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Abstract—The matrix rank minimization problem consists of
finding a matrix of minimum rank that satisfies given convex
constraints. It is NP-hard in general and has applications in con-
trol, system identification, and machine learning. Reweighted
trace minimization has been considered as an iterative heuristic
for this problem. In this paper, we analyze the convergence
of this iterative heuristic, showing that the difference between
successive iterates tends to zero. Then, after reformulating the
heuristic as reweighted nuclear norm minimization, we propose
an efficient gradient-based implementation that takes advantage
of the new formulation and opens the way to solving large-
scale problems. We apply this algorithm to the problem of low-
order system identification from input-output data. Numerical
examples demonstrate that the reweighted nuclear norm min-
imization makes model order selection easier and results in
lower order models compared to nuclear norm minimization
without weights.

I. I NTRODUCTION

A. Background

The matrix rank minimization problem consists of find-
ing a matrix of minimum rank that satisfies given convex
constraints, i.e.,

minimize rank(X)
subject to X ∈ C,

(1)

where X ∈ R
m×n is the optimization variable andC

is a convex set. WhenC is described by affine equality
constraints, (1) is the matrix extension of the popular sparse
signal recovery problem incompressed sensing. The rank
minimization problem arises in a diverse set of fields, where
notions of order, complexity, or dimension are expressed by
means of the rank of an appropriate matrix. Applications
include system identification, low-order controller design,
collaborative filtering in machine learning, and Euclidean
embedding problems (see [14] and references therein). Prob-
lem (1) is in general NP-hard. A common convex heuristic [7]
replaces rank with thenuclear norm (also known as the
Schatten 1-norm or trace norm) of the matrix, denoted by
‖X‖∗ =

∑r
i σi(X) whereσi(X) are the singular values and

r = rank(X). The heuristic solves the convex problem

minimize ‖X‖∗
subject to X ∈ C.

(2)

This heuristic and its variants have lately received a lot of
interest. One reason is the recent progress in both the theory
and the algorithms for this heuristic. Several conditions have
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been studied that guarantee that the heuristic yields an exact
solution when the constraints are linear equalities (e.g.,[14]).
Development of various classes of algorithms for this heuris-
tic that exploit specific problem structure is also an active
research area (e.g., [17]). Finally, new applications have
initiated interest in special cases of the rank minimization
problem, e.g., the low-rank matrix completion problem [4]
arising in machine learning. We also mention that matrix rank
and nuclear norm minimization have a natural connection to
vector sparsity and̀1-norm: the former reduces to the latter
if the matrix variable is taken to be diagonal.

A variation on this basic heuristic that helps reduce the
rank of the solution further, is to use a weighted objective (see
[3], [6] for the vector version, and [8] for the matrix version).
In this paper we study thereweighted traceheuristic, which
is based on using a nonconvex surrogate function for the rank
and solving the resulting problem locally via a sequence of
convex problems. First, note that problem (1) can also be
expressed in a positive semidefinite form [9]:

minimize rank(Y ) + rank(Z)

subject to

[

Y X

XT Z

]

≥ 0, X ∈ C,
(3)

where X , Y ∈ R
m×m, and Z ∈ R

n×n are the op-
timization variables. Then, replacing rank with trace, we
obtain a semidefinite programming problem that is equivalent
to (2) [7]. The heuristic given in [8] replaces the rank of
positive semidefinite matricesY, Z by a surrogate function
as follows:

minimize log det(Y + δI) + log det(Z + δI)

subject to

[

Y X

XT Z

]

≥ 0, X ∈ C,
(4)

where δ > 0 is a small regularization constant. Problem
(4) can be solved locally by iterative linearization of the
objective. Thekth step of this algorithm solves the problem

minimize Tr (Y k + δI)
−1

Y + Tr (Zk + δI)
−1

Z

subject to

[

Y X

XT Z

]

≥ 0, X ∈ C,
(5)

to getXk+1, Y k+1, Zk+1. Throughout this paper, we refer to
(5) as thereweighted trace heuristic(RTH). We often takeY 0

andZ0 to be identity, thus the first iteration of the algorithm
will simply minimize TrY + Tr Z.

B. Summary of results

We examine the convergence of the reweighted trace
heuristic, showing that the difference between the successive
iterates of the heuristic tends to zero.



We give an example of other concave functions that can
be used as a surrogate for rank in (3), giving rise to other
heuristics that have similar convergence properties.

RTH as given in (5) would require solving a semidefi-
nite program (SDP) at each iteration. We reformulate the
iterations in terms of the matrix nuclear norm, to which
several first-order gradient-based methods could be applied
efficiently. We apply the reweighted nuclear norm heuristic
to a classic system identification problem, finding a low order
system from input-output data. We use the gradient projection
method to implement the heuristic efficiently. We give a
numerical example (from the system identification database
[11]) and show that the reweighted nuclear norm heuristic
gives a clearer description of the model order and results in
lower order models compared to a simple subspace method
and also the un-weighted or nuclear norm minimization as
in (2).

C. Related work

The papers [3], [6] study reweighted̀1 minimization
as a heuristic to find the sparsest vector in a convex set
(a special case of the rank minimization problem). It is
shown that this heuristic works better in practice than`1

minimization [3]. RTH was first proposed in [8]. While this
paper shows that the objective function value converges, it
does not discuss if the iterates themselves converge or if the
difference between the successive iterates converge. Thatthe
difference between iterates goes to zero was shown for the
reweighted`1 heuristic in [6], but the proof there does not
extend to the matrix case.

The paper [17] gives an interior point method for nuclear
norm minimization, and applies it for system identification
as an alternative approach to subspace based identification
methods (see, e.g., [12], [5]). It shows that nuclear norm
minimization determines the lowest system order better than
existing methods. The interior point implementation is more
efficient than generic SDP solvers, however it does not scale
as well as the first-order implementation we discuss here.

II. CONVERGENCE OF THE REWEIGHTED TRACE

HEURISTIC

Let X ∈ R
m×n, Y ∈ R

m×m, Z ∈ R
n×n. Define the

function g : R
m×n × S

m
+ × S

n
+ → R as g(X, Y, Z) =

log det(Y + δI) + log det(Z + δI). Note thatg(X, Y, Z) is
a continuously differentiable function over its domain. The
gradient ofg is given by

∇g(X, Y, Z) = (0, (Y + δI)−1, (Z + δI)−1).

Let W̄ = (W1, W2, W3), X̄ = (X, Y, Z) be two points in the
domain ofg . Define the inner product on the cross product
space,Rm×n×S

m
+ ×S

n
+ as

〈

W̄ , X̄
〉

c
= 〈W1, X〉+〈W2, Y 〉+

〈W3, Z〉, where〈X, Y 〉 is the standard inner product between
two matrices. Sinceg is strictly concave on its domain, we
have

g(X̄) < g(W̄ ) +
〈

∇g(W̄ ), X̄ − W̄
〉

c
:= h(X̄, W̄ )

for all W̄ 6= X̄ ∈ D̄, where

D̄ = {(X, Y, Z) :

[

Y X

XT Z

]

≥ 0, X ∈ C}.

Since g(X̄) < h(X̄, W̄ ), ∀ W̄ 6= X̄ ∈ D̄ and g(X̄) =
h(X̄, X̄), ∀X̄ ∈ D̄, the functionh majorizesg. Let X̄k de-
note(Xk, Y k, Zk). RTH is thus aMajorization-Minimization
(MM) algorithm:

X̄k+1 = arg min
X̄∈D̄

h(X̄, X̄k) = arg min
X̄∈D̄

〈

∇g(X̄k), X̄
〉

c

= arg min
X̄∈D̄

Tr (Y k + δI)
−1

Y + Tr (Zk + δI)
−1

Z (6)

Note that if X̄k 6= X̄k+1,

g(X̄k+1) < h(X̄k+1, X̄k) ≤ h(X̄k, X̄k) = g(X̄k). (7)

We first define a stationary point of a function before
giving the theorem on convergence.

Definition II.1. x is a stationary point of a continu-
ously differentiable functionf over a set D if x ∈
argminy∈D ∇f(x)T y.

Theorem II.2. Every convergent subsequence of the
reweighted trace heuristic (5) converges to a stationary point
of g over D̄. Further the norm of the difference between
succesive iterates tends to zero,‖X̄k+1 − X̄k‖F → 0.

Proof: Let X̄1 = (X1, Y 1, Z1) be the solution to the
nuclear norm minimization problem (2). The set{X̄|g(X̄) ≤
g(X̄1)} is bounded, because‖Y ‖F , ‖Z‖F → ∞ implies
g(X̄) → ∞. Also, if ‖X‖F → ∞, then‖Y ‖F × ‖Z‖F →
∞ (since the block matrix is positive semidefinite), hence
g(X̄) → ∞. Thus,{X̄|g(X̄) ≤ g(X̄1)} is a compact set.
Therefore the iterates ofRTHare bounded (sinceg(X̄k+1) ≤
g(X̄k), ∀k ≥ 1). Therefore, the sequence{X̄k} has a
convergent subsequence. Let{X̄ni}, i = 1, 2, . . . denote this
subsequence with a limit̄X∗. Let X̄ni+1 → X̄a. Assume
that X̄∗ 6= X̄a. Now, (7) with the fact thatg is continuously
differentiable implies that

g(X̄∗) = lim g(X̄ni) > lim g(X̄ni+1) = g(X̄a). (8)

(7) also implies thatg(X̄ i+1) ≤ g(X̄ i) ∀i. Since g is
bounded below,{g(X̄ i)} converges and

lim g(X̄ i) = lim g(X̄ni) = g(X̄∗) = g(X̄ni+1) = g(X̄a) (9)

But (9) contradicts (8), hencēX∗ = X̄a and by definition,
this implies thatX̄∗ is a stationary point. Now, assume
that there exists a subsequence and aδ > 0 such that
‖X̄ni − X̄ni+1‖F > δ, i = 1, 2, . . .. Let {X̄ni} → X̄∗

and{X̄ni+1} → Xa 6= X̄∗. Then, by a similar argument as
above we arrive at a contradiction. Thus,X̄∗ = X̄a and it
holds that‖X̄k+1 − X̄k‖F → 0.



A. Convergence through conditional gradient method

For a generic problem with a continuously differentiable
objective functionf : R

n → R and a convex, compact
constraint setC, the conditional gradient method[1] yields
the iteratesx̄k = argminx∈C

〈

∇f(xk), x
〉

, xk+1 = xk +
αk(x̄k − xk). If we use a the so-called limited minimization
rule to pick the step-sizeαk, we get αk = 1 since the
objective functionf is concave. Thus, the heuristic (5) is
the same as the conditional gradient method applied to the
problem (4). It is known (e.g., [1]) that every cluster point
of the conditional gradient iterates is a stationary point of f

over the setC, and we obtain the first part of the convergence
result in the previous theorem.

B. Other surrogate functions

We considered the concave surrogate functionlog det(X)
in (4). We can similarly use other concave surrogates such
as −Tr(X−1) (see e.g. [2] for proof of concavity) and
apply the conditional gradient method or the Majorization-
minimization algorithm to obtain other heuristics for which
the same convergence results hold. For example, using the
surrogate function−Tr(X−1) yields the following heuristic:

X̄k+1 = arg min
X̄∈D̄

Tr (Y k + δI)
−2

Y + Tr (Zk + δI)
−2

Z (10)

with X̄ as defined in section 2. Comparing the performance
of these heuristics is a direction for future work.

This section establishes the convergence of difference of
successive iterates ofRTH and shows that the limit point of
every convergent subsequence is a stationary point. However,
we can’t say if the trace heuristic can achieve the global
minimum of (4). We initialize the weighted iterations with
the solution of nuclear norm minimization (2), thusRTH can
be thought of as improving on the solution of the nuclear
norm heuristic.

III. R EWEIGHTED NUCLEAR NORM HEURISTIC

Recall from (5) that in thekth iteration of the reweighted
trace heuristic we solve the following problem:

minimize Tr (Y k + δI)
−1

Y + Tr (Zk + δI)
−1

Z

subject to

[

Y X

XT Z

]

≥ 0, X ∈ C.
(11)

In this section, we reformulate this problem as a (reweighted)
nuclear norm minimization problem. This reformulation is al-
gorithmically beneficial: it allows us to exploit the properties
of the nuclear norm and the problem structure to obtain an
efficient first-order algorithm for solving the heuristic.

Let W k
1 = (Y k + δI)

− 1
2 and W k

2 = (Zk + δI)
− 1

2 . Since
W k

1 , W k
2 are positive definite for any feasibleY k, Zk and

δ > 0, the constraint in (11) is equivalent to
[

W k
1 0

0 W k
2

] [

Y X

XT Z

] [

W k
2 0

0 W k
2

]

≥ 0.

Thus, problem (11) is equivalent to

minimize 1
2 (Tr W k

1 Y W k
1 + TrW k

2 ZW k
2 )

subject to
[

W k
1 Y W k

2 W k
1 XW k

2

W k
2 XT W k

1 W k
2 ZW k

2

]

≥ 0

X ∈ C.

(12)

Using the following characterization of the nuclear norm (see
e.g. [7], [14]),

‖X‖∗ = 1
2 min(Tr Y + Tr Z)

subject to

[

Y X

XT Z

]

≥ 0,

we can write problem (12) as

minimize ‖W k
1 XW k

2 ‖∗
X ∈ C,

(13)

which is a (weighted) nuclear norm minimization. Once
the optimal solutionXk+1 is found, the weightsW k+1

1

and W k+1
2 are updated as follows. LetW k

1 Xk+1W k
2 =

UΣV T be the reduced singular value decomposition of
W k

1 Xk+1W k
2 , whereU ∈ R

m×r, Σ ∈ R
r×r andV ∈ R

n×r.
It can be checked [14] that the optimalY k+1 and Zk+1

in (12) are given by

Y k+1 = (W k
1 )

−1
UΣUT (W k

1 )
−1

,

Zk+1 = (W k
2 )

−1
V ΣV T (W k

2 )
−1

, (14)

so the weights can be updated as

W k+1
1 = (Y k+1 + δI)

−1/2
,

W k+1
2 = (Zk+1 + δI)

−1/2
. (15)

The update equations (14),(15) together with (13) describe
the reweighted nuclear norm heuristic. If the setC in (13) is
described by convex constraintsfi(X) ≤ 0, i = 1, . . . , m,
we can write the problem in the regularized form

Xk+1 = argmin
∑

i

λifi(X) + ‖W k
1 XW k

2 ‖∗ (16)

with W k
1 , W k

2 defined above, and a suitable choice ofλi.
We note that if in addition toX ∈ C we have the constraint

that X be positive semidefinite, then thereweighted nuclear
norm heuristicreduces to,

Xk+1 = arg min
X∈C,X�0

Tr (Xk + δI)
−1

X. (17)

In the next section, we apply thisregularized reweighted
nuclear norm heuristic(that we abbreviate asRRNH) to a
system identification problem using an efficient first-order
method.

IV. EFFICIENT IMPLEMENTATION OF THE RRNH FOR

SYSTEM IDENTIFICATION

Consider the problem of identifying a discrete-time, linear
time-invariant state-space model,

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),



given a set of inputsu(t) ∈ R
m and noisy measured outputs

ymeas(t) ∈ R
p, for t = 0, 1, . . . , N − 1. Herex(t) ∈ R

n is
the state of the system at timet, andn is the order of the
model. We would like to find the matricesA, B, C, D, the
initial statex(0), and the lowest possible ordern that satisfy
y(t) ≈ ymeas(t). Let Ŷ = [y(0), . . . , y(N − 1)] ∈ R

p×N ,
Ymeas = [ymeas(0), . . . , ymeas(N − 1)] ∈ R

p×N , Û =
[u(0), . . . , u(N − 1)] ∈ R

m×N . Define the linear operator
Hr as follows:

Hr(Ŷ ) =











y(0) y(1) . . . y(N − r − 1)
y(1) y(2) . . . y(N − r)

...
...

...
y(r) y(r + 1) . . . y(N − 1)











, (18)

which is a block-Hankel matrix, witĥY defined as earlier.
The adjoint operator,H∗

r (W ), is as below:

H∗
r (W ) = H∗

r











w11 w12 . . . w1,N−r

w21 w22 . . . w2,N−r

...
...

...
wr+1,1 . . . . . . wr+1,N−r











=
[

w11 w21 + w12 w31 + w22 + w13 . . . wr+1,N−r

]

Define X = [x(0), x(1), . . . , x(N − r − 1)], U = Hr(Û),
Y = Hr(Ŷ ) with X̂, Û , and Ŷ as defined earlier, and let

G =
[

CT (CA)T . . . (CAr)T
]T

,

F =















D 0 0 . . . 0
CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . .
...

CAr−1B CAr−2B CAr−3B . . . D















.

It is easy to see thatY = GX + FU , and thusY U⊥ =
GXU⊥, whereU⊥ ∈ R

N−r+1×q is a set of orthonormal
basis vectors for null-space ofU . If X has a rankn and
there is no rank cancellation inXU⊥, one can find the system
order from the rank ofY U⊥ (see, e.g., [17], [16] for more
details). Liu et al [16], [17] propose a nuclear norm heuristic
for minimizing the rank ofY U⊥ as

minimizeŶ ‖Hr(Ŷ )U⊥‖∗ +
λ

2
‖Ŷ − Ymeas‖

2

F , (19)

with λ a positive parameter. We apply theRRNH to find a
minimum order system giving the following iterative mini-
mization:

Ŷ k+1 = arg min
Ŷ

λ

2
‖Ŷ − Ymeas‖

2
F

+‖W k
1 Hr(Ŷ )U⊥W k

2 ‖∗, (20)

where we definef = 1
2‖Ŷ − Ymeas‖

2
F in (16) andW k

1 , W k
2

are as in (13). Once we obtain an optimalŶ , we compute
the rank ofHr(Ŷ )U⊥ by looking at its singular values. The
thumbrule we use to obtain the rank is the number of singular
values after which there is a sharp drop (differentiating the
significant singular values from the non-significant ones).If

we don’t observe a sharp drop, the thumbrule used is to
choose the rank of the matrix to be the number of singular
values that are within0.1 percent of the largest singular value
(as in ([17]). Once we identify the rank ofY U⊥, the matrices
A, B, C, D of the LTI state-space model can be estimated as
detailed in section 5 of [17].

A. Problem Reformulation

To solve (20) efficiently, we reformulate it by making use
of the structure of the regularized constraint in (19) and the
fact that the nuclear norm is the dual of the spectral norm,

‖Y ‖∗ = max
Z

{〈Y, Z〉 : ‖Z‖F ≤ 1}. (21)

Using (21) the primal problem in (20) at thekth iteration
can be formulated as (note that switchingZ to −Z does not
change (21)):

min
y

max
Z:ZT Z≤I

λ

2
‖Ŷ − Ymeas‖

2
F − 〈Z, W k

1 Hr(Ŷ )U⊥W k
2 〉 (22)

The dual problem corresponding to (22) is obtained by
interchanging themin andmax in the primal as follows:

max
Z:ZT Z≤I

min
y

λ

2
‖Ŷ − Ȳ ‖2

F − 〈Z, W k
1 Hr(Ŷ )U⊥W k

2 〉

Define the operatorΦk : R
p×N → R

(r+1)p×(N−r), k =
0, 1, 2, . . ., with Φk(Ŷ ) = W k

1 Hr(Ŷ )U⊥W k
2 . It is easy to

check that the adjoint operatorΦ∗
k : R

(r+1)p×(N−r) → R
p×N

is given byΦ∗
k(Z) = H∗

r (W k
1 ZW k

2 U⊥T
). The dual problem

can now be reframed as:

max
Z:ZT Z≤I

min
Ŷ

λ

2
‖Ŷ − Ymeas‖

2
F − 〈Z, Φk(Ŷ )〉 (23)

Minimizing over Ŷ , the optimality conditions give

λ(Ŷ − Ymeas) − Φ∗
k(Z) = 0 (24)

Note that the primal (22) is a convex problem and obeys
Slater’s conditions, hence the duality gap between (22) and
(23) is zero. Thus the primal optimal solution can be obtained
from the dual optimal solution, which is the basis for the
implementation described later. SubstitutinĝY from (24)
back into (23), the dual problem reduces to:

min
Z:ZT Z≤I

1

2λ
‖Φ∗

k(Z)‖2
F + 〈Ymeas, Φ

∗
k(Z)〉 (25)

The dual objective is scaled byλ so that the objective is
independent of it:

min
Z:λ2(ZT Z)≤I

1

2
‖Φ∗

k(Z)‖2
F + 〈Ymeas, Φ

∗
k(Z)〉 (26)

The RRNH for the System Identification application using
an efficient first order method (i.e., the Gradient projection
method applied to the dual, see e.g. [15]) can be summarized
as follows:



1) Setk = 0. Initialize W 0
1 = I, W 0

2 = I.

2) Solve the dual problem (26) using the gradient
projection algorithm, obtainZk+1.

3) ObtainŶ k+1 = Ymeas + 1
λΦ∗

k(λZk+1) (using 24).

4) LetY k+1 = Hr(Ŷ
k+1), let UΣV T be the reduced

SVD of Ȳ k+1 = W k
1 Y k+1W k

2 . Set

W k+1
1 = ((W k

1 )
−1

UΣUT (W k
1 )

−1
+ δI)

−1/2
,

W k+1
2 = ((W k

2 )
−1

V ΣV T (W k
2 )

−1
+ δI)

−1/2
.

5) Stop if termination criterion is satisfied, else set
k = k + 1 and go to step 2.

DefineDk(Z) = 1
2‖Φ

∗
k(Z)‖2

F + 〈Ymeas, Φ
∗
k(Z)〉 to be the

dual objective in (26). Step 2 of the above algorithm applies
the gradient projection method to solve the dual (26). We
note that the projection method works well when the step size
in the gradient-descent step of the method is chosen to be
inversely proportional to the lipschitz constant ofDk(Z)(see
e.g. [15]). An estimate of the Lipschitz constant of∇Dk can
be obtained asLk = rλ2

max(W k
1 )λ2

max(W k
2 ) with the details

given in the Appendix.

B. Numerical results

In [16], Liu et al mention that the main advantage of
nuclear norm technique is that it makes the selection of
an appropriate model order easier. We present an example,
where we show that theRRNHimproves on the nuclear norm
technique for model order selection. We apply theRRNH
implementation (algorithm described at the end of subsection
B) to one of the data sets (96-006, [11]) available from (
http://homes.esat.kuleuven.be/ smc/daisy/).
The parameterr, which is the number of row-blocks in the
block Hankel matricesHr(Û), Y = Hr(Ŷ ), is chosen so
that the number of rows is greater than the expected system
order. We choose anr sufficiently large, i.e.r : rp = 60,
where p is the size of the output of the system. The
parameterλ is chosen to give approximately the smallest
identification error whenRRNH is run for one iteration (i.e.
just the nuclear norm heuristic as in (19)). The identification
error is given by

eI =

(

‖Ymeasi − Ỹ ‖2
F

‖Ymeasi − ȲI‖2
F

)

, (27)

where Ỹ = [ỹ(0), . . . , ỹ(NI − 1)] denotes the output of
the identified state-space model, andȲI has each of itsNI

columns equal toYmeasi1. Ymeasi ∈ R
p×NI denotes the first

NI output measurements. Similarly the validation error,eV ,
can be obtained by replacingNI by NV in the computations
in (27). The number of data points used for the identification
experiment isNI = 150 and for computing validation error
is NV = 400. The trade-off curve between the identification
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through nuclear norm heuristic for the data-set. A plot of the normalized
singular values ofYmeasiU

⊥ (original) is also shown.

error,validation error and nuclear norm for is shown in Fig.
1. We pick λ = 6, that corresponds with approximately
the smallest identification error of 0.0725 as indicated in
Fig. 1. The normalized singular values ofY U⊥ (obtained
by setting maximum singular value to 1) using just nuclear
norm heuristic as in (19) are shown in Fig. 2. As can be
seen from Fig. 2, there is no sharp drop in singular values
that would clearly indicate the rank ofY U⊥, therefore we
use the thumbrule described earlier to obtain the rank (and
order of the system) to be 6. The termination criterion we use
for RRNH is to stop after 4 iterations since we observe em-
pirically that there is no significant change in the optimized
variable after 4 iterations. For the dual-gradient method used
in each iteration ofRRNH, the termination criterion used is
such that the number of iterations,Q = min(Q1, Q2), where
Q1 is the number of iterations for the duality gap to fall below
a tolerance of10−4 andQ2 = 4000. Fig. 3 shows the results
of RRNH for λ = 6 and different values of the parameterδ.
The identification error and validation error were obtainedas
0.0691 and 0.1154 respectively, which is comparable to the
errors (0.069 and 0.12 respectively) obtained for this dataset
in [17]. The parameterδ, which is used as a regularization
term in the weights,W k

1 , W k
2 seems to have an influence

on the singular values ofHr(Ŷ )U⊥ and thus its rank. We
observe empirically that asλ increases, smaller values of
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Fig. 3. Normalized singular values ofY U⊥ with Y = Hr(Ŷ ) obtained
through regularized reweighted nuclear norm heuristic(RRNH) for the data-
set for different values ofδ. A plot of the normalized singular values of
YmeasiU

⊥ (original) is also shown.

δ give a clearer rank description forHr(Ŷ )U⊥. As can be
seen from Fig. 3,δ = 0.5 gives a clearer description of the
rank, i.e., equal to 4. Smaller values ofδ (less than 0.01)
don’t seem to provide a clear description of the rank and
this observation mirrors the observations made in [3] about
the choice ofε for which theiterative weighted̀ 1 algorithm
recovers sparse solutions. Thus, for the data-set considered,
we obtain a reduction in model order (from 6 to 4) as well
as a much clearer description of model order by usingRRNH
as compared to the nuclear norm heuristic.

V. CONCLUSIONS

We explored the convergence properties of thereweighed
trace heuristic, showing that the difference between the
successive iterates of this heuristic goes to zero, and that
every convergent subsequence converges to a stationary point
of the concave surrogate function. We gave a reformulation
of this heuristic as thereweighted nuclear norm heuristic
(RNH), which allows for efficient and scalable implemen-
tation through first-order gradient methods such as the gra-
dient projection method and conditional gradient method, as
compared to the reweighted trace formulation which requires
solving an SDP at each iteration. We apply theRRNH
to a System Identification application and show that the
RRNHprovides a clearer description of the matrix rank (and
hence system order) through a sharp fall in singular values
in the singular value plot ofHr(Ŷ )U⊥. We also observe
that the RRNH gives a lower system order as compared
to nuclear norm heuristic(without weighting) for the data
set considered, with the identification and validation errors
comparable to those obtained for this data set in [17]. We
observe empirically that asλ increases, smaller values of
δ give a clearer rank description forHr(Ŷ )U⊥. It would
be useful to understand precisely howδ plays a role in
providing a clear rank description asλ varies. We mentioned
that theRRNHallows for an efficient implementation of the
reweighted trace heuristic. It would be useful to quantify the
efficiency and scalability ofRRNHand compare it with the
nuclear norm heuristicimplemented using the interior point
method detailed in [17].
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APPENDIX

Estimate of Lipschitz constant. For anyZ1, Z2 ∈ R
rp×q,

‖∇Dk(Z1) −∇Dk(Z2)‖F = ‖ΦkΦ∗
k(Z1 − Z2)‖F (28)

Note thatHrH
∗
r andΦkΦ∗

k are self-adjoint operators.ΦkΦ∗
k

is a compact operator since its range is finite dimensional,
and it is positive since〈Z, ΦkΦ∗

k(Z)〉 = 〈Φ∗
k(Z), Φ∗

k(Z)〉 =
‖Φ∗

k(Z)‖2
F ≥ 0 ∀Z. We apply the Rayleigh-Ritz method

for self-adjoint, positive, compact operators [13] to express
the maximum eigenvalue ofΦkΦ∗

k as λmax(ΦkΦ∗
k) =

supW :‖W‖F =1〈W, ΦkΦ∗
k(W )〉 and get

‖ΦkΦ∗
k(Z1 − Z2)‖

2
F

‖Z1 − Z2‖2
F

≤ sup
W

‖ΦkΦ∗
k(W )‖2

F

‖W‖2
F

= λ2
max(ΦkΦ∗

k)

Thus an upper bound onλmax can be used to find an
estimateLk of the Lipschitz constant of the gradient of the
dual objective,∇Dk. We obtain an estimate ofλmax(ΦkΦ∗

k)
below. From (19), it is easy to see by using the properties of
norms that‖H∗

r (X)‖2
F ≤ r‖X‖2

F . Also by using the prop-
erties of trace, we have‖Φ∗

k(Z)‖2
F ≤ r〈W kZV k, W kZV k〉.

Let A = (W k
2 )

2
, with eigenvaluesρ2

1 ≥ ρ2
2 ≥ . . . ρ2

q , and let

γ2
1 ≥ γ2

2 ≥ . . . γ2
rp be the eigenvalues of(W k

1 )
2

. Using Von
Neumann’s Trace inequality (see e.g. [10]), it can be shown
that 〈W k

1 ZW k
2 , W k

1 ZW k
2 〉 ≤ ρ1

2γ1
2‖Z‖2

F . Thus we have

‖ΦΦ∗(Z1 − Z2)‖
2
F

‖Z1 − Z2‖2
F

≤ λmax(ΦΦ∗)
2

=

(

sup
W

‖Φ∗(W )‖2
F

‖W‖2
F

)2

≤ r2ρ1
4γ1

4 (29)

Thus, Lk = rρ1
2γ1

2(upper-bound onλmax(ΦΦ∗)) is an
estimate of the lipschitz constant of∇Dk.
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