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Abstract

Random Access Compressed Sensing (RACS) is an efficient method for data gathering from a network of

distributed sensors with limited resources. RACS relies on integrating random sensing with the communication

architecture, and achieves overall efficiency in terms of the energy per bit of information successfully delivered.

To address realistic deployment conditions, we consider data gathering over a fading and noisy communication

channel. We provide a framework for system design under various fading conditions, and quantify the bandwidth

and energy requirements of RACS in fading. We show that for most practical values of the signal to noise ratio,

energy utilization is higher in a fading channel than it is in a non-fading channel, while the minimum required

bandwidth is lower. Finally, we demonstrate the savings in the overall energy and the bandwidth requirements of

RACS compared to a conventional TDMA scheme. We show that considerable gains in energy -on the order of 10

dB- are achievable, as well as a reduction in the required bandwidth, e.g., 2.5-fold decrease in the bandwidth for

a network of 4000 nodes.

Index Terms
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I. INTRODUCTION

Wireless sensor network technology has enabled affordable large coverage and long term monitoring of

the natural environment [1] such as ocean observation [2], monitoring volcanic eruptions [3] and long term

studies of the glaciers [4] which help our understanding of the climate change. Such applications require

the least control and intervention as well as minimum energy consumption. The data from distributed

sensors is conveyed to a fusion center (FC) where a full map of the sensing field is reconstructed.

Once the network is deployed, there can be little access to the sensors, hence re-charging the batteries

is difficult. This is especially of concern in underwater networks, where sensor nodes are hundreds of

meters below the surface, or in hostile environments where access to the sensor nodes is prohibited. Data
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gathering is further exacerbated in situations where bandwidth is constrained and the communication

channel introduces distortion. Long term deployment of sensor networks in such environments calls for

the integration between sensing, communication, and field recovery.

In [5], [6] we proposed an integrated sensing and communication architecture referred to as Random

Access Compressed Sensing (RACS), which achieves overall efficiency in terms of the energy per bit of

information successfully delivered to the FC. Considering the fact that most natural phenomena have a

sparse representation in an appropriate domain, RACS capitalizes on integrating compressed sensing with

random channel access. The former supports transmission of sensor data from only a random subset of

all the nodes, thus reducing the overall energy consumption, while the latter supports a robust and simple

implementation that eliminates the need for synchronization, scheduling, and downlink feedback. In the

present paper, we address realistic deployment conditions, that include fading and noisy communication

channels. We provide network design principles for such channels, and analyze the network performance

in terms of the energy and bandwidth required for successful field recovery.

The rest of the paper is organized as follows. In Section II, we provide an overview of the principles

of RACS. In Section III, we study successful packet detection in the presence of channel fading and

communication noise and in Section IV, we evaluate system performance under Ricean, Rayligh and

Lognormal fading conditions. Section V outlines the design methodology. In Section VI, we study the

bandwidth and energy utilization of the network. Finally, we provide concluding remarks in Section VII.

II. RACS: RANDOM ACCESS COMPRESSED SENSING

The theory of compressed sensing [7], [8] establishes that if a signal of dimension N has an S-sparse

representation in an appropriate domain Ψ (referred to as the sparsity basis), it can be recovered, with very

high probability, from O(νS log N) random measurements obtained in a sensing domain Φ.1 Consider a

sensor network where N = IJ sensors are placed on a grid, with J and I sensors in x and y directions,

respectively. At time t, the sensor node located at coordinate (i, j) acquires a measurement uij(t). This

process has a coherence time Tcoh, such that uij(t1) ≈ uij(t2) for |t1 − t2| ≤ Tcoh. In what follows we

focus on an observation window of size T ≤ Tcoh, dropping the time index from the sensor measurements.

The measurements are sent to the FC, where the gathered data are used to build a map of the sensing

1The coefficient ν represents the coherence between the sparsity basis Ψ and the sensing basis Φ and is defined as [9]

ν(Φ,Ψ) =
√

N max
1≤k,j≤N

|〈Φk,Ψj〉| (1)
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field (e.g., a geographical, chemical, or a temperature map), denoted by

U = [uij] i=1,...,I
j=1,...,J

(2)

Many natural signals have a compressible (sparse) representation in the frequency domain,2 i.e., as-

suming u = vec(U), the vector v = Ψ−1u is sparse, where Ψ−1 represents the DFT transform matrix.3

Noting that the spatial coordinate basis and the spatial frequency basis are maximally incoherent,4 the

conditions for compressed sensing hold.

RACS thus works as follows: The sensor node at coordinate (i, j) on the grid measures the signal

of interest uij at random time instants within Tcoh, independently of the other nodes, at a rate of λ1

measurements per second. It then encodes each measurement along with the node’s location tag into a

packet of L bits, which is then modulated and transmitted to the FC in a random access fashion. Because

of the random nature of channel access, packets from different nodes may create interference at the

FC, or they may be distorted because of noise. A packet is declared erroneous if it does not pass the

cyclic redundancy check (CRC) or a similar verification procedure. Motivated by the compressed sensing

principle, the key idea in RACS is to let the FC simply discard the erroneous packets, since the FC

does not care which specific sensors are selected as long as (i) the selected subset is chosen uniformly at

random, and (ii) there are sufficiently many useful packets remaining to allow for the reconstruction of

the field.

The FC thus discards the packets that are erroneous and collects the remaining useful packets over an

observation interval T . The interval T is assumed to be shorter than Tcoh, such that the process can be

approximated as fixed during one such interval. By the end of the observation interval, the useful data at

the FC can be expressed as

y = Ru + z (5)

2In some cases there may exist bases other than the Fourier, in which the natural signal has an even sparser representation. Without loss

of generality, here we will focus on sparse Fourier representations, while providing a general setup encompassing any appropriate basis.
3Let V = WIUWJ represent the two-dimensional spatial discrete Fourier transform of U, where WI is the matrix of discrete Fourier

transform coefficients, WI [m, k] = e−j2πmk/I . It can be shown that

v = (WJ ⊗ WI)u (3)

where v = vec(V). By noting that Ψ = (WJ ⊗WI)
−1

, it follows that

v = Ψ
−1

u. (4)

4The coherence between the (spatial) Fourier domain Ψ and the spatial domain Φ is ν(Ψ, Φ) = 1 (see [9]).
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where z represents the sensing noise and R models the selection of the correct packets. Specifically, R

is a K × N matrix with K corresponding to the number of useful measurements collected during T .

The rows of the matrix R can be regarded as K rows of an N ×N identity matrix, picked uniformly at

random. The FC can form R from the correctly received packets, since they carry the location tag.

We emphasize the distinction between the sensing noise z, which arises due to the limitations in the

sensing devices, and the communication noise, which is a characteristic of the transmission system. The

sensing noise appears as an additive term in Eq. (5), whereas the communication noise results in packet

errors and its effect is captured in the matrix R. In addition to communication noise, fading also affects

packet detection and similarly affects the matrix R, as will be discussed in Section III.

Noting that u = Ψv, where Ψ is the inverse Discrete Fourier Transform matrix, Eq. (5) can be re-written

in terms of the sparse vector v as

y = RΨv + z (6)

Ignoring the sensing noise z, in order to reconstruct the map of the field, the FC recovers v by solving

the following minimization problem:

minimizeṽ ‖ṽ‖`1 subject to RΨṽ = y. (7)

The theory of compressed sensing (specifically, [7]) states that as long as the number of observations,

picked uniformly at random, is greater than Ns = CS log N , then with very high probability the solution

to the convex optimization problem (7) is unique and is equal to v. Thus, it suffices to ensure that the

FC collects a minimum number of packets, Ns = CS log N , picked uniformly at random from different

sensors, to guarantee accurate reconstruction of the field with very high probability. Note that C is a

constant that is independent of S and N .5

Note that the results in this paper are not restricted to the grid model and can be extended to the cases

where the sensors are either placed on a nonuniform rectangular grid, or placed non-uniformly on parallel

lines. In such scenarios, the Fourier representation is replaced by the two-dimensional nonuniform discrete

Fourier transform [10]. Subsequently, as shown in [11] recovery is achieved using (7).

5If the signal has a sparse representation in a basis Ψ
′ other than the Fourier basis, RACS is still applicable with the condition that the

number of required measurements is now adjusted to Ns = Cν2(Φ,Ψ′)S log N where Φ is the spatial domain.
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III. PACKET DETECTION IN FADING AND NOISE

A wireless communication channel is typically modeled by a distance-dependent propagation loss,

shadowing, and small-scale fading. Let L(di) represent the attenuation or path loss, which depends on

the distance di between the sensor generating packet i and the FC. Since the network is stationary, each

node can be equipped with the knowledge of its distance to the FC, which remains unchanged throughout

the data collection interval. Each node can thus compensate for the path loss L(di) by adjusting its

transmission power. This ensures that the packets from all the nodes arrive at the FC at the same nominal

power P0. The total channel gain ci, observed by the i-th packet, is thus modeled as

ci = egihi (8)

where gi ∼ N (0, σ2
g) models the large-scale lognormal shadowing and hi ∼ CN (h, σ2

h) models the small-

scale fading. We assume a quasi-static fading model in which the channel coefficient ci is fixed for the

duration of a packet Tp, and changes independently from one packet to the next. This is a reasonable

assumption since the packets generated by a single node are transmitted at a relatively low rate, i.e., they

are distanced sufficiently apart in time such that they undergo independent fades. We also assume that the

colliding packets undergo uncorrelated channels. This is a fair assumption because the colliding packets

are not likely to be from neighboring nodes.

In the absence of channel fading and communication noise, packet loss in RACS is caused by collisions,

i.e., an overlap in the arrival time of two packets, which results in the loss of both packets [5], [12]. When

fading is present, the situation is somewhat changed since not every collision has to result in packet loss.

Namely, it is possible that although two (or more) packets overlap at the FC, one is sufficiently stronger

so that it can be successfully detected. Below we discuss the probability of successful reception.

A. Interference Model

The received signal at the FC is given by

vn(t) = c0u0(t) + in(t) + w(t) (9)
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where u0(t) is the desired signal, in(t) is the interference and w(t) is the additive white Gaussian noise

with power N0B, where B is the bandwidth. The interfering term can be expressed as

in(t) =
n
∑

i=1

ciui(t − τi) (10)

where ui(t) is the i-th interferer’s signal, τi is the difference in the arrival times of the interfering signal

with respect to the signal of interest, and the number of interfering packets n is a random variable with

probability distribution P (n). Assuming that packet arrivals follow a Poisson distribution, we have that

P (n) =
(2Nλ1Tp)

n

n!
e−2Nλ1Tp (11)

where Tp = L/B is the packet duration.6

For a given node, let X0 = |c0|2P0 represent the power of the desired packet, and In represent the total

interference power. We assume that X0 and In follow the probability distributions fX and fI , respectively.

The instantaneous signal to interference and noise ratio (SINR) is given by

γ =
X0

In + N0B
(12)

In the worst case scenario, the packet arrivals are synchronous, i.e., τi = 0 for i ∈ {1, . . . , N}. The

interference power is then given by In =
∑n

i=1 |ci|2P0 = Yn, which follows a probability distribution

fY . This situation, however, represents a pessimistic scenario since packet transmissions in RACS are

not synchronized. Rather than considering various scenarios for the overlapping of packets, we employ a

simplified model in which we assume that the strongest interferer dominates the term in(t) [13], i.e., we

assume that the interference power is In = maxi∈{1,...,n}|ci|2P0 = Mn, which has a probability distribution

fM . Specifically,

fM(z) = nFX(z)n−1fX(z) (13)

where FX(x) is the cumulative distribution function of X0.

Thus we have two methods to model the interfering power,

In =







Yn =
∑n

i=1 |ci|2P0 (model a)

Mn = maxi |ci|2P0 (model b)
(14)

6Throughout this paper we use bandwidth and bit rate interchangeably.
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Model (a) assumes the worst case scenario, leading to an overestimation of the effect of interference

and thus slightly pessimistic results for the probability of successful reception. In contrast, model (b)

underestimates the effect of the interference, resulting in a probability of success that is slightly greater

than the one predicted using model (a). The models (a) and (b) given by (14) thus provide upper and

lower bounds, respectively, on the actual interfering power.

B. Probability of Successful Reception: Outage Model

For a given number of interfering packets n, we employ the outage model to describe the probability

of successful reception ps|n(γ). In this model, ps|n(γ) is described by a step function as

ps|n(γ) =







0, γ < b

1, γ ≥ b
(15)

The effects of coding, modulation and other system parameters are implicit in one parameter b > 1,7

which is a predefined threshold with a typical value b = 2 − 6 [14], [15].8

Under the outage model, averaging ps|n(γ) over the fading statistics results in (see Appendix A)

ps|n =







∫∞

bN0B
fX(x)dx for n = 0

∫∞

b

∫∞

N0B
fX(γw)fI(w − N0B)wdwdγ for n ≥ 1

(17)

where fI = fY for model (a) and fI = fM for model (b). The total probability of successful reception is

then given by

ps =
N
∑

n=0

P (n)ps|n (18)

Small-scale fading, modeled by hi in Eq. (8), creates relatively fast variations in the channel, and is

thus responsible for short term signal variations. Shadowing, on the other hand, occurs over longer time

scales, creating slow variations in the mean signal amplitude. Several different models for the probability

distribution of a composite multipath/shadowed environment have been proposed, among which are the

composite Gamma/lognormal and the Suzuki models [17], [18]. In most environments, however, either

7Note that if multi-user detection techniques are employed, the value of b may be smaller than 1. In this paper we assume a single-user

detector.
8As an alternative to the outage model, we can use the BER model. Treating interference as Gaussian noise, we can use the bit error

probability pb(γ) to determine the probability of receiving a correct packet as

ps|n(γ) = (1− pb(γ))L
(16)

Using powerful long codes, Eq. (16) approaches a step function, thus ps|n(γ) in the BER model approaches that in the outage model [16].
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shadowing or multipath fading is the dominant factor. In what follows, we proceed to investigate the

probability of successful reception under Ricean, Rayleigh and log-normal fading statistics.

IV. FADING SCENARIOS

A. Small-scale Fading: Ricean and Rayleigh models

In propagation environments where the data collection interval T is short compared to the de-correlation

interval of the shadowing, the variation in shadowing can be assumed negligible. The effects of path loss

and shadowing, included in a gain Gi = L(di)e
gi, can thus be pre-compensated at the transmitter by means

of a power control mechanism, i.e., the transmitter adjusts its power to P0/G
2
i . The power control can

be achieved by an occasional downlink beacon which enables the sensor node to estimate the shadowing

coefficient. Thus, only small scale fading remains in model (8).

The distribution of the amplitude of the channel Ri = |hi| in Ricean fading is given by

fRi(ri) = 2(K + 1)ri exp
(

−r2
i (K + 1) − K

)

I0

(

2
√

K(K + 1)ri

)

(19)

where K is the Ricean factor (defined as the ratio of the power in the specular component to the power

in the scattered component), where we assume that the sum power in both components is normalized to

one, and I0(·) is the zero-order modified Bessel function of the first kind. In a Ricean fading channel, the

probability of successful reception, given by Eq. (17), can be evaluated numerically using the distributions

fX(x), fY (y) and fM (z) provided in the Appendix B.

In the special case when there is no LOS component present, i.e., when K = 0, the envelope of hi

follows a Rayleigh distribution. In this case,

fX(x) =
1

P0
e−x/P0 (20)

For the interference model (a) we have that

fY (y) =
1

P0

(y/P0)
n−1

(n − 1)!
e−y/P0 (21)

and for the interference model (b) we have that

fM (z) =
n

P0

(

1 − e−z/P0
)n−1

e−z/P0 (22)
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Defining γ0 = P0/N0B, the probability of successful reception is obtained in closed form as

ps = e−b/γ0e−2Nλ1Tp
b

1+b (23)

and

ps = e−b/γ0e−2Nλ1Tp

(

1 +
N−1
∑

n=1

(2Nλ1Tp)
n

n!

n
∑

i=0

(

n

i

)

(−1)i

1 + i/b

)

(24)

for models (a) and (b), respectively. In a non-fading channel, provided that γ0 ≥ b, ps corresponds to the

probability of no collision [5]. Also, in a noiseless fading channel, the probability of successful reception

reduces to ps = e−2Nλ1Tp
b

b+1 [19].

1) Numerical Examples: We now provide numerical results to demonstrate the impact of small scale

fading on the probability of successful reception. Unless otherwise noted, we employ the following system

parameters in our numerical examples: N = 2500 nodes, L = 1000 bits per packet, λ1 = 10−3 packet/sec

and b = 4.

Fig. 1 shows the probability of successful reception in Rayleigh fading (K = 0) using the two models

(a) and (b) for interference given by Eqs. (23) and (24), respectively. As expected, model (b) predicts a

larger ps than model (a). We note that for our choice of system parameters, the bounds on ps, provided

by models (a) and (b), are tight, and the gap further diminishes as bandwidth is increased. Thus, the

actual ps is approximated relatively accurately by each model. Throughout the rest of the paper, unless

otherwise noted, we use model (a) and design the system for the worst case scenario, keeping in mind

that the actual system performance will be slightly better than assumed by this model.

Fig. 2 shows ps in a Ricean fading channel for K = 3 and K = 6 dB as well as in a Rayleigh fading

channel. In a non-fading channel, when γ0 < b, due to the high noise level, packets are not successfully

detected. We observe that fading enhances the probability of successful reception in two regimes: 1) when

noise is dominant (i.e., when γ0 is small), meaning that most packet losses are caused by noise, and 2)

when noise is small and interference is dominant, i.e., most packet losses are due to collisions. In both

cases, fading boosts the performance by turning some instances of packet loss into successful receptions.

In other scenarios, fading deteriorates the performance.

Finally, Fig. 3 shows ps versus the Rice factor K. We have considered two scenarios: Fig. 3(a) shows

ps for γ0 = 15 dB. In this noise regime, the success rate is lower in fading. Fig. 3(b) shows ps for

γ0 = 30 dB. In this scenario, most packet losses are a result of collisions (and not noise), for which
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fading enhances the success rate. As expected, the Ricean and Rayleigh fading scenarios converge when

K = 0, and as K increases, ps in a Ricean fading channel approaches that in a non-fading channel.

B. Log-normal Shadowing

When the packet duration Tp is long compared to the shadowing time-scale, the receiver can average

out the effects of small-scale fading. Thus the communication system performance will only depend on

the log-normal shadowing, i.e., the slow variations of the mean signal. It is shown that in an urban land

mobile environment, de-correlation of log-normal shadowing occurs on time-intervals on the order of 7-13

seconds [20]. Thus, when Tp is on the order of a few seconds (i.e., when B is small), the small-scale

fading can be averaged out. The pdf of the received power of a packet can then be modeled as

fX(x) =
1√

2πσ2x
e−(logx)2/2σ2

(25)

where σ = 2σg, with σg denoting the standard deviation of gi in Eq. (8). The dB spread of the channel

is defined as σdB = (0.1 log 10)σ, which, in practice, takes on values between 6− 12dB [21]. The pdf of

the interference power in model (b) is determined as

fM(z) = nQ

(− log z

σ

)n−1
1√

2πσ2z
e−(log z)2/2σ2

(26)

In order to determine the pdf of the interference power in model (a), we note that the sum of log-normal

random variables can be approximated as a log-normal, i.e.,

fY (y) =
1

√

2πσ2
nx

e−(logx−mn)2/2σ2
n (27)

The parameters mn and σn depend on the number of interfering packets n, and can be approximated

using several different methods [22]–[24]. Fig. 4 shows the probability of successful reception under

model (b) compared with that under model (a). For model (a) we use the Wilkinson’s, the Fenton’s, and

the Schwartz-Yeh’s methods to determine mn and σn. All of these methods rely on approximating the

sum to be log-normally distributed, but use different approximation techniques. Although theoretically,

model (b) provides an upper-bound on ps, we note from the figure that the resulting approximate ps in

model (a) surpasses that obtained by model (b). Consequently, the approximations required for model (a)

are not of sufficient accuracy to be used in predicting ps. For our analysis in log-normal shadowing, we

thus employ model (b) which does not rely on any approximations.
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In [21], [22], Farley proposes an approximation to the CDF of the sum of log-normal random variables,

without making any assumption on the distribution of the sum, given by

FY (y) ≈
(

1 − Q

(

log y

σ

))n

(28)

It is interesting to note that this expression coincides with the CDF of our model (b),

FZ(z) = Prob(max
i

Xi ≤ z) = (Prob(Xi ≤ z))
n

=

(

1 − Q

(

log z

σ

))n

(29)

where Xi is log-normally distributed according to Eq. (25).

Fig. 5 shows ps for several values of the dB spread, as well as for the non-fading case, for B = 5 kbps.

We observe a similar trend to that of Rayleigh and Ricean fading channels. Since the employed bandwidth

is smaller than the bandwidth in Fig. 2, packet collisions are more likely to occur, thus fading provides

a greater improvement in ps than in systems with large bandwidths.

V. NETWORK DESIGN PRINCIPLES

A. Arrival of Useful Packets

We assume that each node generates packets according to independent Poisson processes at an average

rate of λ1 packets per second. Among the successfully received packets, there may be more than one packet

corresponding to a single node. Considering that the sensing field has not changed, the extra packets, if

successfully received, are redundant. The total number of packets that are used in the reconstruction

process, referred to as the useful packets and denoted by K(λ1, T ), is thus the number of received

packets left after discarding the erroneous and repetitive packets at the end of the observation interval

T . In a given interval, reconstruction will be successful if sufficiently many useful packets are collected.

Otherwise, reconstruction for that particular interval will fail. In what follows we determine the probability

distribution of the number of useful packets K(λ1, T ).

For a particular node, let N1(T ) denote the number of packets generated during T that are successfully

received. Hence, the number of useful (i.e., successfully received non-repeated) packets generated at each

node during T is given by

M(T ) =







0, N1(T ) = 0

1, N1(T ) ≥ 1
(30)
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The probability of receiving a useful packet from a node is pg = Prob{M(T ) = 1}, which can be

expressed as

pg = Prob{N1(T ) ≥ 1} =
m
∑

l=1

(λ1T )l

l!
e−λ1T [1 − (1 − ps)

l] (31)

where each term in the summation is the product of the probability that the node generates l packets during

T , and the probability that one or more of the generated packets are successfully received. Note that since

a node does not interfere with its own packet, the maximum number of packets that are generated by a

single node during T is given by m = b T
Tp
c � 1. With this in mind, the expression (31) is approximated

as pg = 1 − e−psλ1T .

From (30), the effective average number of packets received from a given node during T is M(T ) = pg .

The average effective arrival rate of packets at the FC is thus

λ′ =
Npg

T
=

N

T
(1 − e−psλ1T ) (32)

where ps is the probability of successful reception for a given node, determined for various fading

conditions in Section IV.

The arrival of useful packets then follows a Poisson process with an effective average arrival rate λ′

given by Eq. (32). i.e.,

Prob{K(λ1, T ) = k} =
(λ′T )k

k!
e−λ′T (33)

Using this model, we proceed to determine the sensing rate necessary to achieve a desired performance

requirement.

B. Probability of Sufficient Sensing

We define the probability of sufficient sensing as the probability that the FC collects Ns or more useful

packets during T , and we specify the performance requirement as the minimum probability of sufficient

sensing, Ps. Thus,

Prob{K(λ1, T ) ≥ Ns} ≥ Ps (34)

The condition (34) can equivalently be stated as

α ≥ αs (35)
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where α = λ′T represents the average number of useful packets collected in T and is given by

α = N(1 − e−λ1Tps) (36)

and αs is a design target. For a given Ns and a desired Ps, one can find the corresponding αs numerically

from Eq. (34). For example, assuming N = 2500 and S = 20 (Ns = 2S log N = 313 packets), a required

probability of sufficient sensing Ps = 0.99 results in αs = 355 packets.

C. Design Objective

The design objective is to determine the per-node sensing rate λ1 that is necessary to ensure sufficient

sensing. The condition (35) implies that

λ1s ≤ λ1 ≤ λ1c (37)

where λ1s and λ1c are the solutions to α = αs. We are only interested in those values of λ1 for which

the system is stable, i.e., those values for which increasing λ1 results in an increased number of useful

packets. Thus the desired value of the per-node sensing rate lies in the stable region

λ1s ≤ λ1 ≤ λ1m (38)

where λ1m is the point at which α reaches its maximum value αmax, as noted in Fig. 6. The desired

operating point is now chosen to be at the lower edge of the stable region, i.e., at the minimum per-node

sensing rate λ1s, since a lower per-node sensing rate corresponds to lower energy consumption, as we

will discuss in Section VI.

In a Rayleigh fading channel, using Eq. (23), the per-node sensing rate λ1s can be expressed as

λ1s =
−1

2NTpβ
· W0

(

2NTpβe
b

γ0

T
log
(

1 − αs

N

)

)

(39)

where β = b/(b +1) and W0(·) denotes the principal branch of the Lambert W function.9 In other fading

scenarios, λ1s can be determined numerically for a given αs.

Fig. 7 shows the minimum per-node sensing rate λ1s for Rayleigh, Ricean and non-fading channels. We

notice that fading increases the required sensing rate. Note that if a different αs is required, say because

9The Lambert W function W (x) satisfies the equation W (x)eW (x) = x for x ≥ −1/e. The branch satisfying W (x) ≥ −1 is denoted by

W0(x).
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new nodes are introduced into the network, the per-node sensing rate is easily adjusted. Hence, RACS is

scalable, i.e., it can be tailored to a varying number of nodes.

VI. BANDWIDTH AND ENERGY REQUIREMENTS

A. Bandwidth

To achieve a certain sufficient sensing probability, a minimum bandwidth Bs is required. Let us define

xs =
2NTpβeb/γ0

T
log
(

1 − αs

N

)

(40)

In order to have a valid solution for λ1s, Eq. (39) implies that W0(xs) has to be negative. Thus

−1 ≤ W0(xs) ≤ 0 (41)

The limit W0(xs) = 0 in (41) is achieved when xs = 0, or equivalently, when B → ∞. The other limit,

W (x) = −1, is achieved when xs = −1/e which corresponds to the minimum bandwidth. The minimum

bandwidth Bs in Rayleigh fading is thus obtained in closed form as

Bs =
2NLβ

T
· e(1+b/γ0) · log

(

1

1 − αs/N

)

(42)

In other fading conditions Bs can be determined numerically. Now in the non-fading case, for γ0 ≥ b we

have that

Bs,no fading =
2NL

T
· e · log

(

1

1 − αs/N

)

(43)

Depending on the choice of the modulation and coding (i.e., the parameter b) and the average received

SNR γ0, fading can lower the bandwidth requirements of RACS. Specifically in Rayleigh fading, if

γ0 ≥
b

log
(

b+1
b

) (44)

we observe a saving in the minimum required bandwidth, given by

Bs

Bs,no fading

= βeb/γ0 (45)

This can be seen from Fig. 8, which shows the minimum required bandwidth in Rayleigh, Ricean and

non-fading channels, plotted versus γ0, for γ0 > b/ log
(

b+1
b

)

.
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B. Energy

The total average energy required for one field reconstruction is

E = Nλ1T · PT · Tp (46)

where the first term (Nλ1T ) is the average number of nodes that transmit in one collection interval T and

PT is the average per-node transmission power. Determining the average transmission power PT over the

entire network in general depends on the geometry of the system and the placement of the nodes. When

shadowing is pre-compensated at the transmitter,

PT = P0Edi{L(di)
−2}Eg{e−2g} = P0Γe2σ2

g (47)

where Γ = Edi{L(di)
−2} is the path loss averaged over the nodes’ distances to the FC. When shadowing

is not compensated,

PT = P0Γ (48)

It is worthwhile to note that in order to maintain a fixed received SNR γ0, the transmission power P0 has

to scale with the bandwidth, i.e., P0 = N0Bγ0, resulting in

PT = N0Bγ0 · η (49)

where η = Γ or η = Γe2σ2
g depending on whether the lognormal component of the channel is compensated

at the transmitter.

For a given bandwidth B, the energy consumption in (46) is minimized if one chooses the minimum

sensing rate λ1s(B), i.e.,

Emin(B) = Nλ1s(B)TN0γ0ηL (50)

where we have substituted for PT from Eq. (49). For a fixed bandwidth B, Fig. 9 shows the minimum

sensing rate λ1s plotted versus γ0. We observe that for mid-range γ0 (i.e., γ0 = 15 − 27 dB) the required

λ1s in Rayleigh fading is larger than that in a non-fading channel, hence energy consumption is higher.

For larger γ0 (i.e., γ0 > 27 dB) the required λ1s is lower in fading, consequently, the energy consumption

is lower for this range of γ0.

The energy expenditure Emin in Eq. (50) depends on the transmission bandwidth B through λ1s. We
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note that λ1s(B) is largest when B = Bs and decreases with B, reaching a limiting value λ1s(∞) as

B → ∞. This value is analytically derived as

λ1s(∞) =
eb/γ0

T
log

1

1 − αs/N
(51)

The lower and upper bounds on the energy consumption of RACS in Rayleigh fading are thus determined

as

Elow = lim
B→∞

Emin(B) = NN0γ0ηL · eb/γ0 · log 1

1 − αs/N
(52)

and

Eup = Emin(Bs) = NN0γ0ηL · e1+b/γ0 · log 1

1 − αs/N
(53)

We note that the lower and upper bounds are within a constant gap of size e.

C. Savings With Respect to a Benchmark Network

To demonstrate the advantage of the RACS scheme, we compare the energy and bandwidth requirements

of RACS with those of a conventional (benchmark) design. The benchmark scheme is a TDMA network

in which all N nodes transmit using pre-assigned time slots. The bandwidth and energy requirements of a

TDMA network over an ideal communication channel (i.e., no channel fading or noise) are given by [5]

Bs,TDMA =
NL

T
(54)

and

ETDMA = NTpPT = NN0γ0ηL (55)

In the presence of noise and fading, some of the packets are not successfully received. Let pf denote the

probability of failure for a packet in a TDMA scheme. A common approach to deal with the packet loss is

to employ an automatic repeat request (ARQ) scheme, by which the receiver requests retransmission of a

failed packet. The average number of retransmissions required to ensure a packet is successfully received

is 1
1−pf

. These retransmissions extend the overall collection interval and require extra transmission energy.

Following the outage model, the probability of a failed reception is defined as

pf = Prob

{

X0

N0B
< b

}

(56)
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In a Rayleigh fading channel, this probability is given by

pf = 1 − e−b/γ0 (57)

The bandwidth and energy requirements of the benchmark network using ARQ now increase as

Bs,ARQ =
NL

T (1 − pf )
=

NLeb/γ0

T
(58)

and

EARQ = NTp
PT

1 − pf
= NN0γ0ηLeb/γ0 (59)

Under Rayleigh fading, the saving in energy achieved by RACS, over a benchmark network using ARQ

is given by

GE =
EARQ

Emin(B)
=

eb/γ0

λ1sT
(60)

and the saving in bandwidth is given by

GB =
Bs,ARQ

Bs
=

1

2βe log 1
1−αs/N

. (61)

Note that the ARQ scheme is only one viable option to enable reliable data transmission in a sensor net-

work. To ensure reliability of data transfer, few transport layer protocols are proposed in the literature [25],

[26]. Rather than individually analyzing each scheme, we note that subjecting the conventional TDMA

network to fading and noise inevitably increases the required bandwidth and energy. Thus, we provide a

lower bound on the achievable gains by considering a TDMA network in ideal channel conditions (i.e.,

no fading and no noise).

The lower bound on savings in energy, GE,low, is given by

GE,low =
ETDMA

Emin(B)
=

1

λ1sT
(62)

and the lower bound on savings in bandwidth, GB,low, is given by

GB,low =
Bs,TDMA

Bs
=

1

2βe1+b/γ0 log 1
1−αs/N

(63)

Fig. 10 shows these savings achieved over the benchmark scheme. We notice that considerable gain in

energy– on the order of 20 dB– is achievable. Also, we observe a reduction in the required bandwidth,
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say 20 fold decrease in the bandwidth for a network of size N = 4 × 104.

VII. CONCLUSION

RACS is an integrated sensing and communication architecture that combines the concepts of random

channel access and compressed sensing to achieve energy and bandwidth efficiency. To address realistic

deployments conditions, we took into consideration the impact of channel fading and noise on the design

and performance of a RACS network. We provided analytical expressions for the minimum bandwidth

needed to support the RACS network, as well as the bounds on its energy consumption. For the practical

range of the SNR, say 15-25 dB, the minimum required bandwidth in a fading channel is lower than

in a non-fading channel; however, the energy consumption is higher in fading. More importantly, it was

shown that RACS achieves considerable energy and bandwidth gains over a benchmark TDMA network.

In addition to energy and bandwidth efficiency, RACS affords scalability and robustness against random

(isolated) node failures, since the loss of a packet at random bears no consequence on the random nature

of the packet arrival process. These features constitute an attractive scheme for large scale wireless sensor

networks, deployed for long term monitoring of sparse phenomena (e.g., environmental monitoring).

APPENDIX A

The probability distribution of X0 and In are given by fX and fI , respectively, where

fI =







fY for In = Yn

fM for In = Mn

(64)

We define two new random variables γ = X0

In+N0B
and w = In + N0B. We have that

fγ,w(γ, w) = fX0,In(γw, w −N0B).|J | (65)

where J is the Jacobian of the transformation

J =

∥

∥

∥

∥

∥

∥

∂X0

∂γ
∂X0

∂w

∂In

∂γ
∂In

∂w

∥

∥

∥

∥

∥

∥

(66)

The joint probability distribution of γ and w is now given by

fγ,w(γ, w) = fX(γw)fI(w − N0B)w (67)
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The pdf of γ is then obtained as

fγ(γ) =

∫ ∞

N0B

fγ,w(γ, w)dw (68)

Now averaging ps|n(γ) in Eq. (15) over the statistics of γ, we have that

ps|n =







∫∞

bN0B
fX(x)dx for n = 0

∫∞

b

∫∞

N0B
fX(γw)fI(w − N0B)wdwdγ for n ≥ 1

(69)

APPENDIX B

The distribution of the power of the received signal X0 in Ricean fading is a non-central χ2 with 2

degrees of freedom [27] given by

fX(x) =
1 + K

P0

· e−K−x(1+K)
P0 · I0



2

√

xK(1 + K)

P0



 (70)

The pdf of Yn is a non-central χ2 random variable with 2n degrees of freedom given by

fY (y) =

(

1 + K

P0

)
n+1

2 ( y

nK

)
n−1

2
e
−nK−y(1+K)

P0 In−1



2

√

(1 + K)nKy

P0



 (71)

where In−1(·) is the (n − 1)-order modified Bessel function of the first kind. Finally,

fM(z) = n



1 − Q1





√
2K,

√

2(1 + K)z

P0









n−1

1 + K

P0
· e−K−

z(1+K)
P0 · I0



2

√

zK(1 + K)

P0



 . (72)
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Fig. 1. Probability of successful reception ps versus the bandwidth B for a Rayleigh fading channel. Both interference models (a) and

(b), corresponding to a lower and an upper bound on the actual ps are shown. The gap between the two interference models (a) and (b)

decreases as bandwidth grows.
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Fig. 2. Probability of successful reception versus γ0, for B = 38.4 kbps over a Ricean fading channel with K = 3 and K = 6 dB, as well

as Rayleigh and non-fading channels. (The value of the bandwidth used corresponds to the Mica2 sensors used in environmental monitoring

networks: www.xbow.com).
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Fig. 3. Probability of successful reception ps versus the Rice factor K , for B = 38.4 kbps. As expected, the Ricean and Rayleigh scenarios

converge when K = 0, and as K increases, the probability of successful reception in Ricean fading approaches that of the non-fading

channel.
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Fig. 4. Probability of successful reception ps in log-normal shadowing. For interference model (a), Schwartz and Yeh’s [22], Fenton’s [23]

and Wilkinson’s [24] methods are considered. We note that compared to our model (b), the approximations used in model (a) do not yield

sufficient accuracy to be used in predicting the probability of success. Thus, in case of log-normal shadowing, we abandon model (a) and

use model (b) instead.
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Fig. 5. Probability of successful reception ps in log-normal shadowing with B = 5 kbps. This figure shows that fading improves ps in

both the noise-limited and the interference limited regimes.
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Fig. 10. Savings in energy and bandwidth achieved using RACS (in Rayleigh fading) over a benchmark TDMA scheme. System parameters
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