to better align with machine
learning workloads.

Our future work will focus on expanding the scope of
machine learning in MASS by exploring advanced graph-
based techniques, such as Graph Convolutional Networks
and embedding techniques like FastRP. Additionally, research
into efficient agent communication, reduced agent overhead,
and more dynamic graph modifications could unlock new
capabilities and improve MASS’s adaptability for a broader
range of applications.

Finally, the MASS library and the applications featured in
this project are available at: http://depts.washington.edu/dslab/
MASS/.
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