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Abstract

Several problems arising in control system analysis
and design, such as reduced order controller synthe-
sis, involve minimizing the rank of a matrix vari-
able subject to linear matrix inequality (LMI) con-
straints. Except in some special cases, solving this
rank minimization problem (globally) is very diffi-
cult. One simple and surprisingly effective heuris-
tic, applicable when the matrix variable is sym-
metric and positive semidefinite, is to minimize its
trace in place of its rank. This results in a semidefi-
nite program (SDP) which can be efficiently solved.

In this paper we describe a generalization of
the trace heuristic that applies to general non-
symmetric, even non-square, matrices, and reduces
to the trace heuristic when the matrix is positive
semidefinite. The heuristic is to replace the (non-
convex) rank objective with the sum of the singu-
lar values of the matrix, which is the dual of the
spectral norm. We show that this problem can be
reduced to an SDP, hence efficiently solved. To mo-
tivate the heuristic, we show that the dual spectral
norm is the convex envelope of the rank on the set
of matrices with norm less than one.

We demonstrate the method on the problem of
minimum order system approximation.

1 Introduction

In recent years there has been a growing interest
in problems that involve minimizing the rank of
a matrix over a convex set. Applications arise in
diverse areas such as minimum order controller de-
sign [Mes99], factor analysis in statistics [Sha82],
and Euclidean distance matrix problems [TT93],
among others. The general matrix rank minimiza-
tion problem can be expressed as

minimize Rank X
subject to X ∈ C,
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where X ∈ Rm×n is the optimization variable and
C is a convex set, e.g., described by LMIs. It is
well known that in general this problem is hard to
solve [VB96, §7.3]. Various heuristics have been
developed to handle problems of this type; see,
e.g., [BG96, SIG98, Dav94]. One simple and sur-
prisingly effective heuristic, applicable when the
matrix is symmetric positive semidefinite, is to
minimize its trace in place of its rank. This is
used in [Par00, Mes99] to design reduced order con-
trollers.

This heuristic obviously does not apply to prob-
lems in which the matrix is non-symmetric, or non-
square, since the trace is not even defined, let alone
a good convex surrogate for the rank. In this paper,
we present a generalization of the trace heuristic
that can be applied to any matrix. The heuristic
is to solve the problem

minimize ‖X‖∗
subject to X ∈ C,

(2)

in place of (1), where

‖X‖∗ =

min{m,n}
∑

i=1

σi(X),

where σi(X) =
√

λi(XT X) denote the singular val-
ues of X . The norm ‖ · ‖∗ is sometimes called the
nuclear norm or Ky-Fan n-norm (see [HJ91]), and
is the dual of the spectral (or maximum singular
value) norm of a matrix, i.e.,

‖X‖∗ = sup{TrY T X | ‖Y ‖ ≤ 1},

where ‖ · ‖ denotes the maximum singular value or
spectral norm. Note that while the original prob-
lem (1) is in general a difficult optimization prob-
lem, the dual spectral norm minimization prob-
lem (2) is a convex optimization problem, and
therefore (at least in principle) easily solved.

If the matrix variable X is symmetric and posi-
tive semidefinite, then its singular values are the
same as its eigenvalues, and therefore the dual spec-
tral norm ‖X‖∗ reduces to Tr X . In this case,
the heuristic (2) reduces to the trace minimization
heuristic.



Another special case occurs when the matrix X is
diagonal, say, X = diag(x), where x ∈ Rn. In this
case, RankX is the same as the number of nonzero
entries of the vector x, i.e., its cardinality Cardx.
Problem (1) then reduces to the problem of finding
the sparsest (i.e., minimum cardinality) vector x
in a convex set. For this special case, the heuristic
dual spectral norm minimization problem (2) be-
comes the problem of minimizing the `1 norm of a
vector x over a convex set C. Minimizing the `1

norm is a well-known heuristic for minimizing the
cardinality; see for example [HHB99, CD94].

The rest of the paper is organized as follows. In §2
we motivate the heuristic by showing that the dual
spectral norm is the convex envelope of the rank
function on the set of matrices with norm less than
one, which allows us to interpret the heuristic as
a type of relaxation of the original rank minimiza-
tion problem. In §3 we show how the dual spec-
tral norm can be represented by an LMI, so when
the feasible set C is described by LMIs, the dual
spectral norm problem (2) can be formulated as a
semidefinite program (SDP), and so can be solved
using standard, existing software [WB96, AHN+97,
Stu98, FK95, GN93, EG95]. In §4, we demonstrate
the effectiveness of the heuristic by applying it to
the problem of minimum order system approxima-
tion.

2 Convex envelope of rank

Let f : C → R, where C ⊆ Rn. The convex en-
velope of f (on C) is defined as the largest convex
function g such that g(x) ≤ f(x) for all x ∈ C (see,
e.g., [HUL93]).

Theorem 1 The convex envelope of the function
φ(X) = Rank(X), on
C = {X ∈ Rm×n | ‖X‖ ≤ 1}, is φenv(X) = ‖X‖∗.

This theorem has the following implications for
problem (1) and the heuristic (2). Suppose the fea-
sible set is bounded by M , i.e., for all X ∈ C, we
have ‖X‖ ≤ M . The convex envelope of Rank X
on {X | ‖X‖ ≤ M} is given by 1

M
‖X‖∗. In partic-

ular, for all X ∈ C, we have Rank X ≥ 1
M
‖X‖∗.

It follows that if prank denotes the optimal value
of the rank minimization problem (1) and p∗ de-
notes the optimal value of the dual spectral norm
minimization problem (2), we have

prank ≥
1

M
p∗.

In other words, by solving the heuristic problem,
we obtain a lower bound on the optimal value of

the original problem (provided we can identify a
bound M on the feasible set).

See the appendix for the proof of theorem 1.

3 Dual spectral norm minimization via
SDP

The heuristic problem (2) is a convex problem and
can be handled using a variety of convex optimiza-
tion algorithms. In this section, we show how to ex-
press the problem as an SDP, when the constraints
are given by LMIs. The advantage of such a for-
mulation is that we can use widely available SDP
solvers to readily solve the problem.

We will use the following result:

Lemma 1 For X ∈ Rm×n and t ∈ R, we have
‖X‖∗ ≤ t if and only if there exist matrices Y ∈
Rm×m and Z ∈ Rn×n such that
[

Y X

XT Z

]

≥ 0, Tr Y + TrZ ≤ 2t. (3)

In other words, the condition ‖X‖∗ ≤ t can be
represented as an LMI. This observation is made
also in [VB96, §3.1].

This lemma can be used to express the dual spectral
norm minimization problem (2) as an SDP. We first
write problem (2) as

minimize t
subject to ‖X‖∗ ≤ t

X ∈ C,

with variables X and t. Then, using the lemma
above, we express the problem as

minimize Tr Y + TrZ

subject to

[

Y X

XT Z

]

≥ 0

X ∈ C,

(4)

where Y = Y T and Z = ZT are new variables. The
problem (4) is an SDP, provided the constraint set
C is expressed as an LMI. See appendix B for the
proof of the lemma.

4 Minimum order system approximation

In this section we apply the rank minimization
heuristic to the minimum order system approxi-
mation problem. Such problems arise, for exam-
ple, in model reduction problems that come from



overparametrization in subspace system identifica-
tion [Jac94, McK95, OM96], and H∞ model reduc-
tion [HJN92].

Let p1, . . . , pN ∈ C be a set of complex numbers
with conjugate symmetry, i.e., whenever pi is com-
plex, there is some j such that pj = p̄i. We consider
the family of proper rational matrices given by

H(s) = R0 +

N
∑

i=1

Ri

s− pi

, (5)

where Ri ∈ Cm×n satisfy conjugate symmetry:
whenever pi = p̄j , we have Ri = R̄j . We consider
pi, the poles of the rational matrix H , as fixed;
the residues Ri are the variables that we will use
for approximation (subject to the conjugate sym-
metry constraint). The McMillan degree, i.e., the
order of a minimal state space realization, of the
rational matrix H is given by

deg(H) =

N
∑

i=1

Rank(Ri).

Our goal is to determine values of the residue ma-
trices Ri that minimize the MacMillan degree, over
some set of acceptable approximations.

Let ω1, . . . , ωK ∈ R, and suppose Gk ∈ Cm×n are
given. We can interpret the ωk and Gk are sam-
pled frequencies, and measured frequency response
matrix, respectively. As a criterion for acceptable
fit, we use the simple conditions

‖H(jωk)−Gk‖ ≤ ε, k = 1, . . . , K,

i.e., that the matrix H , evaluated at the given fre-
quencies, should approximate (in spectral norm),
within a tolerance ε, the given data.

The problem of finding the minimum order approx-
imation is then given by

minimize
∑N

i=1 Rank(Ri)

subject to ‖H(jωk)−Gk‖ ≤ ε, k = 1, . . . , K

Rj = R̄i for pj = p̄i

(6)
where the optimization variables are the Ri ∈
Cm×n. Note that H(jωk) is a linear function of
the variables Ri. The objective can also be ex-
pressed as the rank of the block diagonal matrix
with blocks R1, . . . , RN , so this problem has the
minimum rank form (1) (with complex matrices,
however, instead of real matrices).

For a discussion on optimization over an affine fam-
ily of linear systems, see [BGFB94, §10.1].

4.1 Dual spectral norm heuristic
The heuristic dual spectral norm method, and the
results concerning convex envelope and the LMI
representation, are all readily extended to the com-
plex case, with the Hermitian conjugate substi-
tuted in place of the transpose.

We now form the heuristic problem (2) associ-
ated with the minimum order approximation prob-
lem (6). We obtain

minimize
∑N

i=1 ‖Ri‖∗

subject to ‖H(jωk)−Gk‖ ≤ ε, k = 1, . . . , K

Rj = R̄i for pj = p̄i.

(7)
This is a convex optimization problem in the vari-
ables R0, . . . , RN .

4.2 SDP representation
We can express the problem (7) as an SDP as fol-
lows. We introduce variables ti, and express prob-
lem (7) as

minimize
∑N

i=1 ti

subject to ‖Ri‖∗ ≤ ti i = 1, . . . , N

‖H(jωk)−Gk‖ ≤ ε k = 1, . . . , K

Rj = R̄i for pj = p̄i.

Using lemma 1, we can replace the first constraint
by its LMI equivalent; the approximation con-
straints can also be expressed via LMIs using Schur
complements. Thus we obtain the following SDP:

minimize
∑N

i=1 Tr Yi + Tr Zi

subject to

[

Yi Ri

R∗
i Zi

]

≥ 0 i = 1, . . . , N

[

εI (H(jωk −Gk)
(H(jωk)−Gk)∗ εI

]

≥ 0,

k = 1, . . . , K

Rj = R̄i for pj = p̄i,

(8)
where Ri ∈ Cm×n, Y = Y ∗ ∈ Cm×m, and Z =
Z∗ ∈ Cn×n are the variables. (Note that since Yi

and Zi are Hermitian, their traces are real, so the
objective is real.) This is a (complex) SDP.

4.3 Complex semidefinite programs
The complex SDP (8) can in turn be expressed as
a real SDP, using the fact that for any Hermitian
matrix X ∈ Cn×n, the matrix inequality X ≥ 0 is
equivalent to

[

<X −=X
=X <X

]

≥ 0,

which is an ordinary (real) LMI in the (real) matrix
variables <X and =X .
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Figure 1: Original 8th order data (solid), and 6th order
approximation (dashed).

4.4 Numerical example
In this section, we demonstrate the techniques
above on numerical data, generated from a generic
system model.

The problem data was generated as follows. We
used an 8th order, 2-input 2-output transfer ma-
trix F , which was normalized so that ‖F‖∞ =
supω ‖F (jω)‖ = 1. The frequencies ωk, k =
1, . . . , K = 128 were chosen as linearly spaced from
0Hz to 1Hz, and Gk was taken as the value of the
8th order model at ωk: Gk = F (jωk). For the
poles p1, . . . , p8, we took the poles of F , which ap-
pear in four complex conjugate pairs. Two pairs
are clustered at ±0.10Hz, the other two are around
±0.24Hz.

The system approximation problem then becomes a
model reduction problem: we keep the poles of the
original system, and modify the residue matrices;
the goal is to reduce the order, while respecting
a model reduction transfer matrix error. We used
SDPSOL [WB96] to solve the resulting SDPs.

As an example, (8) is solved with ε = 0.05 (-26dB).
The result is a 6th order approximation. Figure 1
shows the magnitude plot of the original system
(F ) and the approximation result (i.e., H).

By solving the dual spectral norm problem (8) for a
range of values of the tolerance ε from very small to
0.55, the tradeoff curve in figure 2 is obtained. The
staircase curve is the actual rank objective from (6),
evaluated for the optimizer of (8). This provides an
upper bound on the optimal rank objective in (6).
The curve below it is the dual spectral norm objec-
tive value of (8).
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Figure 2: Tradeoff curves. The horizontal axis gives the
approximation tolerance ε. The top plot shows the MacMil-
lan degree obtained by the dual spectral norm heuristic. The
bottom plot shows the minimum dual spectral norm.

A Proof of theorem 1

To prove the theorem we use conjugate functions.
Recall that the conjugate f∗ of a function f : C →
R, where C ⊆ Rn, is defined as

f∗(y) = sup{yT x− f(x) | x ∈ C}.

A basic result of convex analysis is that f ∗∗, i.e., the
conjugate of the conjugate, is the convex envelope
of the function f , provided some technical condi-
tions, which are valid here, hold; see theorem 1.3.5
in [HUL93].

Part 1. Computing φ∗: The conjugate of the rank
function φ, on the set of matrices with (spectral)
norm less than or equal to one, is

φ∗(Y ) = sup
‖X‖≤1

(Tr Y T X − φ(X)). (9)

Let q = min{m, n}, and note that by Von Neu-
mann’s trace theorem we have

TrY T X ≤

q
∑

i=1

σi(Y )σi(X), (10)

where σi(·) denotes the ith largest singular value.
Let X = UXΣXV T

X and Y = UY ΣY V T
Y be the sin-

gular value decompositions (SVDs) of X and Y .
Since the term φ(X) in (9) is independent of UX

and VX , we pick UX = UY and VX = VY to maxi-
mize the first term in (9). It follows that

φ∗(Y ) = sup
‖X‖≤1

(

q
∑

i=1

σi(Y )σi(X)−Rank(X)).



If X = 0, we have φ∗(Y ) = 0 for all Y , and
if Rank(X) = r, 1 ≤ r ≤ q, then φ∗(Y ) =
∑r

i=1 σi(Y )− r. So φ∗(Y ) can be expressed as:

φ∗(Y ) = max{0, σ1(Y )− 1, . . . ,

r
∑

i=1

σi(Y )− r,

. . . ,

q
∑

i=1

σi(Y )− q},

The largest term in this set is the one that sums all
positive (σi(Y )− 1) terms. We conclude that

φ∗(Y ) =
∑q

i=1 (σi(Y )− 1)+ , (11)

where a+ denotes the positive part of a, i.e., a+ =
max{0, a}.

Part 2. Computing φ∗∗: We will now find the
conjugate of φ∗, defined as

φ∗∗(Z) = sup
Y

(Tr ZT Y − φ∗(Y )),

for all Z ∈ Cm×n. As before, we choose UY and VY

such that UT
Z UY = I and V T

Y VZ = I to get

φ∗∗(Z) = sup
Y

(

q
∑

i=1

σi(Z)σi(Y )− φ∗(Y )).

We will consider two cases, ‖Z‖ > 1 and ‖Z‖ ≤ 1:

If ‖Z‖ > 1, we can choose σ1(Y ) large enough so
that φ∗∗(Z) →∞. To see this, note that in

φ∗∗(Z) = sup
Y

(

q
∑

i=1

σi(Z)σi(Y )− (
r
∑

i=1

σi(Y )− r)),

the coefficient of σ1(Y ) is (σ1(Z)−1) which is pos-
itive.

Now let ‖Z‖ ≤ 1. If ‖Y ‖ ≤ 1, then φ∗(Y ) = 0
and and the supremum is achieved for σi(Y ) = 1,
i = 1, . . . , q, yielding

φ∗∗(Z) =

q
∑

i=1

σi(Z) = ‖Z‖∗.

We will now show that if ‖Y ‖ > 1, φ∗∗(Z) is always
smaller than the value given above. We have

φ∗∗(Z) = sup
‖Y ‖>1

(

q
∑

i=1

σi(Y )σi(Z)−
r
∑

i=1

(σi(Y )− 1)

)

.

Consider the expression inside the sup. By adding
and subtracting the term

∑q

i=1 σi(Z) and rearrang-
ing the terms, we get

=
∑r

i=1(σi(Y )− 1)(σi(Z)− 1)

+
∑q

i=r+1(σi(Y )− 1)σi(Z) +
∑q

i=1 σi(Z)

<
∑q

i=1 σi(Z),

where the last inequality holds since the first two
sums on the second line always have a negative
value.

In summary, we have shown

φ∗∗(Z) = ‖Z‖∗,

over the set {Z | ‖Z‖ ≤ 1}. Thus, over this
set, ‖Z‖∗ is the convex envelope of the function
Rank(Z).

�

B Proof of lemma B

Proof: (⇐=) Let Y and Z satisfy the relations (3)
above, and let X = UΣV T be the SVD of X . Here,
Σ is of size r, where r is the rank of X . We have

Tr

[

UUT −UV T

−V UT V V T

][

Y X

XT Z

]

≥ 0,

since the trace of the product of two PSD matrices
is always non-negative. This yields

Tr UUT Y−TrUV T XT−TrV UT X+TrV V T Z ≥ 0.
(12)

Since columns of U are orthonormal, we can always
add more columns to complete them to a full basis,
i.e., there exists UT such that [U Ũ ][U Ũ ]T = I ,

or UUT + Ũ Ũ∗ = I , so ‖UUT‖ ≤ 1. So we get
|Tr UUT Y | ≤

∑

i λi(UUT )λi(Y ) ≤ Tr Y (using
Von Neumann’s trace theorem, see [HJ91]) Sim-
ilarly, for V we have TrV V T Z ≤ Tr Z. Also,
Tr V UT X = Tr V ΣV ∗ = TrΣ. Using these facts,
and (12) above, we get

Tr Y + Tr Z −TrΣ ≥ 0,

Tr Σ ≤ 1
2 (Tr Y + TrZ),

Tr Σ = ‖X‖∗ ≤ t.

(=⇒) Suppose ‖X‖∗ ≤ t. We will show Y and
Z can be chosen to satisfy the relations (3). Let
Y = UΣUT + γI and Z = V ΣV T + γI , then

Tr Y +TrZ = 2TrΣ+γ(p+q) = 2‖X‖∗+γ(p+q),

so if we choose γ = 2(t−‖X‖∗)
p+q

, we will have Tr Y +

Tr Z = 2t.

Also note that
[

Y X

XT Z

]

=

[

UΣUT UΣV T

V ΣUT V ΣV T

]

+ γ

[

I 0
0 I

]

=

[

U
V

]

Σ
[

UT V T
]

+ γI,

which is PSD.
�
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