=========================== One-dimensional Multigrid =========================== .. currentmodule:: mmf.math.multigrid.notes.multigrid_notes Here we consider the following problem from :file:`mmf/math/multigrid/notes/multigrid_notes.py`: .. autosummary:: Problem MultigridBase MultigridNeumann MultigridPeriodic .. autoclass:: Problem :members: Discretization -------------- We ignore the boundary conditions for now. In the interior we use the standard 3-point stencil to represent the Laplacian on the interior: .. math:: T = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} with the interpolation and restriction operators .. math:: \mat{I} = \begin{pmatrix} \ddots &\tfrac{1}{2}\\ & 1\\ & \tfrac{1}{2} & \tfrac{1}{2}\\ & & 1 \\ & & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & & \ddots\\ & & & & & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & & & & 1\\ & & & & & & \tfrac{1}{2} & \ddots \end{pmatrix} \qquad \mat{R} = \tfrac{1}{2}\mat{I}^{T} = \frac{1}{2}\begin{pmatrix} \ddots\\ \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ & & \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ & & & & \ddots\\ & & & & \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ & & & & & &\ddots \end{pmatrix} corresponding to the following grid refinements: .. math:: \setcounter{MaxMatrixCols}{20} \begin{matrix} \cdots & \bullet &&&& \bullet &&&& \bullet & \cdots\\ &\uparrow&\nwarrow&&\nearrow& \uparrow&\nwarrow&&\nearrow&\uparrow\\ \cdots & \bullet && \bullet && \bullet && \bullet && \bullet & \cdots\\ &\uparrow&\nwarrow\nearrow&\uparrow&\nwarrow\nearrow& \uparrow&\nwarrow\nearrow&\uparrow&\nwarrow\nearrow&\uparrow\\ \cdots &\bullet&\bullet&\bullet&\bullet&\bullet&\bullet &\bullet&\bullet&\bullet&\cdots \end{matrix} These preserve the Galerkin conditions that the restriction and interpolation operators are transposes and that $\mat{T}_{2h} = \mat{R}\mat{T}_{h}\mat{I}$. Performing a Fourier analysis, we find that plane wave eigenvectors $e^{ikx}$ have eigenvalues .. math:: \lambda_{k} = \frac{\mat{T}e^{ikx}}{e^{ikx}} = \frac{e^{ik(x-\delta)} + e^{ik(x+\delta)}-2e^{ikx}}{e^{ikx}} = 2(\cos k\delta - 1). Boundary conditions ------------------- One of the challenges is to formulate the boundary conditions in such a way that the Galerkin conditions are satisfied, i.e. that $\mat{R} = \mat{I}^T$ and that $\mat{R}\mat{A}\mat{I}$ has at least the same sparsity structure as $\mat{A}$. It is probably also desirable that the operators preserve their idempotency for constant functions. Where this is not possible, one should prefer the property for the interpolation operator $\mat{I}$ (this has not been tested here however). Furthermore, to implement the boundary conditions, it is desirable if the operators can be formulated in such a was as to be implementable by a simple stencil acting on an augmented array. The exclusive Neumann condition has this property where as the inclusive version does not (requiring also modification of the values of the boundary points). Neumann Boundary Conditions ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We first consider pure Neumann boundary conditions. We would like to keep the difference operator symmetric (so that eigenvalues are guaranteed to be real for example), which restricts the form of the operator to .. math:: \mat{T}_{\text{Neumann}} = \begin{pmatrix} -1 & 1 & \\ 1 & -2 & 1\\ & \ddots & \ddots & \ddots\\ & & 1 & -2 & 1\\ & & & 1 & -1 \\ \end{pmatrix}. This can be represented by the stencil $[1, -2, 1]$ on the augmented array $[a,b,\cdots x,y] \rightarrow [a,a,b,\cdots, x,y,y]$. This is both symmetric and satisfies the charge neutrality condition. Its structure is preserved by the interpolation and restriction operators: .. math:: \mat{I} = \begin{pmatrix} 1\\ \tfrac{1}{2} & \tfrac{1}{2}\\ & 1 \\ & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & \ddots\\ & & & & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & & & 1 \end{pmatrix}, \qquad \mat{R} = \tfrac{1}{2}\mat{I}^{T} = \frac{1}{2}\begin{pmatrix} 1 & \tfrac{1}{2}\\ & \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ & & & & \ddots\\ & & & & & \tfrac{1}{2}\\ & & & & & \tfrac{1}{2} & 1 \end{pmatrix}. Note that the restriction operator does preserve constant functions at the endpoints, but the interpolation operator does. The number of lattice points is $N = 2^{n}(n_0 - 1) + 1$. There are two interpretations: 1) As a straightforward finite-difference operator. In this case, we can inspect the desired eigenvectors of the form $\cos(x_0 + n\delta)$. Applying this matrix and using the eigenvalue equation we find the consistency condition: .. math:: \lambda_k = \frac{-\cos(kx_0) + \cos(kx_0 + k\delta)}{\cos(kx_0)} = -1 + \cos(k\delta) - \tan(kx_0)\sin(k\delta) which gives $\tan\frac{k\delta}{2} = \tan(kx_0)$, implying that $x_0 = \delta/2$. This gives the lattice:: o x x x ... x x o |--|----|----|-- ... |----|--| 0 d/2 3d/2 5d/2 ... L Here is a little check: We first form the eigenvectors and eigenvalues, and then show that we recover the desired form of operator: >>> L = 1 >>> N = 4 >>> f = 0.5 >>> d = L/(N - 1 + 2*f) >>> x0 = f*d >>> x = np.ogrid[x0:L-x0:N*1j] >>> n = np.arange(N) >>> k = pi*n/L >>> V = np.cos(k[None,:]*x[:,None]) >>> V = 1/np.sqrt(np.diag(np.dot(V.T, V)))*V >>> E = 2*(cos(k*d) - 1).ravel() >>> T = np.dot(np.dot(V, diag(E)), V.T).round(2) >>> T array([[-1., 1., -0., 0.], [ 1., -2., 1., -0.], [-0., 1., -2., 1.], [ 0., -0., 1., -1.]]) 2) The second interpretation is that of the operator .. math:: \begin{pmatrix} -2 & 2 & \\ 1 & -2 & 1\\ & \ddots & \ddots & \ddots\\ & & 1 & -2 & 1\\ & & & 2 & -2 \\ \end{pmatrix}, but with the first and last equations scaled by a factor of $1/2$ so that the original system is expressed as: .. math:: \mat{T}_{\text{Neumann}} \vect{f} = \begin{pmatrix} b_0/2\\ b_1\\ \vdots\\ b_{N-2}\\ b_{N-1}/2 \end{pmatrix}. Applying the eigenvalue equation (either apply the new form, or scale the endpoint by a factor of $1/2$) we obtain the consistency condition: .. math:: \lambda_k = \frac{-2\cos(kx_0) + 2\cos(kx_0 + k\delta)}{\cos(kx_0)} = -2 + 2\cos(k\delta) - 2\tan(kx_0)\sin(k\delta) which gives $\sin(k\delta)\tan(kx_0)=0$, implying that $x_0 = 0$. This gives the lattice:: x x x ... x x |---|---|-- ... |---| 0 d 2d ... L Periodic Boundary Conditions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Periodic boundary conditions are implemented by the operator .. math:: \mat{T}_{\text{Periodic}} = \frac{1}{\delta^2}\begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \\ \end{pmatrix}. This can be represented by the stencil $[1, -2, 1]$ on the augmented array $[a,b,\cdots x,y] \rightarrow [y,a,b,\cdots, x,y,a]$. This is both symmetric and satisfies the charge neutrality condition. Its structure is preserved by the interpolation and restriction operators: .. math:: \mat{I} = \begin{pmatrix} 1\\ \tfrac{1}{2} & \tfrac{1}{2}\\ & 1 \\ & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & \ddots\\ & & & & \tfrac{1}{2} & \tfrac{1}{2}\\ & & & & & 1\\ \tfrac{1}{2} & & & & & \tfrac{1}{2}\\ \end{pmatrix}, \qquad \mat{R} = \tfrac{1}{2}\mat{I}^{T} = \frac{1}{2}\begin{pmatrix} 1 & \tfrac{1}{2} & & & & & & \tfrac{1}{2}\\ & \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ & & & & \ddots\\ & & & & & \tfrac{1}{2} & 1 & \tfrac{1}{2}\\ \end{pmatrix}. The abscissa and number of lattice points for these are: .. math:: x_{i} = \delta i, \qquad \delta = \frac{L}{N}, \qquad N = 2^{n}n_0 :: 0 x x x x ... x x o |----|----|----|----|-- ... |----|----| -d 0 d 2d 3d ... L-d 0 = x -1 0 1 2 3 ...N-2 N-1 0 = N R B R B B R Smoothers ~~~~~~~~~ Finally, one needs to provide a smoothing operator for this system. The standard choices are weighted Jacobian and some sort of Gauss-Seidel. These are provided by the class :class:`MultigridNeumann` and :class:`MultigridPeriodic` which inherit functionality from :class:`MultigridBase`: .. autoclass:: MultigridBase :members: .. autoclass:: MultigridNeumann :members: .. autoclass:: MultigridPeriodic :members: Demonstration ------------- Here we demonstrate some of the properties of this system. First, we estimate the discretization error. The centered difference formula has an error: .. math:: \frac{f(x - \delta) -2f(x) + f(x+\delta)}{\delta^2} = f''(x) + \frac{\delta^2}{12}f^{(4)}(x) + \cdots Here we check this for both inclusive and regular grids:: >>> import mmf.math.multigrid.notes.multigrid_notes as MN >>> import numpy as np >>> mg = MN.MultigridNeumann(inclusive=False) >>> x = mg.x() >>> dx = x[1]-x[0] >>> y = np.cos(pi*x) >>> ddy = -np.pi**2*y >>> d4y = np.pi**4*y >>> abs((mg.T(y) - ddy) - dx**2*d4y/12).max() < 3*dx**4 True Remember that we need to divide the endpoints by 2 for inclusive lattices: >>> mg = MN.MultigridNeumann(inclusive=True) >>> x = mg.x() >>> dx = x[1]-x[0] >>> y = np.cos(pi*x) >>> ddy = -np.pi**2*y >>> ddy[[0,-1]] /= 2 >>> d4y = np.pi**4*y >>> d4y[[0,-1]] /= 2 >>> abs((mg.T(y) - ddy) - dx**2*d4y/12).max() < 3*dx**4 True Problem 0 Neumann ~~~~~~~~~~~~~~~~~ Now we check the multigrid convergence for problem version 0. .. plot:: :width: 100% :include-source: import mmf.math.multigrid.notes.multigrid_notes as MN mg = MN.MultigridNeumann(inclusive=False) x = mg.x(); dx = x[1]-x[0] f = mg.make_neutral(mg.problem.f(x)) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) f_ = mg.make_neutral(np.linalg.lstsq(A, b)[0]) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.make_neutral(mg.f_cycle(g, b)) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.figure(figsize=(16,6)) plt.subplot(121) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Not Inclusive') mg = MN.MultigridNeumann(inclusive=True) x = mg.x(); dx = x[1]-x[0] f = mg.make_neutral(mg.problem.f(x)) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) b[[0,-1]] /= 2 # Correct the endpoints f_ = mg.make_neutral(np.linalg.lstsq(A, b)[0]) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.subplot(122) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Inclusive') .. note:: The only difference in the multigrid code between inclusive and not inclusive is that the abscissa and volumes are different. We must manually take care of two aspects: Dividing the endpoints of `b` by 2, and using the proper trapezoidal rule for determining the constant to subtract (which also includes factors of 2 at the endpoints). The latter is done by :meth:`MultigridNeumann.make_neutral`. Note also that we did not set the attribute :attr:`MultigridNeumann.neutralize` which would have neutralized the solution at each step. It is generally sufficient to do this only at the end of the whole process. Problem 1 Neumann ~~~~~~~~~~~~~~~~~ Now lets try with the other forms of the problems. Here is the problem version 1. .. plot:: :width: 100% :include-source: import mmf.math.multigrid.notes.multigrid_notes as MN mg = MN.MultigridNeumann(inclusive=False, prob=1) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.figure(figsize=(16,6)) plt.subplot(121) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Not Inclusive') mg = MN.MultigridNeumann(inclusive=True, prob=1) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) b[[0,-1]] /= 2 # Correct the endpoints f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.subplot(122) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Inclusive') .. note:: For this version of the problem, the matrix is not singular and :meth:`MultigridNeumann.make_neutral` should not be called. Problem 2 Neumann ~~~~~~~~~~~~~~~~~ And now here is the problem version 2. This case is a bit more challenging because there are now negative eigenvalues since the diagonals are no longer positive. However, the spectrum of $\mat{T}$ which scales as $\delta_{x}^{-2}$ still dominates once the lattice is sufficiently large, so the negative eigenvalues correspond to small eigenvalues of $\mat{T}$: i.e. low frequency. Thus, the problem still has good smoothing properties even though the smoothing is divergent. The price is that one must terminate the multigrid at a sufficiently high level and solve the coarse system exactly to remove the low-frequency errors. in this present case, we find that $n_0 \geq 5$ works. With $n_0$ fixed at $6$ the method converges as quickly as for larger values as is shown below: .. plot:: :width: 100% :include-source: import mmf.math.multigrid.notes.multigrid_notes as MN mg = MN.MultigridNeumann(inclusive=False, n_0=6, prob=2) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.figure(figsize=(16,6)) plt.subplot(121) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Not Inclusive with n_0=%i' % (mg.n_0)) mg = MN.MultigridNeumann(inclusive=True, n_0=6, prob=2) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) b[[0,-1]] /= 2 # Correct the endpoints f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.subplot(122) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Inclusive with n_0=%i' % (mg.n_0)) .. note:: For this version of the problem, the matrix is not singular and :meth:`MultigridNeumann.make_neutral` should not be called. Newtons Method Neumann ~~~~~~~~~~~~~~~~~~~~~~ Now we try the Newton iteration as a method for solving the non-linear equations. First we start with the solution and check that the Newton equation can be solver with the multigrid algorithm. We first start with a smooth deviation from the solution: .. plot:: :width: 100% :include-source: import mmf.math.multigrid.notes.multigrid_notes as MN mg = MN.MultigridNeumann(inclusive=False, n_0=6, prob=3) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) g = mg.problem.g(x) df = 0*f + 0.01 # Constant shift to make like easy dg = 0*g + 0.01 fg = np.vstack((f, g)) dfg = np.vstack((df, dg)) dG = mg.problem.DJ(dfg=dfg, f=f, g=g, x=x) b = -mg.T()mg.problem.DG(fg=fg, x=x) A = mg.to_mat(mg.A, len(f)) f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.figure(figsize=(16,6)) plt.subplot(121) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Not Inclusive with n_0=%i' % (mg.n_0)) mg = MN.MultigridNeumann(inclusive=True, n_0=6, prob=2) x = mg.x(); dx = x[1]-x[0] f = mg.problem.f(x) b = mg.problem.b(x) A = mg.to_mat(mg.A, len(f)) b[[0,-1]] /= 2 # Correct the endpoints f_ = np.linalg.solve(A, b) g = 0*x res = [abs(mg.residue(g, b)).max()] err = [abs(g - f).max()] err_ = [abs(g - f_).max()] for n in xrange(10): g = mg.f_cycle(g, b) res.append(abs(mg.residue(g, b)).max()) err.append(abs(g - f).max()) err_.append(abs(g - f_).max()) plt.subplot(122) plt.semilogy(res, ':', label='residue') plt.semilogy(err_, '-', label='err') plt.semilogy(err, '--', label='exact err') plt.legend() plt.title('Inclusive with n_0=%i' % (mg.n_0))