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Low Rank Language Models for Small Training Sets
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Abstract—Several language model smoothing techniques are
available that are effective for a variety of tasks; however, training
with small data sets is still difficult. This letter introduces the low
rank language model, which uses a low rank tensor representa-
tion of joint probability distributions for parameter-tying and
optimizes likelihood under a rank constraint. It obtains lower
perplexity than standard smoothing techniques when the training
set is small and also leads to perplexity reduction when used in
domain adaptation via interpolation with a general, out-of-domain
model.

Index Terms—Language model, low rank tensor.

I. INTRODUCTION

L ANGUAGE model smoothing has been well studied,
and it is widely known that performance improves sub-

stantially when training on large data sets. Empirical studies
show that the modified Kneser–Ney method works well over a
range of training set sizes on a variety of sources [1], although
other methods are more effective when pruning is used in
training large language models [2]. While large training sets
are valuable, there are situations where they are not available,
including system prototyping for a new domain or training lan-
guage models that specialize for communicative goals or roles.
This letter addresses the problem of language model training
from sparse data sources by casting the smoothing problem
as low rank tensor estimation. By permitting precise control
over model complexity, our low rank language models are
able to fit the small in-domain data with better generalization
performance.

II. RANK IN LANGUAGE MODELING

Every -gram language model implicitly defines an th-order
joint probability tensor :

(1)

An unsmoothed maximum likelihood-estimated language
model can be viewed as an entrywise sparse tensor. The ob-
vious problem with parameterizing a language model directly
by the entries of is that, under nearly all conditions, there are
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Fig. 1. Singular values of conditional probability matrix for unsmoothed (solid
line), modified-KN smoothed (dashed), and add- smoothed (dash-dotted)
models. Trained on 150 K words of broadcast news text, with a 5 K word
vocabulary.

too many degrees of freedom for reliable estimation. Hence, a
substantial amount of research has gone into the smoothing of
-gram language models.
One can compare different smoothing methods by their ef-

fects on the properties of . In particular, even highly distinct
approaches to smoothing have the effect of reducing, either ex-
actly or approximately, the rank of the tensor . Reducing the
rank implies a reduction in model complexity, yielding a model
that is easier to estimate from the finite amount of training data.
In the matrix case, reducing the rank of the joint probability ma-
trix is equivalent to pushing the distributions over a vocabulary
of size , , either exactly or approximately into a sub-
space of . More generally, a low rank tensor implies that the
set of distributions are largely governed by a common set
of underlying factors. Although the factors need not
be interpretable, and certainly not predefined, one might envi-
sion that a set of syntactic (e.g., part-of-speech), style and/or se-
mantic factors could account for much of the observed sequence
behavior in natural language. Fig. 1 illustrates the rank-reducing
phenomenon of smoothing in a conditional probability matrix.
Both modified Kneser–Ney and add- [1] smoothing shrink the
mass of the singular values over the unsmoothed estimate. This
effect is most pronounced on small training sets, which require
more smoothing.
The number of factors (the rank ) of a tensor thus provides

a mechanism to control model complexity. The benefits of con-
trolling model complexity are well-known: a model that is too
expressive can overfit the training, while a model that is too
simple may not be able to capture the inherent structure. By re-
ducing the mass of singular values, existing smoothing methods
effectively reduce the complexity of the model. Although they
do so in a meaningful and interpretable way, it is unlikely that
any fixed approach to smoothing will be optimal, in the sense
that it may return a model whose complexity is somewhat more
or somewhat less than ideal for the given training data. In this
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letter we test the hypothesis that it is the rank-reducing be-
havior that is important in the generalization of smoothed lan-
guage models, and propose a model and training approach better
matched to this objective.

III. BACKGROUND

Let denote the tensor rank, the order of the -gram
model, the size of the vocabulary, and the number of
-gram tokens in the training set. Let denote the set of
vectors of length , and the set of matrices. Tensors
are written in script font (e.g., ).

A. Tensor Rank

Tensor rank generalizes matrix rank. The rank of an th-order
tensor is defined to be the smallest for which there exist

such that

(2)

Here, denotes the tensor product, a generalization of the outer
product: the th entry of
is . Like the singular value decomposition for
matrices, (2) decomposes a tensor into the sum of rank-1 com-
ponents.

B. Tensor Rank Minimization

There are two dominant approaches to estimating low rank
tensors. One approach solves an optimization problem that pe-
nalizes the tensor rank, which encourages but does not impose
a low rank solution:

(3)

( denotes the feasible set.) When the tensor is order-3 or
higher, not only is this problem NP-hard [3], but there are
no tractable convex relaxations of the notion of rank in (2).
Recently, researchers [4], [5] have proposed a nuclear norm
relaxation of a different concept of rank, built upon the tensor
-rank [6]. Under their relaxation, assuming and are
convex, (3) is convex, but the approach requires
memory, which is prohibitive for reasonable size vocabularies.
Instead, one can impose a hard rank constraint:

(4)

In this nonconvex problem, is a predetermined hard limit; in
practice, the problem is solved repeatedly for different and the
best result is used. This approach allows one to reduce the space
complexity to by explicitly encoding the parameters
in the low-rank factored form of (2), which makes scaling to
real-world datasets practical.

IV. LOW RANK LANGUAGE MODELS

A. Model

Our low rank language models (LRLMs) represent -gram
probabilities in a factored tensor form:

(5)

The model is parametrized by the non-negative component
weights and the factor matrices .
Because denotes a joint probability distribution, we must

impose that is entry-wise non-negative and sums to one. We
will see later that requiring our parameters to be non-negative
provides substantial benefits for interpretability and leads to an
efficient training algorithm. Technically, denotes the non-neg-
ative tensor rank, which is never less than the tensor rank.
Because all of the parameters in (5) are non-negative, we can

constrain the rows of to sum to one. It is then sufficient
to constrain to sum to one for to sum to one. Under these
constraints, the rows of the factor matrices can be interpreted as
position-dependent unigram models over our vocabulary, and
the elements of as priors on each component:

(6)

Note that when , degenerates to a unigram model.
On the other extreme, when is sufficiently high rank (

), it can represent any possible joint probability distribu-
tion over words. Interpolating between these extremes per-
mits us to carefully control model complexity, so that it can be
matched to the amount of training data available.
We construct the probability of a word sequence using the

standard -gram Markov assumption:

(7)

where for notational convenience we assume that
are a designated sentence start token. Note

that in (7), unlike traditional language mixture models,
does not take the form of a sum of conditional

distributions. By learning joint probabilities directly, we can
capture higher-order multilinear behavior.
The connection between non-negative tensor factorization

and latent variable models has been previously explored in the
literature (e.g., in [7], [8]). Non-negative tensor factorization
models have also been applied to other language processing
applications, including subject-verb-object selectional pref-
erence induction [9] and learning semantic word similarity
[10]. Without drawing the connection to low rank tensors,
Lowd and Domingos [11] propose Naive Bayes models for
estimating arbitrary probability distributions that can be seen
as a generalization of (6).
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B. Training

Our criterion for language model training is to maximize the
log-likelihood of the -grams appearing in the training data.
Formally, we find a local solution to the problem:

(8)

where denotes the set of element-wise non-negative tensors
whose entries sum to one, i.e., the set of tensors corresponding to
valid joint probability distributions; are
the -grams in the training data (obtained by sliding a window
of size over each sentence); and is the probability distri-
bution given by .1 For traditional -gram models, the max-
imum likelihood objective yields models that are highly overfit
to the data; in particular, they are plagued with zero probability
-grams. The parameter tying implied by the low rank form
greatly reduces the risk of introducing zero probabilities into the
model; in practice, some additional smoothing is still required.
The low-rank language model can be interpreted as a mixture

model, where each component is a joint distribution that decom-
poses into a product of position-dependent unigrammodels over
words: .
Using this interpretation, we propose an expectation-maxi-
mization (EM) approach to training our models, iterating:
1) Given model parameters, assign the responsibilities
of each component to the -th -gram instance

:

(9)

2) Given responsibilities , re-estimate :

(10)

(11)

where is an indicator function. Iterations continue until
perplexity on a held-out development set begins to in-
crease.

The above training is only guaranteed to converge to a local
optimum, which means that proper initialization can be impor-
tant. A simple initialization is reasonably effective for bigrams:
randomly assign each training sample to one of the mixture
components and estimate the component statistics similar to
step 2. To avoid zeroes in the component models, a small count
mass weighted by the global unigram probability is added to
each distribution in (10).

1By using overlapping -grams, the samples are no longer independent, and
the estimation is not strictly maximum likelihood of the original data. While no
token is double counted in a distribution , each will be counted in for
multiple . The implication is that the distribution is not consistent with respect
to marginalization; e.g., the probability of the start symbol is position-dependent
(a desirable property).

TABLE I
LANGUAGE MODEL EXPERIMENT DATA

V. EXPERIMENTS

Our expectation is that the LRLM will be good for appli-
cations with small training sets. The experiments here first
evaluate the LRLM by training on a small set of conversational
speech transcripts and then in a domain adaptation context,
which is another common approach when there is data sparsity
in the target domain. The adaptation strategy is the standard
approach of static mixture modeling, specifically linearly inter-
polating a large general model trained on out-of-domain data
with the small domain-specific model.

A. Experimental Setup

Our experiments use LDC English broadcast speech data,2
with broadcast conversations (BC) or talkshows as the target
domain. This in-domain data is divided into three sets: training,
development and test. For the out-of-domain data we use amuch
larger set of broadcast news speech, which is more formal in
style and less conversational. Table I summarizes the data sets.
We train several bigram low rank language models (LR2) on

the in-domain (BC) data, tuning the rank (in the range of 25 to
300). Because the initialization is randomized, we train models
for each rank ten times with different initializations and pick the
one that gives the best performance on the development set. As
baselines, we also train in-domain bigram (B2) and trigram (B3)
standard language models with modified Kneser-Ney (mKN)
smoothing. Our general trigram (G3), trained on BN, also uses
mKN smoothing. Finally, each of the in-domain models is inter-
polated with the general model. We use the SRILM toolkit [12]
to train the mKN models and to perform model interpolation.
The vocabulary consists of the top 5 K words in the in-domain
(BC) training set.

B. Results

The experimental results are presented in Table II. As ex-
pected, models using only the small in-domain training data
have relatively high perplexities. Of the in-domain-onlymodels,
however, the LRLM gives the best perplexity, 3.6% lower than
the best baseline. Notably, the LR bigram outperforms the mKN
trigram. The LR trigram gave no further gain; extensions to ad-
dress this are described later. The LRLM results are similar to
mKN when training on the larger BN set.
Benefiting from a larger training set, the out-of-domain

model alone is much better than the small in-domain models.
Interpolating the general model with any of the in-domain
models yields an approximately 15% reduction in perplexity
over the general model alone, highlighting the importance of
in-domain data. However, the different target-domain models
are contributing complementary information: when the in-do-
main models are combined performance further improves. In
particular, combining the baseline trigram and LRLM gives the
largest relative reduction in perplexity.

2http://www.ldc.upenn.edu
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TABLE II
IN-DOMAIN TEST SET PERPLEXITIES. B DENOTES IN-DOMAIN BASELINE

MODEL, G DENOTES GENERAL MODEL, AND LR DENOTES IN-DOMAIN LOW
RANK MODEL. EACH MODEL IS SUFFIXED BY ITS -GRAM ORDER

Fig. 2. Low rank language model perplexity by rank.

TABLE III
SAMPLES DRAWN RANDOMLY FROM LRLM MIXTURE COMPONENTS

Fig. 2 reports LRLM perplexity for the LR2 model by rank
(the number of mixture components). For an in-domain bigram
model, using approximately mixture components is
optimal, which corresponds to roughly 10% asmany parameters
as a full bigram joint probability matrix.

C. Discussion

Each component in the model specializes in some particular
language behavior; in this light, the LRLM is a type of mixture
of experts. To gain insight into what the different LRLM compo-
nents capture, we investigated likely -grams for different mix-
ture components. We find that components tend to specialize
in one of four ways: 1) modeling the distribution of words fol-
lowing a common word, 2) modeling the distribution of words
preceding a common word, 3) modeling sets of -grams where
the words in both position are relatively inter-changeable with
the other words in the same position, and 4) modeling semantic
related -grams. Table III illustrates these four types, showing
sample -grams randomly drawn from different components of
a trained low rank model.

VI. CONCLUSIONS

Language model smoothing techniques can be viewed as op-
erations on joint probability tensors over words; in this space, it
is observed that one common thread between many smoothing
methods is to reduce, either exactly or approximately, the tensor

rank. This letter introduces a new approach to language mod-
eling that more directly optimizes the low rank objective, using
a factored low-rank tensor representation of the joint proba-
bility distribution. Using a novel approach to parameter-tying,
the LRLM is better suited to modeling domains where training
resources are scarce. On a genre-adaptation task, the LRLM ob-
tains lower perplexity than the baseline (modified Kneser–Ney-
smoothed) models.
The standard file formats used for interpolating different lan-

guage models cannot compactly represent the low rank param-
eter structure of LRLMs. Thus, despite having relatively few
free parameters, storing LRLMs in standard formats can result
in prohibitively large files when the -gram order or vocabulary
size is large. To interpolate higher -gram order LRLMs will
require either development of a new format or implementation
of interpolation within LRLM training itself.
In addition to implementation issues, our initial experiments

did not obtain gains for trigrams as for bigrams. Possible im-
provements that may address this include alternative initializa-
tionmethods to find better local optima (since training optimizes
a nonconvex objective), exploration of smoothing in combina-
tion with regularization, and other low-rank parameterizations
of the model (e.g., the Tucker decomposition [6]). For domain
adaptation, there are many other approaches that could be lever-
aged [13], and the LRLM might be useful as the filtering LM
used in selecting data from out-of-domain sources [14]. Finally,
it would be possible to incorporate additional criteria into the
LRLM training objective, e.g., minimizing distance to a refer-
ence distribution.
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