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Abstract— Systems biologists are often faced with competing
models for a given experimental system. Performing exper-
iments can be time-consuming and expensive. Therefore, a
method for designing experiments that, with high probability,
discriminate between competing models is desired. In particu-
lar, biologists often employ models comprised of polynomial
ordinary differential equations that arise from biochemical
networks. Unfortunately, the model discrimination problem
for such systems is computationally intractable. Here, we
examine the linear discrimination problem: given two systems
of linear differential equations with the same input and output
spaces, and uncertain parameters, determine an input that is
guaranteed to produce different outputs. In this context, we
show that (1) if linearizations of the two nonlinear models can be
discriminated, then so can the original nonlinear model; and (2)
we show a class of systems for which the linear discrimination
problem is convex. The approach is illustrated on a biochemical
network with an unknown structure.

I. INTRODUCTION

Systems biologists are often faced with competing dy-

namical models of experimental systems. For example, a

newly discovered regulatory protein identified as an inhibitor

may act on one of several possible genes in a pathway,

leading to different possible biochemical network models.

Frequently, the model structure may be known, but the

values of chemical rate constants may be almost entirely

unavailable. Furthermore, in many settings the usually high-

dimensional full state of the system is not directly observable.

Instead, only some low dimensional output such as a few

fluorescently tagged protein concentrations, can be measured.

One way to distinguish between different models is to cre-

ate knockout cell-lines and examine the steady-state behavior

of the resulting mutants. However, such experiments are

tedious and may be quite difficult depending on how vital the

considered network is to the normal operation of the cell. An

alternative approach is to run dynamical experiments on cells

and interpret their response to perturbations to distinguish

between competing models. For example, a nutrient or a

chemical signal can be changed in a time-varying manner

(i.e. it is an input signal to the system) and the intensity

of a fluorescent marker incorporated into the network can

be observed, as was recently demonstrated with osmotic

pressure regulation in yeast [1].

Dynamical experiments are still expensive to set up, but

they are potentially less invasive and much more informative

This work was supported in part by the following grants: NIH/NIDCR,
#T32 DE007132-26 and ARO MURI, #W 911 NF 0710287.

M. Fazel, D. Georgiev, and E. Klavins are with the Department of Electri-
cal Engineering, University of Washington, Seattle, WA 98195-2500, USA
mfazel@u.washingotn.edu, dgeorgie@u.washington.edu,

klavins@u.washington.edu

than static experiments. Within this setting, we address the

question: What experiments should be performed on the

physical system to ensure that as many candidate models

are invalidated by the experimental results as possible? In

particular: given a set of candidate models, can we define a

probability distribution, which we call a disparity certificate,

over the possible input signals that maximally distinguishes

the candidate models? If no input signals distinguish the

candidate models, the experiments are not worth doing until

better candidates are derived. If the candidate models are

distinguishable, probing the actual experimental system with

the resulting disparity certificate must invalidate at least one

of the models (see Figure I).

Invalidation is made difficult by uncertainty in the ex-

perimental system. In systems biology, uncertainty arises

particularly from unknown reaction rates. Thus, an erroneous

model may not be invalidated by an experiment because the

uncertain parts of the physical system conspire against the

researcher to produce outputs that seem consistent with the

model. In our search for a disparity certificate we take a

worst-case approach, expecting that uncertainty in the system

will work to make candidate models indistinguishable. The

resulting problem becomes a min-max game: the input signal

tries to force the outputs of two candidate models to be

different while the uncertainty tries to make the outputs the

same. Invalidation is also made difficult by the fact that

models from systems biology are usually nonlinear, either

arising from mass action kinetics or enzyme kinetics for

example. In previous work [2] we show that the problem

of discriminating polynomial systems could be relaxed into

a problem that is more tractable, although at the expense

of discretizing the system and over-approximating the solu-

tion. Here we examine the problem of discriminating linear

systems.

In particular, we start with two different candidate non-

linear models that have the same input and output spaces

and unknown but bounded parameters. We suppose that the

systems are at equilibrium with respect to a given input and

that the output of each system (but not the internal state)

can be measured. We then linearize the systems about the

equilibrium to obtain a linear model discrimination problem.

In this context we show the following. First, if we find an

input that discriminates the linearized models, this input is

guaranteed to discriminate the nonlinear models. Second,

we show conditions under which the linear discrimination

problem is convex. For this class of systems, we show

that the min-max problem described above is equivalent to

a max-min problem, which can be solved using standard

tools. We have implemented the method in MATLAB and
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demonstrate it on example problems involving candidate

parameter regimes in chemical reaction networks. We also

show how the method might be iterated when used to design

experiments to reduce uncertainty in model parameters.
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Fig. 1. Model Discrimination for experimental design. X represents
the disparity certificate. Shaded regions represent all possible trajectories
corresponding to the input u. Trajectories A, B, C are possible outputs of
the physical system. For output A model 2 is invalidated, for output B,
model 1 is invalidated and for output C both models are invalidated.

II. GENERAL PROBLEM SETUP

A. Informal Description

We consider systems of differential equation that corre-

spond to chemical reaction networks. The control inputs are

the rates at which certain chemicals are being added to the

system and the measured outputs are the concentrations of

certain species. The rates of the other reactions are constant

over time but unknown. Given a system of differential

equations and a set of possible reaction rates, we define a

model as a function that maps a control input to the set

of measured outputs that can be generated with the possible

reaction rates. The following is the problem we want to solve.

Model Discrimination Problem (MDP) (informal). Given

a pair of models with the same input and output spaces, find

an input, called the disparity certificate, that yields disjoint

output sets.

If a disparity certificate exists, we can hope to implement it

in the experiment and learn which model does not represent

the system. Identifying the inconsistent model is called

model invalidation. For work on model invalidation see [3,

4].

B. Formal Description

First define the pair of candidate models that we want to

discriminate. For i = 1, 2,

M(i) :











ẋ(i) = f(i)

(

x(i), κ(i)

)

+ B(i)u,
y(i) = C(i)x(i), x(i) (0) = xe

(i), u (0) = ue,

κ(i) ∈
[

κ−
(i), κ

+
(i)

]

,

(1)

where xe
(i) ∈ R

n(i) is a stable equilibrium point with ue

as the corresponding equilibrium input, κ(i) ∈ R
d(i) is the

vector of reaction rates, u ∈ R
r is the control input, and

y ∈ R
m is the measured output. We assume that f(i) is poly-

nomial with respect to the state x(i) and affine with respect

to the reaction rate vector κ(i). Note that the equilibrium

point is part of the model definition. From experiments, we

are likely to get a measurement of the equilibrium output,

but not of the entire state. Here the unknown equilibrium

states are assumed as part of the candidate model. In the

sequel, we will always deal with the pair of models jointly.

Therefore, it is more compact to pose all problems in terms

of a single composite model M defined as follows.

M :







ẋ = f (x, κ) + Bu,
y = Cx, x (0) = xe, u (0) = ue,
κ ∈ [κ−, κ+] ,

(2)

where x =
(

x(1), x(2)

)

∈ R
n, κ =

(

κ(1), κ(2)

)

∈ R
d, and

y = y(1) − y(2) ∈ R
m. Let the distance between the outputs

of the two models be defined as

V (t) =

∫ t

0

‖y(1) (τ) − y(2) (τ) ‖1 dτ =

∫ t

0

‖y (τ) ‖1 dτ.

(3)

The following is a formal description of the problem we

would like to solve.

Model Discrimination Problem (MDP) (formal). Let

U = {u | ‖u − ue‖1 < ū} and let ∆(U) be the set of all

probability distributions over U. The problem is to

maximize
P∈∆(U)

min
κ−≤κ≤κ+

EP [V (T )] , (4)

where the finite T is the time horizon of interest and EP is

the expected value with respect to the probability distribution

P .

The model discrimination problem defined above con-

siders random, open loop control inputs. Random inputs

can outperform deterministic inputs as is well known in

game theory [5], and have also been used in experiments

to provide persistent excitation [6]. In molecular biology,

automation has enabled mass scale, parallel experimentation,

which lends itself well to the implementation of random

inputs. Open loop inputs are of interest, because experimental

data is often evaluated after the completion of an experiment.

k3
B
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k1
A

u1

k2

k5
CA+B

k4 BC+D

k6 D

Fig. 2. (a) Chemical reactions where species B can bind to A and thereby
enable A to be annihilated by D. The inputs to the system are the rates u1

and u2 (indicated by a lever) by which A and B are added to the system,
respectively. The output (indicated by the eyeball) is the concentration of
A.

Example (Mass action model). The concentrations of the

species in the chemical reaction network of Figure 2 is
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described by the following system of differential equations.

ẊA = u1 − κ1XA − κ2XAXB + κ5XC

ẊB = u2 − κ3XB − κ2XAXB + κ4XCXD + κ5XC

ẊC = κ2XAXB − κ5XC − κ4XCXD

ẊD = κ6 − κ4XCXD,

(5)

where the output y = XA. Note that the dependence of the

state derivative on the rates κ and the inputs u is linear. For

such a network, to find whether A binds to B, we would

construct two models with different bounds on κ2 and try

to discriminate them. If MDP returns affirmative, we would

apply the input to the experiment and use the output to find

our answer.

III. BACKGROUND

Model discrimination is widely studied in the literature.

Experimental design based on model discrimination has also

received a considerable attention [7–11]. The traditional

approach is to apply Bayesian conditioning and discriminate

models using criterion such as the maximum likelihood [7,

12, 13]. Methods based on the Bayesian approach assume

that the real world system behaves according to a given

candidate model with a known probability. As a result, the

success of these methods depends on the quality of prior

information. More recent methods are based on deterministic

models for uncertainty [8–10], as is the case in this paper. In

[10], a method is developed that computes the initial state to

maximize an upper bound on the distance between outputs of

competing models. The models, however, are deterministic

and, by maximizing the upper bound, the method cannot

guarantee discrimination. In [8] algorithms for efficiently

discriminating models from experimental data are developed,

however, no inputs are considered. Finally, a great deal of

literature on auxiliary input design for fault detection deals

with model discrimination [12, 14]. The majority of this work

is based on linear models and Bayesian conditioning. In our

work, nonlinear (polynomial) systems of difference equations

with unstructured uncertainty are considered and input signal

distributions guaranteeing discrimination are computed.

IV. MODEL DISCRIMINATION BY LINEARIZATION

A. Linearization Setup

Use of linearization to study properties of equilibria is well

documented [15]. In this paper, we show that linearization

can be used to study discriminability as well. The corre-

sponding linear discrimination problem is still difficult to

solve in general. We study specific instances of the linear

problem and provide solutions.

The relationship between discrimination of the nonlin-

ear models and the linearized models is local (as will be

shown in the next section). The first nM (where nM =
max

(

n(1), n(2)

)

) derivatives of the linearized models deter-

mine the discriminability of the nonlinear models. We use

this fact to define the related, linear model discrimination

problem. Let the composite system of differential equations

linearized around the equilibrium state and control input be

written as
δẋ = A (κ) δx + Bδu,
δy = Cδx, δx (0) = 0,

(6)

where A (κ) = A0 +
∑d

i=1 κiAi. Note, we cannot linearize

with respect to the reaction rates. Deviations of the reactions

rates are not necessarily small.

Define the discrete composite model by computing the

time derivatives of the linearized systems.

MK :







x̄ (k + 1) = A (κ) x̄ (k) + Bū (k) ,
ȳ (k) = Cx̄ (k) , x̄ (0) = 0
κ ∈ [κ−, κ+] , k ∈ {1, . . . ,K}

(7)

where ū (k) = dk

dt
δu (0). Note that we’ve assumed the

inputs are continuously differentiable; this class of inputs

is sufficient to discriminate linear systems. As before, let the

distance between the outputs be VL(k) =
∑k

i=0 ||ȳ (i)||1.

The linear discrimination problem corresponding to the orig-

inal MDP is defined as follows.

K-LMDP . Let UL = {uL | ‖uL‖1 < 1} and let ∆(UL)
be the set of all probability distributions over UL. The Kth

order linear model discrimination problem (K-LMDP) is to

maximize
P∈∆(UL)

min
κ−≤κ≤κ+

EP [VL (K)] . (8)

Remark 1. Although one can solve K-LMDP for any K >
0, discriminability of the models is determined for K =
max

(

n(1), n(2)

)

.

The remainder of the paper is concerned with the K-

LMDP. First, we show how it is related to the MDP. Then we

show that the minimization and maximization operations can

be switched if VL is convex with respect to κ. Finally, we

use the minimax-maximin equivalence to derive a solution

algorithm for the convex version of K-LMDP.

B. Sufficiency of Linear Discrimination

In this section we will motivate solving K-LMDP by

showing that if VL (k) is positive for some k ≥ 0, then

V (k) will be positive as well. In the remainder of this

section, without loss of generality, we make the following

assumptions:

1) u (t) is constant (constant input is sufficient for linear

system), and a part of the state vector,

2) xe = 0, ue = 0,

3) The unknown parameters vector κ is a constant.

Assumption 1 is without loss of generality. To discriminate

a linear system, only constant inputs need to be considered.

Moreover, even if one discriminates the linear system using a

higher class of n-differentiable inputs, the results hold since

such inputs reduce to constant inputs by appending their

derivatives to the state. Assumption 2 simply means we’ve

translated the equilibrium to zero. There is no loss of gen-

erality since this translation preserves the polynomial/affine

system structure. Assumption 3 is valid for a large class

of biological systems, e.g., all systems governed by mass
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action kinetics. Under the above assumptions, the nonlinear

composite system in Equation 2 has the following form:

ẋ = Ax + h (x) ,

y = Cx, x (0) = (0, u (0)) .
(9)

Lemma 1. limx→0
|h(ℓ)(x)|

|x| → 0, where h(ℓ) = ∂ℓ

∂tℓ h.

Proof: Show, by induction that h
(ℓ)
i (x) has the form

xT Qℓ
i (x) x, where all entries of Qℓ

i (x) are polynomials.

1) True for h(0) by assumption on h.

2) Suppose h
(j)
i (x) has the form xT Qj

ix, for j ≤ ℓ.

Write h(j) (x) = Qj (x)x, where entries of Qj (x) are

polynomials of order 1 or greater. Then

h
(ℓ+1)
i (x) = 2

(

Ax + Q0 (x)x
)T

Qℓ
i (x) x

+ xT ∂Qℓ
i

∂x
x

(

Ax + Q0 (x) x
)

= xT Q̃ (x)x.

Lemma 2. If ‖CAℓν‖ > 0, for some ℓ ≤ n, then there exist

constants ρ+ > 0, τ+ > 0 such that ‖yℓ (τ) ‖ > 0 for all

τ < τ+ and x (0) = ρν, ρ < ρ+.

Proof: Compute output derivatives for τ = 0 and

x (0) = ρν. Throughout the proof we omit the dependence

on τ whenever appropriate.

y(ℓ) = Cx(ℓ)

= C
(

Aℓx + Aℓ−1h (x) + · · · + h(ℓ−1)(x)
)

.

From Lemma 1, we know that limρ→0
h(k)(ρν)

|ρ| → 0. So

choose ρ+ > 0 to satisfy

‖CAℓν‖ > ‖C
(

Aℓ−1h (ρν) + · · · + hℓ−1 (ρν)
)

‖/ρ,

for all ρ ≤ ρ+. It follows that ‖y(ℓ) (0) ‖ > 0 when

x (0) = ρν. Finally, we know that there exists a time

interval [0, τM ] , τM > 0, in which y(ℓ) (τ) is continuous

with respect to τ . Therefore, there exists a constant τ+ such

that ‖y(ℓ) (τ) ‖ > 0 for all τ < τ+.

Theorem 1. If ‖CAℓν‖ > 0, for some ℓ ≤ n, and x (0) =
ρν, then there exists a constant ρ+ > 0 such that, for all

t > 0 and for all ρ < ρ+, V (t) > 0.

Proof: The proof is by contradiction. Choose ρ+

according to Lemma 2. Let u = ρuL, 0 < ρ ≤ ρ+, and

suppose that V (τ) = 0 for all τ < t. This implies that

y (τ) = 0 for all 0 ≤ τ ≤ t. Since all functions that are zero

on an open interval must also have zero derivatives on that

interval, this is a contradiction to Lemma 2.

The condition of Theorem 1 is equivalent to the input

ν discriminating the linear system. If ‖CAℓν‖ = 0 for all

ℓ ≤ n, then the output of the linear system remains zero

for all time. Therefore, the theorem implies that if an input

discriminates the linear system, then the same input scaled

will discriminate the nonlinear system.

C. Maximin and Minimax Equivalence

To solve K-LMDP, it is useful to be able to switch the

minimization and maximization operations without changing

the optimal value. In this section we first rewrite the problem

in its static form.

Observation 1. Problem has the following form.

maximize
P∈∆(UL)

min
L∈L

E [‖Lu‖1] . (10)

We proceed under the assumption that L is closed, convex,

and bounded. This will always be true for K ≤ 2. The

set is not in general convex for K > 2; exploring convex

relaxations for this set is a direction for future work. Under

this assumption on L we have the following result.

Theorem 2. Let ULV be the finite set of vertices of UL in

the positive orthant. Then

min
L∈L

max
u∈UL

‖Lu‖1 = max
P∈∆(UL)

min
L∈L

EP [‖Lu‖1] ,

= max
P∈∆(ULV )

min
L∈L

EP ‖Lu‖1.
(11)

Proof: The maximization problem in the left hand side

of Equation 11 can be solved explicitly and we can rewrite

the left hand side as

minimize
L∈L

max
j

∑

i

|Lij | . (12)

This shows that the maximization in the minimax problem

only needs to be carried out over the vertices of UL. If we

restrict U to UL, the domain of the cost function EP [||Lu||1]
becomes finite dimensional as well as compact. Since the

cost function is also convex-concave with respect to L and

P , it is well known from the theory of zero sum games that

it has a saddle point in the set L × ∆(UL), Thereom 4.6

in [16]. Thus it holds that

min
L∈L

max
j

∑

i

|Lij | = max
P∈∆(ULV )

min
L∈L

EP ‖Lu‖1. (13)

The desired result follows.

max
P∈∆(ULV )

min
L∈L

EP ‖Lu‖1 ≤ max
P∈∆(UL)

min
L∈L

EP ‖Lu‖1

≤ min
L∈L

max
j

∑

i

|Lij |

= max
P∈∆(ULV )

min
L∈L

EP ‖Lu‖1.

Thus we only need to consider the control inputs that are the

positive orthant vertices of UL. We develop this idea in the

next section to construct a solution algorithm.

D. 2nd Order Solution Algorithm

In this section we derive a solution algorithm for K-

LMDP when K = 2. First, we rewrite the full problem,

explicitly listing all the variables and constraints. Note that

this problem includes an optimization variable that belongs

to an infinite dimensional set of probability distributions.
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Fig. 3. (a) Allowable reaction rate sets for models 1 and 2. Each uncontrolled reaction is listed along the y-axis and the interval containing the corresponding
reaction rate is shaded on the axis to the right. The reaction rates of model 1 can take any values in light or dark grey regions. The reaction rates of model
2 can take any values in light or medium grey regions. Values of the worst case rates from 2-LMDP are also shown. (b) The affirmative solution to the
model discrimination problem predicts that (initially) the output output of model 1 (model 2) will lie in the upper (lower) shaded region. The outputs of
the nonlinear models generated by the worst rates (see (a)) are also shown. The inset shows the responses on a longer time-scale.

2-LMDP (infinite dimensional). The 2nd order Linear

Model Discrimination Problem is to

maximize
P

min
κ

EP [‖Lu‖1] , (14)

subject to

P ∈ ∆(UL) , L = L0 +
∑

i

κiLi, κ ∈
[

κ−, κ+
]

where

L0 =

(

CT B 0
CT A0B CT B

)

, Li =

(

0 0
CT AiB 0

)

,

for i = 1, . . . , d.

Next, we apply Theorem 2 to derive an equivalent finite

linear program. Let P ∗ (ei) = p∗i where ei is the ith vector

of the standard Euclidean basis, and form the following dual

problem of the finite, minimax reformulation of 2-LMDP.

2-LMDP (finite dimensional).

maximize
p,λ⊖,λ⊕,Λ⊕,Λ⊖

λT
⊖κ− − λT

⊕κ+ + tr
[

(Λ⊕ − Λ⊖)
T

L0

]

,

subject to

p ≥ 0,
∑

pi = 1, pj − (Λ⊕ + Λ⊖)ij = 0

λ⊖ ≥ 0, λ⊕ ≥ 0, (Λ⊕)ij ≥ 0, (Λ⊖)ij ≥ 0

tr
(

ΛT
⊕Li

)

− tr
(

ΛT
⊖Li

)

+ (λ⊕ − λ⊖)i = 0

Example (Model Discrimination). A solution of 2-LMDP

(finite dimensional) was used to discriminate candidate mod-

els for the reaction network in Figure 2. Two candidate

models were generated. The model dynamics are given by

Equation 5. The equilibrium concentrations are all equal to

1. Figure 3(a) shows the bounds on the reaction rates of both

models. The models differ in the bounds on κ2, the rate at

which A binds to B. Model 1 imposes a higher rate on κ2

increasing the annihilation of A. The two models were found

to be disparate, with the optimal cost of 2-LMDP equal to

1 1
9 . The optimal distribution P ∗ over the control inputs has

the following form,

P ∗

(

u1 (0) = 1, u2 (0) =
du1

dt
(0) =

du2

dt
(0) = 0

)

= 1.

This same input, with some scaling, discriminates the non-

linear models (see Section IV-B). Figure 3(b) illustrates the

predicted disjoint sets of the nonlinear model outputs. The

worst case rates κ∗ (see Figure 3(a) for numeric values)

were also computed by minimizing the expected cost in

Equation 14 with P equal to P ∗. Figure 3(b) illustrates the

nonlinear model outputs that are generated by κ∗.

The next section builds on this example to give an iterative

model generation and discrimination algorithm that can be

used to reduce a a wide range of candidate models to a more

informative family.

V. REPEATED DISCRIMINATION IN EXPERIMENTS

The discrimination problem solved in Section IV-D is used

to construct a system identification algorithm. The purpose

of the algorithm is the invalidate as many members of a given

family of candidate models. A viable candidate must 1) yield

the correct equilibrium, and 2) generate the experimental

output within a given tolerance. The algorithm is outlined

below.

Algorithm (Automated Model Invalidation).

• Inputs
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Fig. 4. Outcomes of the Automated Model Invalidation Algorithm. Each uncontrolled reaction is listed along the y-axis. The regions to the right of the
reactions indicate whether the reaction rate value was invalidated using equilibrium constraints, invalidated using a discriminating experiment, or remains
viable. The actual reaction rates (shown for reference only) that define the physical system are shown by an arrow in the corresponding row. (a) Outcome
of the AMIA that is based only on equilibrium constraints. (b) Outcome of the AMIA that uses model discrimination.

1) Dynamics: A nonlinear system of ordinary differential

equations

ẋ = f (x, κ) + Bu

y = Cx, x (0) = xe, u (0) = ue,
(15)

where f is a polynomial function that is affine with

respect to κ.

2) Bounding set: A set K that contains all possible

values of κ.

• Iteration Steps

1) Generate candidate models: for a given constant ρ >
0, partition K into blocks {K1, . . . ,KN} with norm

at most ρ. For all i ∈ {1, . . . , N}, construct a model

M(i) from the dynamics in Equation 15 and the set

Ki.

2) Invalidate inconsistent models: a model is invalidated

if for all possible values of κ, xe and ue do not

generate an equilibrium point.

3) Find disparate models: any two models are disparate

if they can be discriminated using 2-LMDP.

4) Execute experiment: for any two disparate models,

run the discriminating experiment and invalidate ei-

ther model if it is inconsistent with the experimental

output.

5) Reduce ρ, redefine K to be the union of all valid

blocks, and return to Step 1. Stop when ρ is suffi-

ciently small.

The guiding philosophy of the Automated Model Inval-

idation Algorithm is that there exists a single differential

equation system (Equation 15) that parametrizes all candidate

models of interest. Such a system may formed from a

single chemical reaction network that includes all possible

reactions.

To demonstrate the value of model discrimination for

model invalidation, we’ve implemented a simple version of

the algorithm above that makes the following simplifications.

The set K is restricted to be an interval [κ−, κ+]. For Step

1, the set K is partitioned into blocks that are themselves

intervals. For Steps (2-3), we considered only those blocks

that result in an interval when subtracted from K. For Step

4, we replaced the physical experiment with an oracle that

knows the actual values of κ and reveals an invalid model

given a disparate pair of models.

Example (Repeated Discrimination). The simple version

of the algorithm was applied to the chemical reaction net-

work in Figure 2. The general differential equation system

(Input 1) is given by Equation 5 and the bounding set K

(Input 2) is given by the interval [0, 5]
6
.

We ran the algorithm with and without model discrim-

ination (Steps 3 and 4). The results are shown in Figure

(a) and (b), respectively. Unshaded regions indicate viable

values of κ, lightly shaded regions indicate values of κ
invalidated based on the equilibrium constraints, and dark

shaded regions indicate values of κ invalidated by running

a discriminating experiment given by 2-LMDP. With the

expception of κ3, the degredation rate of B, equilibrium

constraints alone do not invalidate significant portions of K.

With model discrimination, we can identify viable regions

of K arbitrarily close to the actual values of κ. The accuracy

is only limited by the discrimination threshold (a positive

threshold on the optimal cost of 2-LMDP below which

models are not considered disparate).

VI. CONCLUSION

We considered the problem of model discrimination of

polynomial systems with unknown parameters that lie in a

given set, and proposed a linearization-based method. We
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showed the method gives a sufficient condition for discrimi-

nation of the nonlinear system. The problem of finding inputs

that guarantee discrimination is in general computationally

intractable, but for the case of K = 2 (which corresponds

to discrimination based on the value of the output and its

first derivative only) the feasible set becomes convex. If we

use ℓ1 norm to measure the distance between the model

outputs, the problem is shown to reduce to a linear program.

This method can be coupled with simple branch-and-bounds

over the parameter space to help with automated model

invalidation, as shown for a simple illustrative example. Note

that it appears that the affine structure with respect to input

u is not needed. One can linearize around the equilibrium

input as well as the equilibrium state and then proceed in

Section IV-B (the only related section) in the same way.

Future work will explore efficient convex relaxations to

extend the method for K > 2, allowing discrimination based

on higher order derivatives and side information. Relaxations

that find tight bounds on the feasible parameter region will be

very helpful in adapting this approach for model invalidation.

The work here takes the first step towards these goals.
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