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ABSTRACT

The problem of minimizing the rank of a matrix subject to linear
equality constraints arises in applications in machine learning, di-
mensionality reduction, and control theory, and is known to be NP-
hard. A popular heuristic minimizes the nuclear norm (sum of the
singular values) of the matrix instead of the rank, and was recently
shown to give an exact solution in several scenarios. In this paper,
we present a new analysis for this heuristic based on a property of the
nullspace of the operator defining the constraints, called the spher-
ical section property. We give conditions for the exact recovery of
all matrices up to a certain rank, and show that these conditions hold
with high probability for operators generated from random Gaus-
sian ensembles. Our analysis provides simpler proofs than existing
isometry-based methods, as well as robust recovery results when the
matrix is not exactly low-rank.

Index Terms— Matrix rank minimization, compressed sensing,
convex optimization

1. INTRODUCTION

The affine rank minimization problem consists of finding a matrix
of minimum rank that satisfies a given system of linear equality con-
straints, i.e.,

minimize rank(X)
subject to A(X) = A(X0),

(1)

where X ∈ Rm×n is the optimization variable, A : Rm×n 7→ Rp

is a linear operator, and X0 is a minimum rank solution. This prob-
lem arises in a diverse set of fields, where notions of order or di-
mension are expressed by means of the rank of a matrix. Applica-
tions include dynamical system identification, collaborative filtering
in machine learning, and Euclidean embedding and dimensionality
reduction (see [1] and references therein). Problem (1) is in general
NP-hard. A popular convex heuristic [2] replaces rank with the nu-
clear norm (also known as the Schatten 1-norm or trace norm) of
the matrix, denoted by ‖X‖∗ =

∑r
i σi(X) where σi(X) are the

singular values and r = rank(X). The heuristic solves the convex
problem

minimize ‖X‖∗
subject to A(X) = A(X0),

(2)

which can be cast as a semidefinite program and solved efficiently.
Note that if the matrixX is diagonal, (1) reduces to finding the spars-
est vector in the feasible set, and (2) reduces to its well-known `1
relaxation.

Until recently, despite its practical success, no theoretical guar-
antees for this heuristic were available. The paper [1] gave the

∗Research funded in part by NSF CAREER grant ECCS-0847077.

first theoretical result by extending analysis tools from the area of
Compressed Sensing. It was shown that the heuristic succeeds in
finding the minimum rank matrix if the linear operator defining the
constraints satisfies a certain Restricted Isometry Property (RIP).
Several classes of random operators satisfy this property with high
probability, if the number of constraints is large enough. Under
the RIP, the minimum rank solution is unique, which means it is
possible to “recover” an unknown low-rank matrix X0 given a set
of linear constraints (or measurements) on the matrix. The analysis
in [1] guarantees recovery of matrices up to rank r from a number
of measurements on the order of r(m+ n) log(mn).

Very recent work (that came out after the submission of this
paper) by Candes et al [3] shows that for Gaussian ensembles, the
number of measurements can scale as max(m,n)r which is shown
to be nearly minimax optimal. In light of this recent work, it seems
that the RIP is a powerful tool that can be used to prove optimal
bounds. However, it still has certain drawbacks (also pointed out
in [4] for the vector case). First, the constraints can equivalently be
expressed as GA(X) = GA(X0) for any invertible map G so the
recovery condition should be invariant to this operation; whereas the
RIP is not. In fact, the ability to recover X0 should only depend
on the nullspace of A, denoted by Null(A). Further, it is not easy
to extend the RIP analysis to incorporate additional constraints on
the matrix being recovered (for example positive-definiteness). An-
other related work that also uses a nullspace-based approach is the
paper [5] which gives a necessary and sufficient recovery condition.
However, this condition requires a much more involved analysis, and
more importantly, it has not been shown to have robustness proper-
ties with respect to approximately low rank matrices.

In this paper, we present a new analysis for the nuclear norm
heuristic based on the spherical section property of the nullspace.
In section 2.1 we derive deterministic (sufficient) conditions under
which exact low rank matrix recovery is possible: if the nullspace
of A satisfies this condition, any matrix X0 up to a certain rank can
be recovered. Section 2.2 shows the recovery is robust by giving an
error bound for the case where X0 is only approximately low rank,
which is a more realistic assumption in practice. The error is only a
constant factor times the best possible low-rank approximation error.
Section 3 presents a probabilistic analysis for exact recovery. We ob-
tain conditions, as a function of the matrix dimensions and rank and
the number of constraints, such that our conditions for success hold
with high probability for operators generated from random Gaussian
ensembles.

The spherical section parameter ∆, defined below, is (inversely)
related to a well-known distortion measure for subspaces of Rn ap-
pearing in dimensionality reduction, approximation theory, and com-
pressed sensing (see [6, 4] and references therein). Our definition



extends that idea to subspaces of matrices. As we show in the next
section, this property essentially ensures that the subspace Null(A)
does not include matrices with small rank.

Definition We say that Null(A) satisfies the ∆ spherical section
property if ‖Z‖∗‖Z‖F

≥
√

∆ for all Z ∈ Null(A), Z 6= 0.

2. EXACT RECOVERY UNDER THE SPHERICAL
SECTION ASSUMPTION

In this section, we discuss conditions on Null(A) that ensure success
of the nuclear norm heuristic for any matrix up to a certain rank. The
following theorem has two parts: the first describes conditions under
which there is a unique low-rank matrix satisfying the constraints
and the second describes conditions under which this low-rank ma-
trix can be recovered by minimizing the nuclear norm.

Theorem 2.1 Suppose Null(A) has the ∆-spherical section prop-
erty. Let X0 ∈ Rm×n, m ≤ n, X0 6= 0. Then

(a) X0 is the unique solution to (1) if rank(X0) < ∆
2

.

(b) If rank(X0) < min

(
3m
4
−
√

9m2

16
− m∆

4
,m/2

)
, X0 is

the unique solution to (2). A simpler sufficient condition for
the above is rank(X0) < ∆

6
.

Proof (a) Suppose there is a solution Y 6= X0 to A(Y ) = A(X0)
with rank(Y ) ≤ rank(X0). Let Z = X0 − Y and note that Z ∈
Null(A). Using the spherical section property and standard norm
inequalities we have

‖Z‖∗ ≥
√

∆‖Z‖F ≥
√

∆/
√

rank(Z) ‖Z‖∗ ,

thus rank(Z) ≥ ∆. However, rank(Z) ≤ rank(X0) + rank(Y )
≤ 2 rank(X0). Since rank(X0) < ∆

2
, we have a contradiction,

hence X0 is the unique solution.
(b) Suppose there is a Y 6= X0 such that ‖Y ‖∗ ≤ ‖X0‖∗ and

A(Y ) = A(X0). Let X0 = U

[
Σ 0
0 0

]
V T be the SVD of X0

where Σ ∈ Rr×r is diagonal. LetZ = X0−Y , and Z̄ = UTZV =[
Z̄11 Z̄12

Z̄21 Z̄22

]
. Then

‖X0‖∗ ≥ ‖X0 + Z‖∗

=

∥∥∥∥[ Σ 0
0 0

]
+

[
Z̄11 Z̄12

Z̄21 Z̄22

]∥∥∥∥
∗

≥
∥∥Σ + Z̄11

∥∥
∗ +

∥∥Z̄22

∥∥
∗ ([5] Lemma 3.2)

‖Σ‖∗ ≥ ‖Σ‖∗ −
∥∥Z̄11

∥∥
∗ +

∥∥Z̄22

∥∥
∗

which yields
∥∥Z̄22

∥∥
∗ ≤

∥∥Z̄11

∥∥
∗. Now consider the problem

maximize ‖Z‖∗
‖Z‖F

subject to ‖Z22‖∗ ≤ ‖Z11‖∗ ,

where Z =

[
Z11 Z12

Z21 Z22

]
, Z11 ∈ Rr×r , Z22 ∈ R(m−r)×(n−r)

Z12 ∈ R(m−r)×r , and Z21 ∈ Rr×(n−r). It can be shown
[7] that the optimal value of this program is bounded above by√

2r(3m− 2r)/
√
m if r ≤ m/2. By the spherical section prop-

erty of Null(A), we have

∆ ≤ 2r(3m− 2r)

m
=⇒ r ≥ 3m

4
−
√

9m2

16
− m∆

4
.

Thus, if r < 3m
4
−
√

9m2

16
− m∆

4
, we have a contradiction, hence

X0 is the unique optimum of the problem (2).

The next theorem extends the above result to the case where
X0 is only approximately low-rank. It shows that in this case, the
heuristic finds a matrix that is close toX0 within a constant factor of
the error achieved by the best rank-k approximation to X0.

Theorem 2.2 Suppose Null(A) has the ∆-spherical section prop-
erty. Let X0 ∈ Rm×n, m ≤ n, X0 6= 0, and let Xk

0 be the best
rank-k approximation of X0. If X∗ is the solution to (2), then

‖X∗ −X0‖∗ ≤ c
∥∥∥X0 −Xk

0

∥∥∥
∗

provided c > 2 and k < min
(
m(c−2)
2(c+2)

, ∆(c−2)2

6c2

)
.

Proof Let X0 = U

[
Σ 0
0 Σ′

]
V T be the SVD of X0 where Σ

consists of the largest k singular values of X0. Let Z = −X0 +X∗

and Z̄ = UTZV , and note that ‖X0‖∗ ≥ ‖X
∗‖∗. Since norms are

preserved by orthogonal transformations,∥∥∥∥[ Σ 0
0 Σ′

]∥∥∥∥
∗
≥
∥∥∥∥[ Σ + Z̄11 Z̄12

Z̄21 Σ′ + Z̄22

]∥∥∥∥
∗

‖Σ‖∗ +
∥∥Σ′
∥∥
∗ ≥

∥∥Σ + Z̄11

∥∥
∗ +

∥∥Σ′ + Z̄22

∥∥
∗

≥ ‖Σ‖∗ −
∥∥Z̄11

∥∥
∗ +

∥∥Z̄22

∥∥
∗ −

∥∥Σ′
∥∥
∗

Thus we get 2 ‖Σ′‖∗ +
∥∥Z̄11

∥∥
∗ ≥

∥∥Z̄22

∥∥
∗. Now, ‖Σ′‖∗ =∥∥X0 −Xk

0

∥∥
∗ by definition. Suppose that c ‖Σ′‖∗ < ‖Z‖∗, other-

wise we are done. Then by the trivial upper bound,

c
∥∥Σ′
∥∥
∗ <

∥∥Z̄11

∥∥
∗ +

∥∥Z̄22

∥∥
∗ +

∥∥Z̄12

∥∥
∗ +

∥∥Z̄21

∥∥
∗ ,

so that

(η + 1)
∥∥Z̄11

∥∥
∗ + η(

∥∥Z̄12

∥∥
∗ +

∥∥Z̄21

∥∥
∗) > (1− η)

∥∥Z̄22

∥∥
∗ ,

where η = 2/c. Now consider the problem

maximize ‖Z‖∗
‖Z‖F

subject to 1+η
1−η ‖Z11‖∗ + η

1−η (‖Z12‖∗ + ‖Z21‖∗) > ‖Z22‖∗ .

We can show [7] that the optimal value is bounded above by

√
k√

− η2+2η
2

+ (1+2η)2

4(1.5− k
m

)

,

provided that k < m(1−η)
2(1+η)

. If
√

∆ is greater than this value, we have
a contradiction, hence ‖X0 −X∗‖∗ ≤ c

∥∥X0 −Xk
0

∥∥
∗. However,

this condition is hard to interpret, and it can be easily shown that the
simpler condition k < min

(
(1−η)
2(1+η)

m, ∆(1−η)2

6

)
suffices to ensure

the one above.

Letting c → ∞ when X0 = Xk
0 , we recover the result in theo-

rem 2.1.



3. PROBABILISTIC ANALYSIS OF THE NULLSPACE
CONDITION

In this section, we show that if the matrix representation of A has
iid zero-mean, unit-variance Gaussian (i.e., N (0, 1)) entries, the
nullspace condition described above holds with high probability. In
practice, in many rank minimization problems, it is not possible to
choose A to have completely random entries, since the application
dictate that A should have certain structure. For example, in the
matrix completion problem [8], A is an operator that just picks en-
tries of the matrix and cannot take arbitrary linear combinations of
the entries. However, there are some applications (such as quantum
tomography [9]) where this is still a reasonable assumption. Also, as
has happened in the vector case, we hope that analyzing the simpler
case of the Gaussian ensemble will pave the way for more sophisti-
cated analyses of structured A.

Further, recent results based on RIP [10] suggest that some
results for more structured A can be derived from general results.
They show that although RIP does not holds for all low-rank matri-
ces, it holds for a large class of low-rank matrices satisfying certain
incoherence properties and that matrices generated from certain
random models have these incoherence properties with high proba-
bility. This seems like a promising way to extend general conditions
to handle more specific and structured cases.

Assume without loss of generality that γ ≤ 1. The nullspace of
random operatorA can be characterized [5] as consisting of matrices

Z =

M∑
k=1

vkG
k,

whereGk ∈ Rγn×n, M = γn2−p have iidN (0, 1) entries. Thus,
our aim reduces to showing that the probability

P

(
inf
v 6=0

∥∥∑
i viG

i
∥∥
∗∥∥∑

i viG
i
∥∥
F

≤ β

)
=

P

(
inf

v:‖v‖2=1

∥∥∥∥∥∑
i

viG
i

∥∥∥∥∥
∗

− β

∥∥∥∥∥∑
i

viG
i

∥∥∥∥∥
F

≤ 0

)
is very small, where the equality above follows because the ratio of
norms is invariant to scaling of v, so that we can fix ‖v‖2 = 1. Let
σ = max

M∈Rγn×n,‖M‖2=1
‖M‖F =

√
γn, and

Ψ(γ) =

∫ (1+
√
γ)2

(1−√γ)2

√
(z − s1)(s2 − z)

z
dz.

Lemma 3.1 Let Gi ∈ Rγn×n, i = 1, 2, . . . ,M, have iid N (0, 1)
entries. Then there exists a constant c∗ > 0 such that

E

[
inf
‖v‖2=1

∥∥∥∥∥
M∑
i=1

viG
i

∥∥∥∥∥
∗

− β

∥∥∥∥∥
M∑
i=1

viG
i

∥∥∥∥∥
F

]
≥

c∗Ψ(γ)n3/2 − n√γβ − (σ + β)
√
γn2 − p (3)

Proof Consider the space of Rγn×n matrices with the inner product
〈A,B〉 = tr(ATB). We first rewrite the expression variationally
using the dual norm:

inf
‖v‖2=1

sup
‖Z‖2=1

inf
‖Y ‖F=1

〈
M∑
i=1

viG
i, Z − βY

〉

We use corollary 3.13 from [11] by constructing an auxiliary Gaus-
sian process to help bound the desired probability. Let n ∈ R, n ∼
N (0, 1), g ∈ RM , gi ∼ N (0, 1). Define

PL(v, Z, Y ) =

〈
M∑
i=1

viG
i, Z − βY

〉
+ n(σ + β)

PR(v, Z, Y ) = 〈G0, Z − βY 〉+ (σ + β) 〈g, v〉

PL and PR are standard Gaussian processes. By simple alge-
braic manipulations and using the Cauchy-Schwarz and norm in-
equalities, we can show that E[PL(v, Z, Y )PL(v′, Y ′, Z′)] ≥
E[PR(v, Z, Y )PR(v′, Y ′, Z′)] with equality if v = v′, Y = Y ′.
Thus, by corollary 3.13 from [11] and the compactness argument
from appendix A.3 in [5], we have

E[ min
‖v‖2=1,‖Y ‖F=1

max
‖Z‖2=1

PL(v, Y, Z)] ≥

E[ min
‖v‖2=1,‖Y ‖F=1

max
‖Z‖2=1

PR(v, Y, Z)] =

E[‖G0‖∗]− βE[‖G0‖F ]− (σ + β)E[‖g‖2] =

From standard results on the limiting spectral distributions of ran-
dom Gaussian matrices [12], we know that the expected value of the
nuclear norm of a γn× n random Gaussian matrix is given asymp-
totically by

Ψ(γ)n3/2 + o(n3/2)

Thus, there exists a constant c∗ > 0 such that E[‖G0‖]∗ ≥
c∗Ψ(γ)n3/2. Also E[‖G0‖F ] ≤

√
E[‖G0‖2F ] = n

√
γ. Thus,

we get the following lower bound on the expectation:

c∗Ψ(γ)n3/2 − nβ√γ − (σ + β)
√
γn2 − p.

We also use the following lemma, a fairly elementary proof can be
found in [7].

Lemma 3.2 The function

f(G1, G, . . . , GM ) = inf
‖v‖2=1

∥∥∥∥∥∑
i

viG
i

∥∥∥∥∥
∗

− β

∥∥∥∥∥∑
i

viG
i

∥∥∥∥∥
F

is Lipschitz with respect to the l2 norm∥∥∥(G1, G2, . . . , GM
)∥∥∥ = (

M∑
i=1

∥∥∥Gi∥∥∥2

F
)1/2

with constant σ + β.

3.1. Recovery results

Theorem 3.3 If A : Rγn×n 7→ Rp is a random linear operator
whose matrix representation has iidN (0, 1) entries then if p = µn2,
X0 is the unique optimal solution to (2) for all X0 of rank up to α

6
n

with probability at least

1− exp

(
− κ2n2

2(1 +
√
α)2

)
provided that c∗Ψ(γ)−√αγ − κ > 0 and

µ > γ −
(
c∗Ψ(γ)−√αγ − κ

1 +
√
α

)2

.



Fig. 1.

Proof An L-Lipschitz function of Gaussian random variables satis-
fies the following concentration bound [13]:

P [f(X)− E[f(X)] ≤ −t] ≤ exp

(
− t2

2L2

)
for any t > 0. Choose t = c∗Ψ(γ)n3/2 + o(n3/2) − n

√
γβ −

(σ + β)
√
γn2 − p. Let β =

√
αn, p = µn2. Then we have

t = (c∗Ψ(γ) − √αγ − (1 +
√
α)
√
γ − µ)n3/2. To ensure that

t > 0, we must have c∗Ψ(γ)−√αγ − κ > 0,

µ > γ −
(
c∗Ψ(γ)−√αγ − κ

1 +
√
α

)2

,

and using (3.1), PZ:A(Z)=0[f(Z) ≤ 0] ≤ e
(
− κ2n2

2(1+
√
α)2

)
.

Note that it has been observed that even for moderately sized square
matrices (n ≥ 40), the asymptotic estimates are fairly accurate [5],
so that we can take c∗ ≈ 1. Thus, plugging in values, we can recover
ranks up to 0.0001n with approximately 0.28n2 measurements. We
have plotted results of number of measurements versus maximum
rank recoverable in Figure 1 for a fixed probability of failure of
0.001.

4. CONCLUSIONS AND FUTURE WORK

We presented an analysis of the nuclear norm heuristic based on the
spherical section property of the nullspace ofA. IfA is picked from
the random Gaussian ensemble, we showed that it satisfies the de-
sired property with high probability provided there are enough mea-
surements. We obtained bounds that demonstrate explicit tradeoffs
between the rank ofX0, its aspect ratio γ, the measurements ratio µ,
and the recovery probability. These kind of bounds are referred to as
Strong Bounds in [5], as they guarantee that the heuristic succeeds
in recovering matrices up to some rank, no matter what the optimal
solution is (in fact, the mere existence of such bounds is very inter-
esting from a theoretical viewpoint).

Future research will aim at obtaining better probabilistic bounds,
extending to non-Gaussian operators, and analyzing other scaling
regimes that may be useful in practice. In addition, we will pursue
tighter results for the special case of positive semidefinite low-rank
recovery, where numerical examples suggest recovery is possible
for a far larger region than general matrices. Another open issue is
whether efficient relaxations can be developed for testing the spheri-
cal section property given a specific A, along the lines of the results
in [14].

It is also interesting to analyze operators A that have both ran-
dom and structured features, arising naturally in applications such
as Hankel system identification, low-dimensional Euclidean embed-
ding, and low-rank matrix completion [1].
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