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Abstract—In this paper, we examine the problem of iden-
tifying the interaction geometry among a known number of
agents, adopting a consensus-type algorithm for their coor-
dination. The proposed identification process is facilitated by
introducing “ports” for steering a subset of network vertices via
an appropriately defined interface and observing the network’s
response at another set of vertices. Using the fact that system
identification provides a realization of the original network,
we utilize transformations to identify a graph topology that
is compatible with the set of input-output data. An example
demonstrates the application of the proposed method.

Keywords: Inverse problems; coordination algorithms; net-
work identification

I. INTRODUCTION

Physical sciences are often concerned with inferring mod-
els and physical parameters from data. Given a model for
a physical phenomena, computing the data values is often
referred to as the forward problem. On the other hand, in
inverse problems, the objective is the construction, validation,
invalidation, or reconstruction of the model from a set of
measurements associated with the system. Inverse problems
arise in fields such as astronomy, geophysics, medical imag-
ing, remote sensing, ocean acoustic tomography, and non-
destructive testing [1], [2].

Closer to the present work are the inverse problems asso-
ciated with electrical networks [3], and the celebrated “Can
one hear the shape of a drum?" which aims to characterize
a manifold via its spectra [4], or more recently, “Can one
hear the shape of a graph?" [5]. In fact, in this paper,
we address the inverse problem related to consensus-type
coordination algorithms. Consensus-type algorithms have re-
cently been employed for analysis and synthesis of a host
of distributed protocols and control strategies in multi-agent
systems, including, flocking, formation control, rendezvous,
and distributed estimation [6].

One of the key aspects of consensus-type protocols is the
strong dependency between the interaction and information-
exchange geometry among the multiple agents, on one hand,
and the dynamic properties that these systems exhibit, on
the other. Motivated by this dependency, in our work, we
consider the scenario where the interaction network is inside
a “black box,” and that only certain “boundary” nodes in
the network can be influenced and subsequently observed.
The “input” boundary nodes are then used to stimulate the
network, whose response is subsequently observed at the
“output” boundary nodes. Using this setup, in our com-
plementary work [7], we have presented a node knockout
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procedure that aims to find the generating function of the
graph Laplacian from the observed input-output data. Our
focus in [8], in the meantime, was to reduce the search space
for the identification of the network topology by blending
ideas from system identification, integer partitioning, and
degree-based graph reconstruction. The implicit contribution
of our analysis is its ramifications for exact identification,
up to an automorphism, from boundary nodes for networks
that have an embedded consensus-type algorithm for their
operation, including formation flying, distributed estimation,
and mobile robotics.

There are a number of research works addressing the
problem of identifying an unknown underlying graph topol-
ogy from a data set [9], [10], [11], [12], [13], [14], [15],
[16]. More recently, Materassi et al. in [17] and [18] have
provided an exact reconstruction procedure for tree-like net-
work topologies. Ayazoglu et al. in [19] have proposed an
optimization scheme to recover the sparsest topology (in the
sense of having the fewest number of links) based on an
experimental noisy data. Moreover, Sanandaji et al. in [20],
inspired by the emerging field of compressive sensing, have
shown that suitably sparse networks can be exactly identified
from small numbers of node observations. In [20], the authors
have assumed that interconnected nodes are coupled by a
discrete-time convolution process.

In the present work, we adopt a system identification
procedure for identifying the underlying network topology.
This will be pursued by assuming that the network is observ-
able and controllable, and aim to characterize an appropriate
similarity transformation that can be applied to the system
realization– obtained from the system identification. Subse-
quently, utilizing the fact that the similarity transformation
between two negative semi-definite matrices is unitary, as
well as features of graph Laplacians for weighted and un-
weighted networks, we proceed to construct the appropriate
unitary transformation that can be used on the realization of
the system matrices in order to identify the graph topology.
We also address some of the numerical aspects of the
proposed approach.

Our notation and terminology are standard.1 We denote
by G = (V, E) the undirected simple graph with vertex set
V and edge set E , comprised of two-element subsets of V;
we use “nodes” or “agents” interchangeably with “vertices.”
Two vertices u, v ∈ G are called adjacent if {u, v} ∈ E . For
vertex i, deg i denotes the number of its adjacent vertices or
neighbors. The Laplacian matrix for the graph G is denoted

1The main focus of this work is on undirected graphs. However, the
extension of some results to the directed case will be examined in subsequent
works.
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by L(G) and the weighted Laplacian by Lw(G). Laplacian
matrices are positive semi-definite whose spectrum will be
ordered as 0 = λ1(L(G)) ≤ λ2(L(G)) ≤ . . . ≤ λn(L(G)),
and equivalently, 0 = λ1(Lw(G)) ≤ λ2(Lw(G)) ≤ . . . ≤
λn(Lw(G)). We use φG(s) to denote the characteristic poly-
nomial of the graph Laplacian. The cardinality of the set H
will be denoted by |H|; MT and ||M ||F denote the transpose
and Frobenius norm of matrix M , respectively. Mi,j denotes
the ij − th entry of the matrix M .

II. NETWORK IDENTIFICATION

Consider the consensus protocol adopted by n-nodes,
where xi is the state of the i-th node, e.g., its position, speed,
heading, voltage, etc., evolves according to the sum of the
differences between the i-th node’s state and its neighbors.
Next, let a group of agents I ⊂ V with cardinality |I| = rI ,
“excite” the underlying coordination protocol by injecting
signals to the network, with another set of agents O ∈ V , of
cardinality |O| = rO, measuring the corresponding network
response. Hence, the original consensus protocol from node
i’s perspective assumes the form

ẋi(t) =
∑

{i,j}∈ E

wij(xj(t)− xi(t)) +Biui(t), (1)

where wij is the weight on the edge {i, j} and Bi = βi if
i ∈ I, and zero otherwise. Without loss of generality, we
can always assume that βi = 1 and modify the control signal
ui(t) as βiui(t) if necessary. Adding the observation ports
to this “steered” consensus, and having yj(t) = xj(t) when
j ∈ O, we arrive at the compact form of an input-output
linear time-invariant system,

ẋ(t) = A(G)x(t) +Bu(t), y(t) = Cx(t), (2)

where A(G) = −Lw(G) ∈ Rn×n, B ∈ Rn×rI , and C ∈
RrO×n.

Even though in general sets I and O can be distinct and
contain more than one element, for the convenience of our
presentation, we will assume that they are identical. The
extension of the presented results to the case when I and O
are distinct will be discussed as a difference could potentially
occur.

We now pose the inverse problem of graph-based coor-
dination algorithms, namely, the feasibility of identifying
the spectral and structural properties of the underlying net-
work G via the data facilitated by the input-output ports I
and O. In order to implement this program, however, we
need to assume that: (1) the identification procedure has
knowledge of the number of agents in the network, and (2)
the input/output sets I and O have been chosen such that
the system described in (2) is controllable and observable.
Although the first assumption is reasonable in general, the
second one requires more justification which we now provide.
In the trivial case when I = V and B is equal to the
identity matrix, the input-output consensus (2) is controllable
and by duality, observable. However, more generally, the
controllability/observability of the network from a subset of
its boundary nodes, is less trivial, and more to the point, not

guaranteed for general graphs [6]. In the meantime, since we
will need controllability and observability of the network for
its identifiability, we will rely on a topical conjecture in the
algebraic graph theory to the effect that for large values of
n, the ratio of graphs with n nodes that are not controllable
from any single node to the total number of graphs on n
nodes approaches zero as n→∞ [21].

In the present paper, we take the controllability and the
observability of the underlying graph from the input and
output nodes as our working assumption. In the meantime
it is always convenient to know when the network is uncon-
trollable from a given node [7], [8].

A. System Identification

We now consider a few standard system identification
procedures in the context of identifying the spectra of the
underlying graph Laplacian, and subsequently, gaining in-
sights into the interconnection structure that underscores the
agents’ coordinated behavior.

System identification methods are implemented via sam-
pling of the system (2) at discrete time instances,2

δ, 2δ, . . . , kδ, . . ., with δ > 0, assuming the form

z(k + 1) = Adz(k) +Bdv(k), w(k) = Cdz(k), (3)

where z(k) = x(kδ), v(k) = u(kδ), w(k) = y(kδ), Ad =

eδA, Bd =
(´ δ

0
eAtdt

)
B, and Cd = C.3 In fact, the system

identification process leads to a realization of the model

z̃(k + 1) = Ãdz̃(k) + B̃du(k), w̃(k) = C̃dz̃(k), (4)

where (Ãd, B̃d, C̃d) is the realization of (Ad, Bd, Cd) in (3).
The realized system (4), on the other hand, is equivalent to
the continuous-time system

˙̃x(t) = Ãx̃(t) + B̃u(k), y(t) = C̃x̃(t), (5)

with Ãd = eδÃ, B̃d =
(´ δ

0
eÃtdt

)
B̃, and C̃d = C̃; in

this case, Ã = (1/δ) logM Ãd where logM denotes the
matrix logarithm. Since the system (4) is a realization of
the system (3), it follows that the estimated triplet (Ã, B̃, C̃)
is a realization of (A,B,C) in (2). As a result, there exists a
similarity transformation induced by the matrix T , such that

Ã = TAT−1, B̃ = TB, and C̃ = CT−1. (6)

Recall that with the standing assumption of C = BT in
(2), for the identified system matrices (C̃, Ã, B̃) the product
C̃ÃB̃ = CAB leads to an r×r block partition of the matrix
Lw(G). Notice that if B 6= CT , we still obtain r2 entries of
the matrix Lw(G) which may not contain the diagonal entries.
Considering the case where C = BT , the product C̃ÃB̃
provides the degree of the input/output nodes and the existing
of an edge between them. Note that since input and output
matrices, B and C, are unknown, the labels of input/output

2The system identification methods work based on data sampling from
the system. Since we aimed to identify the interaction geometry of the
network, we originally considered a continuous system. Therefore, we need
to discretize the system (2).

3The notation eA for a square matrix A refers to its matrix exponential.
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nodes are unknown. The identification procedure proceeds
with the predefined labeling for input/output nodes.

In summary, an identification procedure such as the above
two methods, implemented on a controllable and observable
steered-and-observed coordination protocol (2), leads to a
system realization whose state matrix is similar to the un-
derlying graph Laplacian and in particular sharing the same
spectra and characteristic polynomial. However, a distinct and
fundamental issue in our setup is that having found a matrix
that is “similar” to the Laplacian of a network is far from hav-
ing exact knowledge of the network structure itself [7]. This
observation motivates the following question: to what extend
does the knowledge of the spectra of the graph, combined
with the knowledge of the input-output matrices, reduce the
search space for the underlying interaction geometry? In this
paper, we explore this question using techniques based on
similarity transformations of symmetric and negative semi-
definite matrices as well as optimization problems over such
matrices.

III. GRAPH IDENTIFICATION

As we explained in the previous section, the system
identification procedure provides the triplet

(
Ã, B̃, C̃

)
which

satisfies the set of equalities (6), where T is the similarity
transformation between the realization

(
Ã, B̃, C̃

)
and the

original set of matrices (A,B,C) in (2). Our goal is thus to
determine the unknown quadruple (T,A,B,C), where the
matrix A satisfies the properties of a graph Laplacian. In
the following, we proceed to propose an optimization-based
approach in this paper for the network topology identification.

Consider the set of identities in (6) with known triplet
(Ã, B̃, C̃) and unknown quadruple (T,A,B,C). For a sym-
metric matrix A, these set of equations are under-constrained
with n(n−1)/2 undetermined variables; however, the special
structure of the matrix A as a graph Laplacian can be
considered in order to restrict degrees of freedom. The main
contribution of this paper is finding the transformation matrix
T considering the Laplacian structure of A. The following
theorem states a well-known result in matrix analysis which
will be used in our approach [22].

Lemma III.1. If W1 and W2 are similar negative semi-
definite matrices, the similarity transformation between them
is a unitary matrix.

The proposed approach in this paper builds on the unitary
transformation between two negative semi-definite (NSD)
matrices, as well as the structural properties of the graph
Laplacian and the Householder transformation described
shortly. We note that the matrix Ã shares the same non-
positive eigenvalues of the Graph Laplacian A; however, for
a matrix to be NSD, it also has to be symmetric with non-
positive eigenvalues [22]. Since Ã is the output of the system
identification procedure, there is no guarantee that it will
always be symmetric. Therefore, the next step is to find a
symmetric matrix Ãs that shares the same spectrum as Ã
and has the minimum distance from Ã in some matrix norm.

Choosing the Frobenius norm to induce a metric on the space
of matrices, the problem can be formulated as follows:




min
Ãs

||Ã− Ãs||2F

ÃTs = Ãs and eig(Ãs) = eig(Ã).

(7)

Our next result provides an optimal analytic solution of the
above optimization problem. This theorem constructs the
nearest symmetric matrix Ãs which shares the same spectrum
as Ã.

Theorem III.2. Let Ã ∈ Rn×n with non-positive set of
eigenvalues. Consider the optimization problem





min
X
||Ã−X||2F

XT = X and eig(X) = eig(Ã),

(8)

where X is negative semi-definite. Then,

X = UΛUT , (9)

where Λ is a diagonal matrix with eigenvalues of Ã on the
diagonal, Λi,i = λi(Ã), and U is the unitary matrix in the
spectral decomposition of the symmetric part of Ã, i.e., S =
(Ã + ÃT )/2. The unitary matrix U appears in the spectral
decomposition of S as S = UΛSU

T , where ΛS is diagonal
and ΛSi,i

= λi(S).

Proof: The proof is inspired by [23] where the nearest
symmetric positive semidefinite matrix in the Frobenius norm
to an arbitrary real matrix is characterized; however, the
proposed nearest symmetric positive semidefinite matrix in
[23] does not share the spectrum as the original matrix.

Let X be the solution of the optimization problem (7).
The Frobenius norm has the property that ||G + H||2F =

||G||2F + ||H||2F , if G = GT and H = −HT . Consider Ã =

S + K, where S = (Ã+ ÃT )/2 and K = (Ã− ÃT )/2 are
the symmetric and skew symmetric parts of Ã, respectively.
Then we have ||Ã−X||2F = ||S−X||2F + ||K||2F , where G =

S−X and H = K. The problem of minimizing ||Ã−X||2F ,
therefore, reduces to minimizing ||S −X||2F .

Let S = UΛSU
T , where U is unitary and the diagonal

matrix ΛS is such that ΛSi,i = λi(S). Moreover, let Y =
UTXU . Then,

||S −X||2F = ||UΛSU
T −X||2F

= ||U(ΛS − UTXU)UT ||2F = ||ΛS − Y ||2F
=

∑

i 6=j

y2ij +
∑

i

(λi − yii)2 ≥
∑

i

(λi − yii)2.

The lower bound above is attained, uniquely, for the matrix
Y = Λ = diag(λi(Ã)), where λi(Ã) is the i-th eigenvalue
of Ã if these eigenvalues are rearranged such that |λ1(S)−
λ1(Ã)| ≤ |λ2(S) − λ2(Ã)| ≤ . . . ≤ |λn(S) − λn(Ã)|.
Therefore, for this choice of Y , X = UΛUT .

The next step is to show that Y , and consequently X , are
unique. In order to prove this, it suffices to show ||ΛS −
Λ||2F ≤ ||ΛS − WΛWT ||2F for an arbitrary unitary matrix
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W . Let us define Ω = WΛWT . The definition of Frobenius
norm now implies that

||ΛS − Λ||2F = trace[(ΛS − Λ)(ΛS − Λ)T ]

= trace(Λ2
S)− 2trace(ΛSΛ) + trace(Λ2)

||ΛS − Ω||2F = trace[(ΛS − Ω)(ΛS − Ω)T ]

= trace(Λ2
S)− 2trace(ΛSΩ) + trace(Ω2)

= trace(Λ2
S)− 2trace(ΛSΩ) + trace(Λ2).

The last equality follows from ||Λ||2F = ||Ω||2F since W is
unitary.

In order to prove the claim that Y and X are unique, we
need to show that trace(ΛSΛ) ≥ trace(ΛSΩ). Note that all
diagonal entries of Λ, ΛS , and Ω are non-positive. Let us
now consider trace[ΛS(Ω− Λ)]. Then,

trace[ΛS(Ω− Λ(Ã))] =
∑

i

λi(S)[Ωi,i − λi(Ã)] =

∑

i

|λi(S)|[|Ωi,i| − |λi(Ã)|] ≤

|max
i

(λi(S))|
∑

i

(|Ωi,i| − |λi(Ã)|) =

|max
i

(λi(S))|
[∑

i

|Ωi,i| −
∑

i

|λi(Ã)|
]

= 0,

where the fact that Λ(Ã) and Ω share the same set of
eigenvalues imply the last equality. Therefore, trace[ΛS(Ω−
Λ)] ≤ 0 and the claim is proved.

Theorem III.2 thus implies that Ãs, the nearest symmetric
approximation of Ã sharing the same spectrum, defined in
(7), is equal to matrix X . We thus proceed to find the
similarity transformation between Ã and Ãs; however, it
is non-trivial whether there is a similarity transformation
between (Ã, B̃, C̃) and (Ãs, B̃s, C̃s). Therefore, first we
verify whether there is a similarity transformation between Ã
and Ãs and then propose a procedure to find the desired trans-
formation. The following theorem, explores the existence of
a similarity transformation between Ã and Ãs.

Lemma III.3. The pair of matrices Ã and Ãs are similar.

Proof: We note that there is a similarity transforma-
tion between Ã and A as Ã = TAT−1 from the system
identification procedure. We also know that two symmetric
matrices A and Ãs share the same non-positive spectrum.
On the other hand, Lemma III.1 implies that there is a
unitary transformation Q such that A = QT ÃsQ. Thus,
there is a similarity transformation between Ãs and Ã as
Ã = GÃsG

−1 where

G = TQT . (10)

Fig. 1 demonstrates these relationships.
As proved in Lemma III.3, there is a similarity transfor-

mation between Ã and Ãs. The purpose of the next step is
to find the transformation matrix G such that

min
G
||ÃG−GÃs||2, (11)

G(A,B,C)
TTransformation

(Ã, B̃, C̃)
QTransformation

(Ãs, B̃s, C̃s)

GTransformation

Fig. 1. Similarity transformations between A, Ã, and Ãs

where Ãs is defined in (9). Consequently, a new realization
(Ãs, B̃s, C̃s) is derived as

Ãs = G−1ÃG, B̃s = G−1B̃, and C̃s = C̃G. (12)

As we stated earlier, in Lemma III.1, there is a unitary
transformation between two NSD matrices that have the same
set of eigenvalues. The next step is to blend this fact with
structural features of the graph Laplacian to find the unitary
transformation Q between two NSD matrices A and Ãs, i.e.,
ÃsQ = QA. Since A is the Laplacian associated with an
undirected weighted graph with the property that its rows
sum to zero, it follows that ÃsQ1 = QA1 = 0, where 1 is
an n× 1 vector of ones.

The equality ÃsQ1 = 0 indicates that Q1 belongs to the
null space of Ãs. Let us denote the null space of Ãs as Ñ =
Null{Ãs}. The equality Q1 = Ñ implies that the unitary
matrix Q rotates the vector of ones to the null space Ñ . The
well-known Householder reflection suggests a procedure to
find such a unitary matrix Q.

A Householder reflection, also known as Householder
transformation, is a linear transformation that describes a
reflection about a plane or hyperplane containing the origin.
A unit vector u orthogonal to the hyperplane defines the
reflection hyperplane. Let

Q
1√
n

=
Ñ

||Ñ ||2
.

Then, the Householder reflection suggests that the Hermitian
and unitary transformation Q satisfies the following equation

Q = I − 2uuT , (13)

where u = v/||v||2 such that v = Ñ/||Ñ ||2 − 1/
√
n.

A. Numerical considerations

Fig. 2 demonstrates a summary of the network identifi-
cation procedure described above. However, there are a few
related numerical analysis aspects that will be discussed in
this section.

As discussed earlier, in order to calculate the matrix Q, it
is necessary to find the null space of Ãs. Since Ãs shares
the same spectrum as A, it is singular and its null space,
Ñ , is non-empty; however, numerically the null space Ñ
is generically empty. Therefore, we characterize the matrix
ÃSs = Ãs + E with E as the solution of the optimization
problem




min
E

||E||
||Ãs||

ÃS
T

s = ÃSs and Ãs + E = ÃSs is singular,

(14)
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(Ã, B̃, C̃)

TTransformation

QTransformation

(Ãs, B̃s, C̃s)

y

minÃs
||Ã− Ãs||

eig(Ã) = eig(Ãs)

ÃT
s = Ãs

GTransformation

Fig. 2. Identification procedure

where ||.|| is the induced matrix 2-norm. This problem is
equivalent to finding the nearest matrix of lower rank to a
given matrix [24]. The procedure for determining the nearest
singular approximation of Ãs is inspired by [25] and [24].

Suppose that ||.|| is the induced matrix norm and let z be
a normalized vector such that ||Ã−1s z|| = ||Ã−1s || which is
a valid assumption since numerical issues generically cause
Ãs to be non-singular. Note that if the vector norm is the
2−norm, then z is the normalized eigenvector associated with
the maximum eigenvalue of Ã−1s . Let

w =
Ã−1s z

||Ã−1s ||
,

and v be a vector such that ||v||∗ = 1, where ||.||∗ is the
norm dual to the vector norm ||.||. Note that the dual norm
of the 2−norm is the 2-norm as

vTw = max
||u||∗=1

|uTw|.

It then follows that vTw = ||w|| = 1 [25]; note that for the
2−norm, it can be shown that v = w [22].

Consider next the vector 2−norm and set

E = − zvT

||Ã−1s ||
= − zwT

||Ã−1s ||
.

Let us define

ÃSs = Ãs + E = Ãs +− zwT

||Ã−1s ||
. (15)

Then,

ÃSsw =
(
Ãs + E

)
w = Ãsw −

zvT

||Ã−1s ||
w

=
z

||Ã−1s ||
− z

||Ã−1s ||
= 0

implies that ÃSs = Ãs + E is singular and w is in its null
space.

In order to calculate Q in (13), it was necessary to find the
null space of Ãs, denoted by Ñ . We previously showed that
Ãs and Ñ can be approximated by ÃSs and w, respectively.
Therefore, A = QÃSsQ

T where Q is defined in (13) and ÃSs
in (15).

We note that A can also be calculated in a different manner.
The equality G = TQT in (10) with known transformation
G, as a solution of (11), implies that T = GQ. By finding the
transformation T , the original matrix A is thereby determined
as A = T−1ÃT .

The approach described in this paper considers weighted
consensus dynamics and provides a weighted graph that
shares the same spectrum as the original weighted Laplacian
with the same input/output behavior. The approach can be
extended to the unweighted case, where the weights on the
edges are zero or one.

In order to identify the unweighted network, we note that
numerical constraints cause the calculated matrix A to be
a perturbed version of a Laplacian matrix even when the
underlying graph is unweighted. That is, the entries of the
obtained matrix are not necessarily integers. We now propose
a procedure to approximate −A with the closest integer
matrix L that satisfies the properties of a graph Laplacian.

The following mixed integer optimization problem deter-
mines the closest integer matrix L that minimizes the induced
matrix 2−norm of A− L as,

min
L
||L−A||2,

subject to
Li,i > 0

Li,j ∈ {0,−1} i 6= j

L = LT

L1 = 0
n∑

i=1

Li,i = −trace (Ã)

L satisfies the constraints posed by

C̃ÃB̃ = CAB described in §II-A.

(16)

The proposed optimization problem can be formulated as a
mixed integer least square and be solved by the CPLEX
software [26]. Even though there is a subclass of mixed
integer programming problems that can be solved in poly-
nomial time, most such problems are NP-hard. This is the
main pitfall associated with the application of the procedure
for identification of weighted to unweighted graphs .

The implementation of the proposed methodology is dis-
cussed via an illustrative example in the next section. For this
example, we study the unweighted consensus identification.

IV. AN EXAMPLE

Our goal in this example is to gather information on the
graph G shown in Fig. 3 running the system identification
procedure. Using nodes 1, 2, and 3 as the input/output nodes
in (2), we obtain φG(s) = s6 + 220s5 + 190s4 + 804s3 +
1664s2 + 1344s. Since the polynomial φG(s) has just one
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zero root, the underlying graph is connected. As we discussed
in [7], the characteristic polynomial φG(s) reveals certain
properties of the graph. For example, the graph is not a tree
due to the fact that an−1 6= 6. Moreover, the graph has 11
edges and 224 spanning trees.

We also obtain the estimated matrices Ã, B̃, and C̃ from
the system identification procedure. For this example, we
assume that the input and output nodes are identical. Since
the diagonal of the matrix C̃ÃB̃ is [−3,−4,−4 ]T , d1 = 3,
d2 = 4, and d3 = 3 if we label the first three nodes as
the input/output nodes. Following the proposed procedure
discussed in the paper, we obtain the matrix Ãs and its nearest
singular approximation ÃSs . The transformations Q is then
calculated from (13). This set of data and the corresponding
transformations imply that matrix A and its integer Laplacian
approximation L are as follows

A =


−3.9587 1.7068 0.4278 0.4031
1.7068 −4.0888 0.2449 1.1947
0.4278 0.2449 −3.7002 0.4628
0.4031 1.1947 0.4628 −3.4354
0.7707 0.8076 0.7900 0.7497
0.6504 0.1348 1.7748 0.6252

0.7707 0.6504
0.8076 0.1348
0.7900 1.7748
0.7497 0.6252
−3.3747 0.2567
0.2567 −3.4420



L =


3 −1 −1 0 −1 0
−1 4 0 −1 −1 −1
−1 0 4 −1 −1 −1
0 −1 −1 4 −1 −1
−1 −1 −1 −1 4 0
0 −1 −1 −1 0 3

 .

Fig. 3 depicts the original graph and the identical determined
graph from the proposed approach.

1

23

4

5 6

Fig. 3. The original graph is identical to its identified twin.

V. CONCLUSION

In this paper, we introduced a network identification
scheme which involves the excitation and observation of
nodes running consensus-type coordination protocols. Start-
ing with the number of vertices in the network as a known
parameter, as well as the controllability and observability of
the resulting steered-and-observed network, the proposed pro-
cedure strives to collect pertinent information on the topology
of the underlying graph. In this direction, we examined the
applications of spectral characterization of graphs as well as a
similarity transformation approach. The proposed procedure
finds the original graph up to an isomorphism compatible
with the input-output data.
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