
Clustering by Left-Stochastic Matrix Factorization

Raman Arora rmnarora@gmail.com
Maya R. Gupta gupta@gmail.com
Amol Kapila akapila@u.washington.edu
Maryam Fazel mfazel@u.washington.edu

University of Washington, Seattle, WA 98103, USA

Abstract

We propose clustering samples given their
pairwise similarities by factorizing the sim-
ilarity matrix into the product of a clus-
ter probability matrix and its transpose.
We propose a rotation-based algorithm to
compute this left-stochastic decomposition
(LSD). Theoretical results link the LSD clus-
tering method to a soft kernel k-means clus-
tering, give conditions for when the factor-
ization and clustering are unique, and pro-
vide error bounds. Experimental results on
simulated and real similarity datasets show
that the proposed method reliably provides
accurate clusterings.

1. Introduction

We propose a new non-negative matrix factorization
(NNMF) model that produces a probabilistic cluster-
ing of samples given a matrix of similarities between
the samples. The interpretation of non-negative fac-
tors of matrices as describing different parts of data
was first given by (Paatero & Tapper, 1994) and (Lee
& Seung, 1999). In this paper, we investigate a con-
strained NNMF problem, where the factors can be
interpreted as encoding the probability of each data
point belonging to different clusters of the data.

The paper is organized as follows. First, we discuss
related work in clustering by matrix factorization in
Section 1.1. Then we introduce the proposed left-
stochastic decomposition (LSD) clustering formulation
in Section 1.2. We provide a theoretical foundation for
LSD in Section 2. We exploit the geometric structure
present in the problem to provide a rotation-based al-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

gorithm in Section 3. Experimental results are pre-
sented in Section 4.

1.1. Related Work in Matrix Factorization

Some clustering objective functions can be written as
matrix factorization objectives. Let n feature vectors
be stacked into a feature-vector matrix X ∈ Rd×n.
Consider the model X ≈ FGT , where F ∈ Rd×k can
be interpreted as a matrix with k cluster prototypes
as its columns, and G ∈ Rn×k is all zeros except for
one (appropriately scaled) positive entry per row that
indicates the nearest cluster prototype. The k-means
clustering objective follows this model with squared
error, and can be expressed as (Ding et al., 2005):

arg min
F,GTG=I

G≥0

‖X − FGT ‖2F , (1)

where ‖ · ‖F is the Frobenius norm, and inequality
G ≥ 0 is component-wise. This follows because the
combined constraints G ≥ 0 and GTG = I force each
row of G to have only one positive element. It is
straightforward to show that the minimizer of (1) oc-
curs at F ∗ = XG, so that (1) is equivalent to (Ding
et al., 2005; Li & Ding, 2006):

arg min
GTG=I
G≥0

‖XTX −GGT ‖2F . (2)

Replacing XTX in (2) with a kernel matrix K results
in the same minimizer as the kernel k-means objective
(Ding et al., 2005; Li & Ding, 2006):

arg min
GTG=I
G≥0

‖K −GGT ‖2F . (3)

It has been shown that normalized-cut spectral clus-
tering (Shi & Malik, 2000) also attempts to minimize
an equivalent objective (3) as kernel k-means, but for
a kernel that is a normalized version of the input ker-
nel (Ding et al., 2005). Similarly, probabilistic la-
tent semantic indexing (PLSI) (Hofmann, 1999) can

LSD Clustering

be formulated using the matrix factorization model
X ≈ FGT , where the approximation is in terms of
relative entropy (Li & Ding, 2006).

Ding et al. (Ding et al., 2010; 2005) explored compu-
tationally simpler variants of the kernel k-means ob-
jective by removing the problematic constraint in (3)
that GTG = I, with the hope that the solutions would
still have one dominant entry per row of G, which
they take as the indicator of cluster membership. One
such variant, termed convex NMF (Ding et al., 2010),
restricts the columns of F (the cluster centroids) to
be convex combinations of the columns of X. An-
other variant, cluster NMF (Ding et al., 2010), solves
arg minG≥0 ‖X −XGGT ‖2F .

1.2. LSD Clustering

We propose explicitly factorizing a matrix K ∈ Rn×n

to produce probabilities that each of the n samples be-
longs to each of k clusters. We require only that K be
symmetric and that its top k eigenvalues be positive;
we refer to such matrices in this paper as similarity
matrices. Note that a similarity matrix need not be
PSD, it can be an indefinite kernel matrix (Chen et al.,
2009). If the input does not satisfy these requirements
it must be modified before use with this method. For
example, if the input is a graph adjacency matrix A
with zero diagonal, one could replace the diagonal by
each node’s degree, or replace A by A + αI for some
constant α and the identity matrix I, or some other
spectral modification. See (Chen et al., 2009) for fur-
ther discussion of such modifications.

Given a similarity matrix K, we estimate the cluster
probability matrix to be any P ∗ that solves:

arg min
P≥0

PT 1k=1n

‖cK − PTP‖F , (4)

where c ∈ R is a scaling factor that depends only on
K and is defined in Proposition 2, and 1k is a k × 1
vector of all ones. Note that a solution P ∗ to the above
optimization problem is an approximate left-stochastic
decomposition of the matrix cK, which inspires the
following terminology:

LSD Clustering: A solution P ∗ to (4) is a clus-
ter probability matrix, from which we form the LSD
clustering by assigning the ith sample to cluster j∗ if
Pij∗ > Pij for all j 6= j∗.

LSDable: We call K LSDable if the minimum of (4)
is zero.

1.3. Related Kernel Definitions

Some kernel definitions are related to our idealization
that a given similarity matrix is usefully modeled as
cK ≈ PTP . Cristianini et al. (Cristianini et al., 2001)
defined the ideal kernel K∗ to be Kij = 1 if and only
if Xi and Xj are from the same class. The Fisher
kernel (Jaakkola & Haussler, 1998) is defined as Kij =
UT
i I−1Uj , where I is the Fisher information and each

Ui is a function of the Fisher score, computed from a
generative model and data Xi and Xj .

2. Theoretical Results

To provide intuition for our algorithmic approach and
the LSD clustering method, we present some theoreti-
cal results; all proofs are in the supplemental material.

The proposed LSD clustering objective (4) is the same
as the objective (3), except that we constrain P to
be left-stochastic, factorize a scaled version of K, and
do not constrain PTP = I. The LSD clustering can
be interpreted as a soft kernel k-means clustering, as
follows:

Proposition 1 (Soft Kernel K-means) Suppose
K is LSDable, and let Kij = φ(Xi)

Tφ(Xj) for some
mapping φ : Rd×n → Rd1×n and some feature-vector
matrix X ∈ Rd×n, then the minimizer P ∗ of the LSD
objective (4) also minimizes the following soft kernel
k-means objective:

arg min
F∈Rd1×k

P≥0,PT 1k=1n

‖φ(X)− FP‖2F . (5)

Next, Theorem 1 states that there will be multiple
left-stochastic factors P , which are related by rotations
about the normal to the probability simplex (which in-
cludes permuting the rows, that is, changing the clus-
ter labels):

Theorem 1 (Factors of K Related by Rotation)
Suppose K is LSDable such that K = PTP . Then,
(a) for any matrix M ∈ Rk×n s.t. K = MTM , there
is a unique orthogonal k × k matrix R s.t. M = RP .
(b) for any matrix P̂ ∈ Rk×n s.t. P̂ ≥ 0, P̂T1k = 1n

and K = P̂T P̂ , there is a unique orthogonal k × k
matrix Ru s.t. P̂ = RuP and Ru~u = ~u, where
~u = 1

k [1, . . . , 1]T is normal to the plane containing the
probability simplex.
(c) a sufficient condition for P to be unique (up to
a permutation of rows), is that there exist an m ×m
sub-matrix in K which is a permutation of the identity
matrix Im, where m ≥ (bk2 c+ 1).

While there may be many LSDs of a givenK, they may

LSD Clustering

all result in the same LSD clustering. The following
theorem states that for k = 2, the LSD clustering is
unique, and for k = 3, it gives tight conditions for
uniqueness of the LSD clustering. The key idea of this
theorem for k = 3 is illustrated in Fig. 1.

Theorem 2 (Uniqueness of an LSD Clustering)
For k = 2, the LSD clustering is unique (up to a
permutation of the labels). For k = 3, let αc (αac) be
the maximum angle of clockwise (anti-clockwise) rota-
tion about normal to the simplex that does not rotate
any of the columns of P off the simplex; let βc (βac)
be the minimum angle of clockwise (anti-clockwise)
rotation that changes the clustering. Then, if αc < βc
or if αac < βac, the LSD clustering is unique, up to a
permutation of labels.

α
c

α
ac

β
c

β
ac

Figure 1. Illustration of conditions for uniqueness of the
LSD clustering. The columns of P ∗ are shown as points
on the probability simplex for k = 3 and n = 15. The
points correspond to three clusters are marked by ‘o’s, ‘+’s,
and ‘x’s. The Y-shaped thick gray lines show the cluster
decision regions. Rotating the columns of P ∗ about the
center of the simplex ~u results in a different LSD solution
P̂ = RuP such that K = P̂T P̂ . One can rotate clock-
wise by at most angle βc (and counter-clockwise βac) be-
fore any point crosses a cluster decision boundary. Note
that rotating P ∗ by more than αc degrees clockwise (or
αac degrees anti-clockwise) pushes the points out of the
probability simplex - no longer a legitimate LSD, but ro-
tating by 120 degrees is a legitimate LSD that corresponds
to a re-labeling of the clusters. As specified in Theorem 2,
a sufficient condition for the LSD clustering to be unique
(up to re-labeling) is if αc < βc and αac < βac.

Our next result uses perturbation theory (Stewart,
1998) to give an error bound on LSD estimation for
a perturbed LSDable matrix.

Theorem 3 (Perturbation Error Bound)
Suppose K is LSDable such that K = PTP . Let
K̃ = K + W , where W is a perturbation matrix
with bounded Frobenius norm, ‖W‖F ≤ ε. Then

‖K − P̂T P̂‖F ≤ 2ε, where P̂ minimizes (4) for K̃.
Furthermore, if ‖W‖F is o(λ̃k) where λ̃k, is the kth

largest eigenvalue of K̃, then

‖P −RP̂‖F ≤ ε

(
1 + C1

√
k

|λ̃k|

(
||K 1

2 ||F + ε
))

, (6)

where R is an orthogonal matrix and C1 is a constant.

The error bound in (6) involves three terms: the
first term captures the perturbation of the eigenval-
ues and scales linearly with ε; the second term in-
volves ‖K 1

2 ‖F =
√

tr(K) due to the coupling between
the eigenvectors of the original matrix K and the per-
turbed eigenvectors as well as perturbed eigenvalues;
and the third term proportional to ε2 is due to the
perturbed eigenvectors and perturbed eigenvalues. As
expected, ||P −RP̂ ||F → 0 as ε→ 0, relating the LSD
to the true factor with a rotation, which is consistent
with Theorem 1.

Proposition 2 (Scaling Factor) Given a similar-
ity matrix K, the scaling factor c∗ that solves

arg min
c∈R+

min
P∈[0,1]k×n

PT 1k=1n

‖cK − PTP‖2F

is given by c∗ =
‖(MMT)−1M1n‖22

k , where K = MTM
is any decomposition of K.

3. Computing the LSD of K

The LSD problem stated in (4) is a nonconvex op-
timization in P , and a completely positive (CP) fac-
torization with an additional left-stochasticity con-
straint. CP problems are a subset of non-negative
matrix factorization (NNMF) problems. Algorithms
to solve NNMF can be applied here, such as Sei-
denberg’s exponential-time quantifier elimination ap-
proach (Cohen & Rothblum, 1993); a multiplicative
weights update (Lee & Seung, 2000); a greedy method
using rank-one downdates (Biggs et al., 2008), or gra-
dient descent (Paatero, 1999; Hoyer, 2004; Berry et al.,
2007). The LSD problem could also be re-formulated
and an alternating minimization approach used, as in
(Paatero & Tapper, 1994; Paatero, 1997). As is typical
with nonconvex problems, no known polynomial-time
method provides theoretical guarantees or conditions
under which a correct solution is found.

We propose a rotation-based algorithm to solve (4)
that exploits the geometry of this problem. We believe
this is a new approach that may also be applicable
to more general CP and NNMF problems. First, to
build the reader’s intuition, we present an overview of

LSD Clustering

the algorithm solving (4). Full algorithmic details are
deferred to Section 3.2.

3.1. Algorithm Overview

We overview the algorithm steps for an LSDable K.
Full algorithm details, including projections needed if
K is not LSDable, are given in Section 3.2. See Fig. 2
for a pictorial description of these steps for k = 3.

Step 1: Scale the similarity matrix K by c ∈ R
(given in Proposition 2) to produce K ′ = cK.

Step 2: Factor K ′ = MTM , for some M ∈ Rk×n.

Step 3: Rotate M to form Q ∈ Rk×n, whose col-
umn vectors all lie in the hyperplane that contains the
probability simplex (see Fig. 2(a)).

Step 4: Rotate Q about the vector ~u = 1
k [1, . . . , 1]T

to form the left-stochastic solution P ∗, whose column
vectors all lie in the probability simplex (see Fig. 2(b)).

3.2. Full LSD Algorithm

Here we give more explicit details for each of the algo-
rithm steps given in Sec. 3.1.

Step 1: Scale the similarity matrix K ′ = cK by c
given in Proposition 2.

Step 2a: Let Λ1:k ∈ Rk×k be the diagonal matrix of
the top k eigenvalues of K ′ and V1:k ∈ Rn×k be the
corresponding eigenvectors.

Step 2b: Set M = Λ
1
2

1:kV
T
1:k.

Step 2c: Compute vector ~m = (MMT)−1M1n,
which is normal to the least-squares hyperplane fit
to the n columns of M obtained by solving for ~m =
arg minm̂∈Rk ‖MT m̂− 1n‖22.

Step 2d: Project the columns of M onto the hyper-
plane normal to ~m that is 1/

√
k units away; i.e., for the

jth column compute M̃j = Mj +
(
~mTMj − 1√

k

)
~m
‖~m‖ .

Let M̃ = [M̃1, . . . , M̃n].

Step 3a: Compute a k × k rotation matrix R such
that R ~m

‖~m‖ = ~u
‖~u‖ , where ~u = 1

k [1, 1, . . . , 1]T , as fol-

lows: Define ~v = ~u
‖~u‖ −

(
~uT ~m
‖~u‖ ‖~m‖

)
~m
‖~m‖ . Extend(

~m
‖~m‖ ,

~v
‖~v‖

)
to a basis U for Rk, using Gram-Schmidt

orthogonalization. Define a k× k Givens rotation ma-

trix RG such that (RG)11 = (RG)22 =
(

~uT ~m
‖~u‖ ‖~m‖

)
,

(RG)21 = −(RG)12 =
(

~uT~v
‖~u‖ ‖~v‖

)
and for all i, j > 2,

set (RG)ij = 1 if i = j and zero otherwise. Then
R = URGU

T is a k × k rotation matrix such that
R ~m
‖~m‖ = ~u

‖~u‖ .

Step 3b: Set Q = RM̃.

Step 4a: Find a rotation R∗u about ~u such that the
projection bR∗uQc of R∗uQ onto the probability simplex
minimizes the factorization error to K ′:

R∗u = arg min
R:R~u=~u

||K ′ − bRQcT bRQc||F , (7)

such that R is a rotation matrix.

Note that for k = 2, no rotation is needed, and
P ∗ = bQc. For k = 3 and k = 4, minimizing the
objective in (7) reduces to a simple optimization over
a set of parameters, as discussed in Sec. 3.3. For gen-
eral k > 4, any global optimization could be used; we
use a gradient-based approach detailed in Section 3.4.
Projection onto the probability simplex can be found
using the algorithm given in (Michelot, 1986).

Step 4b: Output P ∗ = bR∗uQc.

3.3. Further Details: Step 4a for k = 3 and
k = 4

For k ≥ 3, the rotation that leaves ~u = 1
k [1, . . . , 1]T

fixed can be described as the composition of three
rotations: (a) a rotation Rue that takes ~u to ~e =
1√
k

[0, 0, . . . , 0, 1]T , followed by (b) a rotation Re about

~e, followed by (c) the rotation RT
ue that takes ~e back

to ~u. In other words the rotation matrix can be de-
composed as Ru = RT

ueReRue, where Rue is a fixed
matrix and the optimization is over the rotation Re.
The rotation matrix Re has the following structure:

Re =

[
Rk−1 0

0T 1

]
, (8)

where Rk−1 is a (k−1)× (k−1) rotation matrix. This
reduction in the dimensionality of the parameter space
is due to the constraint R~u = ~u. Thus for k = 3, the
optimization is over planar rotation matrices that can
be parameterized by the angle of rotation, θ ∈ [0, 2π),
thereby reducing the problem to a 1-D optimization
problem.

For k = 4, the rotation matrix Re is a 3×3 matrix that
can be parameterized by ZYZ Euler angles α, β, γ, i.e.
angles of rotation about Z, Y and Z axis respectively:

LSD Clustering

(a) Rotate M to the simplex hyperplane (b) Rotate to fit the simplex

Figure 2. The proposed rotation-based LSD algorithm for an example where k = 3. Fig. 2a shows the columns of M
from Step 2, where K′ = MTM . The columns of M correspond to points in Rk, shown here as green circles in the
negative orthant. If K is LSDable, the green circles would lie on a hyperplane. We scale each column of M so that the
least-squares fit of a hyperplane to columns of M is 1/

√
k units away from the origin (i.e., the distance of the probability

simplex from the origin). We then project columns of M onto this hyperplane, mapping the green circles to the blue
circles. The normal to this best-fit hyperplane is first rotated to the vector u = 1

k
[1, . . . , 1]T , which is normal to the

probability simplex; mapping the blue circles to the red circles, which are the columns of Q in Step 3. Then, as shown
in Fig. 2b, we rotate the columns of Q about the normal ~u to best fit the points inside the probability simplex (some
projection onto the simplex may be needed), mapping the red circles to black crosses. The black crosses are the columns
of the solution P ∗.

Re(α, β, γ) = RZ(γ)RY (β)RZ(α), where α, γ ∈ [0, 2π)
and β ∈ [0, π]. Therefore, the optimization in (7) re-
duces to a search over three parameters.

3.4. Further Details: Step 4a for k > 4

For higher k, we used a gradient descent for Step 4a
based on (Arora, 2009) as follows. Let J(R) denote
the objective function in (7). Initialize the search with
Ru = I and R∗u = I, J∗ = J(R∗u), and choose a small
step size η = .25. Randomly choose a column (RuQ)j
that lies outside the simplex, and repeat the following
steps for a fixed number of passes (or until all columns
of (RuQ) lie inside the simplex).

1. Find the projection b(RuQ)jc of (RuQ)j onto the
simplex (Michelot, 1986). Rotate (RuQ)j and
b(RuQ)jc about the origin to lie in the plane nor-
mal to ~e, and then take the first k−1 components
of the rotated vectors: ~x = (Rue(RuQ)j)1:k−1,
~y = (Rueb(RuQ)jc)1:k−1.

2. Compute the gradient of the quadratic loss func-

tion L(Rk−1)=
∥∥∥Rk−1

~x
‖~x‖ −

~y
‖~y‖

∥∥∥2
2

with respect to

the rotation matrix Rk−1, evaluated at Rk−1 = I:

∇L = 2

(
~x

‖~x‖
− ~y

‖~y‖

)(
~x

‖~x‖

)T

.

3. Compute the rotation matrix Rk−1 that takes a
small step (of size η) along the geodesic connect-
ing ~x

‖~x‖ and ~y
‖~y‖ : Rk−1 = exp

(
−η(∇L−∇TL)

)
.

Note that since the gradient is a rank one ma-
trix, the matrix exponential reduces to a simple
quadratic form (Arora, 2009).

4. Form Re using Rk−1 as in (8), and update the
rotation matrix Ru =

(
RT

ueReRue

)
Ru.

5. If J(Ru) < J∗, update R∗u = Ru and J∗ = J(R∗u).

4. Experimental Results

We compare clustering algorithms that take a
pairwise-similarity matrix K as input. We present
two Gaussian simulations, two simulations where the
clusters are defined by manifolds, and real similarity
datasets from (Chen et al., 2009).

Every time the k-means algorithm is used it is run
with 20 random initializations (which are each given
the Matlab default of 100 maximum iterations), and
the result that minimizes the within-cluster scatter is
used. K-means is implemented with Matlab’s kmeans

routine, except for the kernel k-means which we im-
plemented. The convex NMF routine used NMFlib
(Grindlay). For normalized spectral clustering, we

LSD Clustering

500 1000 1500 2000
0

0.5

1

1.5

2

x 10
4

Number of samples (n)

R
u
n
ti
m
es

(i
n
se
co

n
d
s)

LSD
Kernel KMeans
Convex NMF
Unnormalized Spec
Normalized Spec
Sing Link
Comp Link
Avg Link

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Cluster overlap parameter (σ2)

F
ra

ct
io
n
in
co

rr
ec
tl
y
cl
u
st
er
ed

Figure 3. Runtimes (top) and results (bottom) for the two-
cluster Gaussian simulation.

used the Ng-Jordan-Weiss version (Ng et al., 2002).

4.1. Gaussian Cluster Simulations

We ran two Gaussian cluster simulations for k = 2 and
k = 3 clusters. The first simulation generated samples
iid from k = 2 Gaussians N ([0 0]T , [.5σ2 0; 0 4σ2]) and
N ([5 0]T , [4σ2 0; 0 .5σ2]). Then the RBF kernel matrix
with bandwidth one was computed. For each value of
σ2, we averaged results for 1000 randomly generated
datasets, each of which consisted of 100 samples from
each cluster.

The second simulation used the same two Gaussian
clusters with σ2 = 3, plus a third cluster generated iid

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra
ct
io
n
in
co

rr
ec
tl
y
cl
u
st
er
ed

LSD
Kernel KMeans
Convex NMF
Unnormalized Spec
Normalized Spec
Sing Link
Comp Link
Avg Link

Figure 4. Results for three-cluster Gaussian simulation.

from N ([2 4]T , [3 0; 0 3]). We averaged results for 1000
randomly generated datasets, each of which consisted
of 50 samples from each cluster.

Runtimes are shown for increasing n for the two-
cluster simulation in 3. The spectral clusterings, con-
vex NMF, and LSD clustering all have comparable
runtimes, and are much faster than the linkages or ker-
nel k-means. Theoretically, we hypothesize that the
LSD clustering computational complexity is roughly
the same as spectral clustering, as both will be domi-
nated by the need to compute k eigenvectors.

Results for the two-cluster simulation are shown in Fig.
3. LSD shows similar performance to kernel k-means
and convex NMF, with LSD performing slightly better
for most values of σ2. The three-cluster simulation,
shown in Fig. 4, shows similar performance.

4.2. Manifold Simulations

We simulate k = 2 clusters lying on two one-
dimensional manifolds in two-dimensional space, as
shown in Fig. 5. For each sample, the first feature
x[1] is drawn iid from a standard normal, and the sec-
ond feature is x[1]2 if the point is from the first cluster,
or arctan(x[1])− b for some b ∈ R if the point is from
the second cluster. Fifty samples are randomly gener-
ated for each cluster, and results were averaged for 250
randomly generated datasets for each value of the clus-
ter separation b. We clustered based on two kernels.
The first kernel was the RBF kernel with bandwidth
1. The second kernel was a nearest-neighbor kernel
K = A + AT , where A(xi, xj) = 1 if xi is one of the
five nearest neighbors of xj (includes itself as a neigh-
bor) and A(xi, xj) = 0 otherwise.

Results are shown in Fig. 6. Given the RBF ker-
nel, LSD clustering and convex NMF outperform the

LSD Clustering

−2 0 2 4
−3

−2

−1

0

1

2

3

y=x2

y=arctan(x)−2

Figure 5. One realization of the n = 100 samples in the
manifold simulation with separation b = 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

Separation (b)

F
ra
ct
io
n
in
co

rr
ec
tl
y
cl
u
st
er
ed

LSD
Kernel KMeans
Convex NMF
Unnormalized Spec
Normalized Spec
Sing Link
Comp Link
Avg Link

RBF Kernel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

Separation (b)

F
ra
ct
io
n
in
co

rr
ec
tl
y
cl
u
st
er
ed

Nearest-neighbor Kernel

Figure 6. Results for the manifold simulation.

other methods, followed by kernel k-means and com-
plete linkage. Given the nearest-neighbor kernel, LSD
clustering, single-linkage, and average-linkage perform
best, followed by the spectral clusterings, with convex
NMF and kernel k-means doing roughly 10% worse
than LSD.

4.3. Real Similarity Data

We also compared the clustering methods on ten real
similarity datasets used in (Chen et al., 2009); these
datasets are provided as a pairwise matrix K, and
the similarity definitions include human judgement,
Smith-Waterman distance, and purchasing trends; see
(Chen et al., 2009) for more details. These datasets
have class labels for all samples, which were used as
the ground truth to compute the errors shown in Table
4.3. While no one clustering method clearly outshines
all of the others in Table 4.3, the proposed LSD clus-
tering is ranked first for four of the ten datasets, and
only for the Internet Ads dataset does it rank poorly
(7th of 8).

5. Discussion

In this paper, we proposed a left-stochastic decompo-
sition of a similarity matrix to produce cluster prob-
ability estimates. Compared to seven other clustering
methods given the same similarity matrix as input,
the LSD clustering reliably performed well across the
different simulations and real benchmark datasets.

To compute the LSD, we proposed a rotation-based
algorithm for the matrix factorization that may be
an effective approach to solving other NNMF and CP
problems. Even though the algorithm uses only the
top k eigenvectors, the perturbation error bound of
Theorem 3 still holds because the assumptions on the
perturbation matrix ensures that there is a correspon-
dence between the top k eigenvectors of the original
and perturbed matrices.

One notable advantage of the LSD clustering algo-
rithm is that it is deterministic for k = 2; that is,
the clustering only requires computing the top two
eigenvectors, a deterministic rotation to the positive
orthant, and projecting to the probability simplex.
This is in contrast to methods like kernel k-means
and spectral clustering, which are usually implemented
with multiple random initializations of k-means. As a
consequence, LSD clustering can provide a determin-
istic top-down binary clustering tree, a topic for fu-
ture research. Overall, the runtime for LSD clustering
can be expected to be similar to spectral clustering.
For k = 3, we presented theoretical conditions for the

LSD Clustering

Table 1. Clustering Error Rate on Similarity Datasets

Amazon Aural Internet Patrol Protein Voting Yeast Yeast Yeast Yeast
Binary Sonar Ads Pfam SW SW SW

7-12 5-7 5-12 7-12
of clusters k: 2 2 2 8 4 2 2 2 2 2
LSD .39 .14 .35 .44 .37 .10 .36 .28 .09 .10
Kernel K-Means .33 .18 .29 .75 .28 .10 .49 .39 .10 .17
Convex NMF .32 .11 .48 .79 .55 .10 .38 .31 .10 .10
Unnorm. Spec .39 .49 .16 .51 .62 .09 .48 .50 .11 .50
Norm. Spec .39 .13 .16 .79 .11 .10 .38 .31 .14 .10
Sing. Link .39 .49 .16 .79 .66 .38 .50 .50 .50 .50
Comp. Link .39 .47 .16 .71 .40 .04 .34 .39 .18 .33
Avg. Link .39 .41 .16 .57 .60 .05 .47 .40 .10 .15

uniqueness of an LSD clustering, which we believe may
be satisfied in practice. We hypothesize that analogous
conditions exist for higher k.

References

Arora, R. On learning rotations. NIPS, 2009.

Berry, M. W., Browne, M., Langville, A. N., Pauca,
V. P., and Plemmons, R. J. Algorithms and applica-
tions for approximate nonnegative matrix factoriza-
tion. Computational Statistics and Data Analysis,
52(1):155 – 173, 2007.

Biggs, M., Ghodsi, A., and Vavasis, S. Nonnegative
matrix factorization via rank-one downdate. ICML,
2008.

Chen, Y., Garcia, E. K., Gupta, M. R., Cazzanti, L.,
and Rahimi, A. Similarity-based classification: Con-
cepts and algorithms. JMLR, 2009.

Cohen, J. E. and Rothblum, U. G. Nonnegative ranks,
decompositions, and factorizations of nonnegative
matrices. Linear Algebra and Its Applications, 190:
149–168, 1993.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and
Kandola, J. On kernel target alignment. NIPS, 2001.

Ding, C., He, X., and Simon, H. D. On the equiva-
lence of nonnegative matrix factorization and spec-
tral clustering. SIAM Conf. Data Mining, 2005.

Ding, C., Li, T., and Jordan, M. I. Convex and semi-
nonnegative matrix factorizations. IEEE Trans.
PAMI, 32, 2010.

Grindlay, G. NMFlib. www.ee.columbia.edu/ grindlay.

Hofmann, T. Probabilistic latent semantic analysis.
UAI, 1999.

Hoyer, P. O. Non-negative matrix factorization with
sparseness constraints. JMLR, 5:1457–1469, 2004.

Jaakkola, T. and Haussler, D. Exploiting generative
models in discriminative classifiers. NIPS, 1998.

Lee, D. D. and Seung, H. S. Learning the parts of ob-
jects by non-negative matrix factorization. Nature,
401:788–791, 1999.

Lee, D. D. and Seung, H. S. Algorithms for non-
negative matrix factorization. NIPS, 2000.

Li, T. and Ding, C. The relationships among various
nonnegative matrix factorization methods for clus-
tering. In Proc. Intl. Conf. Data Mining, 2006.

Michelot, C. A finite algorithm for finding the projec-
tion of a point onto the canonical simplex of Rn. J.
Opt. Theory Appl., 50:195–200, 1986.

Ng, A., Jordan, M., and Weiss, Y. On spectral clus-
tering: Analysis and an algorithm. NIPS, 2002.

Paatero, P. Least-squares formulation of robust non-
negative factor analysis. Chemometrics and Intell.
Lab. Sys., 37:23 – 35, 1997.

Paatero, P. The multilinear engine: A table-driven,
least squares program for solving multilinear prob-
lems, including the n-way parallel factor analysis
model. J. Comp. Graph. Stat., 8(4):854–888, 1999.

Paatero, P. and Tapper, U. Positive matrix factor-
ization: A non-negative factor model with optimal
utilization of error estimates of data values. Envi-
ronmetrics, 5:111–126, 1994.

Shi, J. and Malik, J. Normalized cuts and image seg-
mentation. IEEE Trans. PAMI, 22(8), 2000.

Stewart, G. W. Matrix Algorithms, Volume I: Basic
Decompositions. SIAM, 1998.

