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Abstract—Inspired by the theory of compressed sensing and under certain conditions, exact signal recovery is possibl
employing random channel access, we propose a distributed with a small number of random measurements [3][4]. Authors
energy-efficient sensor network scheme denoted by Random;, 15 are the first to introduce the application of comprebsse

Access Compressed Sensing (RACS). The proposed scheme is .
suitable for Ipong-term deplo%/ngent o% large punFc)JIerwater net- SENsSINg In networks. In [5][6] and [7] the authors used phase

works, in which saving energy and bandwidth is of crucial Coherent transmission of randomly-weighted data from @ens
importance. During each frame, a randomly chosen subset of nodes to the FC over a dedicated multiple-access channel,
nodes participate in the sensing process, then share the channeltg form distributed projections of data onto an appropriate
;Z?l?et;amgyc;ﬁg?zt Ichuee f&%iéﬂecgr?ttgrreTgf chnfuonr{‘ fgf‘iﬁses’basis at the FC. Note that in this approach sensors need to
packet loss that occurs due to collisions, the network design be _perfec_tly synchronized Wh'_Ch is a difficult assumption to
employs the concept of sufficient sensing probability. With this Maintain in underwater acoustic networks. Reference [6} pr
probability, sufficiently many data packets — as required for field poses compressive cooperative spatial mapping using enobil
?hconggégigghb;;zd ?glggflpae;ie; ksell?eSI{:r?"l . \?vrr?ilteo :r(; f?:“:ir\]/e sensors based on a small set of observations. In [9] ultra-
e B . T . )
a simplg and distribl?ted sgheme which eliminates the n%eé/ fgr ?;:apg\(l)vn’ir Irréfsrzisot;u;t:(;earr:gvr\lll:[ggllﬂgi(l)snal\(/:lf'x(ezved tt)y e:nﬁ)f[g/io
scheduling. ; P ; . " pro (_)CO' n [10]
adaptive compressed sensing is applied to wireless sensor
networks. Initially, a random set of readings are obsentedea
FC. If the accuracy level is not satisfactory a projectiootae
is obtained and the data is updated. The authors deterngéne th
projection vector so as to optimize the information gain per
energy expenditure. A number of references, such as [12], [1

Underwater sensor networks are envisioned as consistiggy [13] focus on phenomena that are sparse in the spatial
of a number of static sensor nodes and/or vehicles that gmain e.g., event detection or tracking of multiple tésge
deployed over a region of interest to monitor a physical phgy [12] authors consider a decentralized network (without
nomenon. Applications of such networks are in oceanogeapliic), where active nodes exchange measurements locally. The
data collection (e.g., temperature, salinity, zonal andigne aythors formulate sparse recovery as a decentralized nsnse
ional currents), field monitoring and disaster prevent®(Z].  gptimization problem and show that their iterative algurit
Wireless gcoustlc communlcatlop is the p.hyS|caI IayermetJn' converges to a globally optimal solution. In [13] sensors ar
ogy used in underwater networking. In this paper, we comsidgacking the location of an audio source, transmitting rthei
a static area network, where sensor nodes are anchored torg}fdings to the FC. In this setting, the signals appeariegett

bottom of the ocean and deployed for long periods of timgenser are jointly sparse. The authors show that a very small
Each sensor node communicates its observations of the figlghper of measurements can achieve the signal detection goa
to a central node, referred to as the Fuglon (?enter (FC)_aﬂgthors in [14] and [15] also consider spatial mapping using
the FC reconstructs the map of_ the physwal field. Bandwidthopile sensors (robots), [15] proposes an efficient way to
and battery power are severely limited in underwater net@(or yoconstruct natural fields using random-walk-based samgpli
gnd hence energy and bandwidth efficiency are of particulgry compressed sensing. Finally, in [16] capacity bounds of
Importance. an on-off random multiple access channel are determined by
Exploiting the fact that most natural phenomena are comyansforming the problem to an equivalent compressed sgnsi
pressible (sparse) in an appropriate basis, we employ COFFObIem and using sparsity detection algorithms.
pressed sensing to reduce the energy consumption of the, {his work, we consider an underwater sensor network
network. The theory of compressed sensing establishes thal measures a physical phenomenon for geographical and
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I. INTRODUCTION



during which measurements are transmitted to the FC; and
finally (iii) a reconstruction process, during which sparse
recovery algorithms are used to recover the measured field at
the FC. In the sampling procedure, inspired by the theory of
compressed sensing, we employ random sensing, while for the
channel access phase, we propose a simple random access. As
in any random access, the data packets of two or more sensors
may collide at the FC. The key idea is that random collisions
(which are inevitable) do not change the random nature of the
observations provided to the FC. Since the FC only needs to
receive some, and not all the sensor packets, it can simply
disregard the collisions. The FC obtains an incomplete &et o
measurements (due to both random sensing and losses due
to random access) from which it reconstructs the field using
compressed sensing techniques. Note, however, that i orde
to achieve successful reconstruction, a certain minimum-nu
ber of measurements— as determined by compressed sen,gj&gl.
theory— are required at the FC. We thus need to compensate
for the collision losses by initially selecting the numbdr o
participating sensors to be greater than the minimum numbeng period of time. Such long-term monitoring is crucial in
of required packets. We provide an analytical framework falimate monitoring or environmental surveillance apgiicas.
system design based on the sufficient sensing probabilityln framen, the sensor node located at positian;) in the
Note that our method is completely distributed, requiringetwork grid acquires a measurement(n) = u(z;,yi, n),
no coordination among nodes. It also requires no downlinkhere z; and y; denote the sensor's position in the 2-
feedback from the FC to the sensor nodes. dimensional space. The measurements are encoded, aldng wit

The paper is organized as follows: In Section Il we introdudfe sensor’s location tag, into a data packetlobits, which
the network model. In Section Ill, we outline the systens then modulated and transmitted to the FC. Upon reception,
model and introduce the RACS scheme. Section IV providése FC demodulates the signal and extracts the measurement
an analytical model for RACS based on which we proposeiformation from which it reconstructs the map of the field.
network design methodology. In Section V we provide perfoAssuming that the system has bandwidthand that each
mance assessment of our scheme and compare the energysandor transmits at a bit-rate equal to the bandwidth, thlkegha
bandwidth usage of RACS with that of a conventional networkluration isT, = L/B. Let D, denote the distance of node
In Section VI using a real data example, we demonstrai®m the FC, wheré < {1,..., N}. The propagation delay of
the performance of the RACS scheme. Finally, we provideensori's packet is thus given by; = % wherec = 1500
concluding remarks in Section VII. meters/sec is the nominal speed of sound.

Notation We denote by, the p-norm of a vecto/ra; = In this paper, we consider a frame-based (slotted) transmis

T . N A\ P sion, i.e., the FC collects the incoming data packets dugin

[xl’.""xN] defme.d by lizlle, = (2 lzl”) — . 1F frame of lengtHl". At the end of the framge, the IE)C reconstruc?s
Visakxl matrlx_, vec(V) denotes thek! X 1 VEC"  the field based on the data packets received during that frame
tor formed by stacking the columns of ma7§r|Xf, €., Once the reconstruction is performed, the frame is dischrde
vee(V) = [vn ... o ... vup ... vk [T We de- 504 £e waits for a new set of data in the next frame. In order

note by B(NV, p) the Binomial probability distribution of the ( jetermine a reasonable frame duratiBpwe consider the
number of successes in a sequencéVofndependent exper- correlation properties of the physical proces&:, y,t). Let

iments, each of which has a success probapﬁit)FinaIIy, us define the coherence tin%g,; of a process as the time-
A ®@ B denotes the Kronecker product of matric&sandB. g ;ration over which the process almost de-correlates ietim

i.e., the process is slowly varying durifig,;. A conventional
Il. SYSTEM MODEL design choice is thus to obtain a new map of the figld, y, )

Consider a grid network shown in Fig. 1, which consists Gt least once perop. ) )
N = IJ sensors uniformly distributed on a two-dimensional The map of the process over the entire sensor network is
plane, with.J andI sensors in: andy directions, respectively. denoted byU(n)

The sensors are separated by distaricen each direction. wit(n) ... wuig(n)

Let us define thecoverage aread of a network as the total
area covered by the sensors, in our grid netwdrk= Nd2.

The network is deployed to monitor a physical phenomenon,
u(z,y,t), (e.g., temperature, pressure, current, etc.) over a

\J

An area sensor network consisting/8f= I.J sensor nodes.

_ _ urr(n) ... urg(n)
INote that the results of this paper can be easily extendechriee+t . . .
dimensional (volume) networks as well. The data gathering procedure in a network consists of



two phases: a) sensing and b) communication. The sens
phase can be (i) deterministic (conventional case), in lwhii

case all the sensors sample the physical phenomenon; or T,

random (compressed), in which case only a random sub —= ‘

of sensor nodes participate in sensing. The nodes that h ] # 5 time at FC
taken part in sensing now need to access the channel KT KT+ T

order to communicate their measurements to the FC. Multipl
access schemes are generally divided into two categori
() deterministic access methods, e.g., TDMA, FDMA, an
CDMA; and (ii) random access methods, e.g., Aloha, CSM/
and CSMA/CD. In what follows we will consider both types
of access for use with compressed sensing, while we consi
deterministic sensing as a benchmark for comparison. kKT+T,—T,

time at node 2

A. Conventional Network (Benchmark)

As a benchmark design, we consider a sensor network with
deterministic sensing and deterministic access, i.e.,ache F'QMZA'
frame, all N nodes conduct measurements and transmit their
measurement packets to the FC using a deterministic nmedtipl
access scheme. We assume that the conventional network .
employs standard TDMA. This requires scheduling at ea urier transform. One can show that alm8s of the en-

node such that packets from different nodes arrive back-lg-gy of the signal is contained ifi = 13 Fourier coefficients.

back at the FC. Fig. 2 depicts the required scheduling psoce ased on the the(?[r);l of F:ompressCied sgns!?g, i s signal haz
The received data at the FC at framedenoted byy (n), is a sparse representation in some domain, it can be recovere

given by from a small subset of random measurements [3], [4]. Thus

taking into account the sparsity of natural phenomena, we ca
y(n) =u(n)+z(n) (2) reduce the number of measurements required for field regover
rom N to someM < N.

Let us assume that all the nodes know the beginning time of

The scheduling required at each node in the benchmas& of

f
where,u(n) = vec(U(n)) and z(n) represents the sensing

noise which arises due to the limitations in the sensingagevi ¢ t the FC. At f bset of . lected
The communication noise translates into bit errors, i.te.,"i1 rame at the L. rame, a SUbSEL of Sensors IS selecte

does not appear as an additive term in Eq. (2). In the preS&I]trandom to co?ducttrr]neasuremen.ts. %y ratr:dqmlt);] SE|eCtt'.n9|]
analysis we neglect the communication noise. In TDMA, o £NSors, We periorm the compression directly In the spatia

frame of data containd’ packets; therefore]’ = N'T,. The omain. If we denote by (n) the observations of a random
network needs updated measur1ements edery T, }p The subset of M sensors, the received data vector at the FC can
con-+

total number of nodes that can be deployed in a conventiorpzﬁ expressed as

network is thus upper-bounded by y(n) = R(n)u(n) + z(n) 4)
N < Teon (3) WwhereR(n) is anM x N random selection matrix for frame
Ty n, consisting of M rows of the identity matrix selected

where T, is the property of the monitored field. Conseuniformly at random. Noting thaui(n) = W¥v(n), where

quently, the coverage area of a conventional network igdichi ¥ = (W ;@ W)~ ! is the Inverse Discrete Fourier Transform

to A = Toond?/T,. (IDFT) matrix, Eq. (4) can be re-written in terms of the sgars
vectorv(n) as

[Il. RANDOM SENSING y(n) = R(n)¥v(n) + z(n) 5)

Most natural phenomena have a compressible (sparse) rep- . . . .
resentation in the spatial frequency domain, and we thmefjﬁe IDFT matrix ¥ is referred to as the representation basis,

assume that the vector of Fourier coefficients G{n) is which is the basis over whichi(n) has a sparse representation.
sparse. Specifically, iV (n) is the two-dimensional spatial 10 reconstruct the field at the end of the framethe FC
discrete Fourier transform ofJ(n), it can be shown that first tries to recover the vector(n) as accurately as possible,
v(n) = (W; ® Wp)u(n), wherev(n) = vec(V(n)) and then uses it to construct the m&f(n). Given the observations
W is the matrix of discrete Fourier transform coefficientd (), the random selection patteRi(n) and the sparsity basis
(Wi[m, k] = e=927mk/1) Thus, in our case, the Fourier®, and in the absence of sensing noie) — which is the
representation(n) is assumed to be sparse. Note thaparse ¢@se We will be focusing on — reconstruction can be performed
signal is a signal that can be represented by a small numbef¥fSolving the following minimization problem:

non-zero coefﬂuen_ts, compared to the dimension of thmg”minimize‘;(n) [¥(n)le, subject to R(n)T¥(n) = y(n). (6)
As an example, Fig. 3 shows the zonal currents recorded at

the Southern California bight, and their correspondingmdite The theory of compressed sensing (specifically, [17]) state
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50 : : : : Fig. 4. The frame structure in the R/D scheme. The FC broadthsts
selected subset, the nodes then schedule their transnsission
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3 ] their measurements back to the FC using a multiple-access
%0 ] method of choice. Since the FC broadcasts the selectedtsubse
» ] all sensors learn when a frame will start, which nodes will

be transmitting and their transmission order. Therefohe, t
network can simply use deterministic access (TDMA) with
M slots as shown in Fig. 4. All transmitting nodes organize
10 1 their transmissions such that they are received at the FC in
s ] the requested order. Thus, a frame of duratiorconsists of
the round-trip broadcast time followed by packets of data,
i.e, T = 2Timaz + MT,, WhereT,,e = Lmax;eqr, . Ny Di
denotes the longest propagation delay in the network.

The required number of observation§; = CSlog N
Fig. 3. (a) Zonal current (m/s) at a latitude 82.5°, plotted versus the depends on the value of the constdhta theoretical upper-
Engiﬁudf[23§-O5r:ﬁ2ﬁ;iggtnggsbémﬁ :rgggtrudeotflft:]hee ;Orr:gls%?ngizrg spatiabound for which is offered in [17]. However, one can find
2(())zrilgrcorﬁ?asined .inS = 13 Fourier coefficige)r/us. This dgta is accessiae ath empirically .as the n,umber, °_f measureme,n,ts for which
http://ourocean.jpl.nasa.gov the reconstruction error is negligible. The empirical \alof

N, is typically much smaller than the one obtained using
the theoretical bounds. Here, we illustrate findiNg in our
that as long as the number of observations, picked unifoanlysetting for the following example set of system parameters:
random, is greater thatV, = C'Slog N, then with very high I =50, J = 20, andS = 10. We study the recovery of these
probability the solution to the convex optimization prabl¢s) signals from different numbers of random measurements in
is unique and is equal te(n). Here C is a constant that is a noise-free setting. Fig. 5 shows the average reconsiructi
independent ofV and S (see [17] for the details). error plotted versus the number of measurements. As seen in

We thus conclude that in our wireless network settinghe figure, forA > 57 full recovery is attained. Hence, for
it suffices to ensure that the FC collects at leAst pack- the given system parameters, a reasonable choiceVfois
ets picked uniformly at random from different sensors tdetermined to beV, = 57.
guarantee accurate reconstruction of the field with venh hig
probability.
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(b) amplitude of the Fourier transform of the field.

B. Distributed Random Sensing / Random Access (R/R)

i ) L As discussed in Section IlI-A, centralized random sensing

A. Centralized Random Sensing / Deterministic Access (R/r@quires scheduling among sensors by downlink transnrissio

We focus on the centralized selection to illustrate thieom the FC. In order to eliminate the need for downlink
random sensing concept before moving on to the distributédnsmissions at each frame, we decentralize the process of
selection in the next section. In this scheme, the FC pickelecting a random subset of nodes. This can be done by
a random subset oM sensors for sampling and broadcastequipping the sensors with independent, identically ithisted
the selected set of nodes in each frame. In order to obt&ernoulli random generators, i.e., by having each senss to
perfect reconstruction, it has to be thit > N,. The selected an independent coin. At the beginning of a frame, each node
nodes then sample the physical process,y,t) and send determines whether it will participate in the sensing pssce
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Fig. 5. For a network of sizeV = 1000 and Ns;,,, = 100 randomly Fig. 6.  Average number of collision-free packel§ versusp; system
generated signals with sparsity= 10, the average normalized reconstructionparameters aréV = 1000, 7" = 120 s and7}, = 0.2 s.
error is plotted versus the number of measurem@dtsThe required number
of measurements to obtain perfect reconstructioiVisx 57 as shown in the
figure.
(with probability p) or stays inactive (with probability
1 — p) during that frame.

which occurs with some probability. The total number of Step 2. If nodei is selected for sensing, it measures the

sensors selected for sampling in a framé, is now a random physical quantity of interest and encodes it into a
variable with a Binomial distribution)/ ~ B(N, p). packet of bits. The sensor’s location is also included
The principle of distributed sensing is thus very similar in the packet.

to that of the centralized sensing from the viewpoint optep 3. Node picks a uniformly-distributed dela; for the
providing a random subset of observations. Its advantage is transmission of its packet. . .
in the fact that it eliminates the need for duplexing, i.eStep 4. FC collects the packets received during one frame.

no downlink transmission is required from the FC. However, If a collision is detected, FC discards the colliding
deterministic access is no longer applicable, because a nod packets.

has no knowledge of the other nodes that transmit, asdep 5. Atthe end of the frame, FC uses the correctly received
hence cannot schedule its transmissidhwe couple random packets to reconstruct the data usihgminimization
sensor selection with random channel access this problem is  (or other sparse recovery methods [18]). We assume
eliminated. Furthermore, employing random access elite;a that packets which do not collide are correctly re-
the overhead broadcast time and the next data frame starts ~ ceived.

immediately. Let K denote the number of correctly received packets at

In random access, each senspicks a random transmissionthe FC during one frame. Fig. 6 shows the average number
delay 6; uniformly in [0,7 — T,]. In this scheme there is of collision-free received packetd versus the per-node
possibility of collision. A collision is said to have occed if sensing probability, for an example network oV = 1000,
packets from different sensors overlap in time at the FC. Thg = 0.2 s andT" = 120 s. As seen in the figure, there is
key idea in RACS is to let the FC simply discard the collidingin interplay between the number of measurements and the
packets. This approach is motivated by the compressedggnsiumber of collisions. While increasing results in a greater
theory and the fact that the FC does not cateich specific number of measurementd/, and could thus improve the
sensors are selected, as long as (i) the selected subsesisnchaccuracy of reconstruction, it also increases the proiabil
uniformly at random, and (ii) there are sufficiently manyf collision and after a certain point may even decrease the
collision-free packets received to allow for the reconstian number of useful packets received at the FC. Hence, there
of the field. Therefore, in a RACS scheme, once a collisiasxists a trade-off in choosing the value jaf We will outline
is detected the FC simply discards the colliding packets atite probability distribution ofi’ analytically in Section IV.
reconstructs the field using the rest. Note that the randomjn designing a RACS network, the underlying figure of merit
reduction matrixR(n) in Eq. (5) now includes both the effectsis the reconstruction quality. The reconstruction erros ta
of random selection and of random collisions. be within an acceptable range in order to obtain a certain

The proposed frame-based RACS is summarized below:reconstruction quality. In addition, among the set of desig

Step 1. At the beginning of a frame, sensor nadesses a Parameters that meet the required reconstruction quaiity,

coin to determine whether it participates in sensingoal is to choose the ones that minimize the average energy
consumption of the sensor network. Fig. 7(a) shows the

20ne could in principle reserva’ slots, but since only a subset of sensor&VErage nolrmal'zed re_ClonStrUCt'on error plotted versapar-
transmit such a scheme would be wasteful. node sensing probability, for randomly generated sparse



. necessary.

In what follows, we analyze the distribution function of
the number of correct packets at the FC. We then study the
conditions under which this random variable yields a siéfiti
number of measurementd], = C'Slog N. These conditions
in turn imply a per-nodesensing probabilityp.

not enough measurements

—

too.many. collisions.

s
O‘

L

e
O‘

&

A. Packet Reception Model

Given a sensing probability, the average packet generation

rate per node is given by, = T—pr' Thus the aggregate

arrival rate of packets at the FC % = —-“2-. In order to

- K/\/\_\/\’/, . determine the probability of collision, we note that the ketc

R arrival process resembles a Poisson process. Accordingly,
_ model the probability of no collision as the probability thme
(a) reconstruction error packet arrives in an interval of lengfti,,

average normalized reconstruction error
=
O‘

H
O‘
»

perfect reconstruction

1000 T T T T T T T T T T 72’11115’17:77
Prob{no collision} = e v @)

900 .

The probability that a packet is successfully received at th
FC within a frame duratior?’ is thus given by

800 T

7001

NpT,
2 P

i q= pei T—-Tp (8)

We now conjecture thaf{ has a binomial distribution with
7 parameterN and probabilityg, i.e.,

600

500

400

300

average normalized energy consumption

200

] P (k) = Prob{K =k} = B(N,q) = (JZ) =N (9)

perfect reconstruction region

T | where ¢ is given by Eq. (8). To empirically verify the con-
% o1 o0z 03 04 05 06 o7 08 03 1 jecture, we conduct simulation experiments. Fig. 8(a) show
P . .
the histogram of the number of correctly received packets
(b) average power consumption obtained from simulation. In this figure, thex (k) obtained

_ , _ from measurements is compared with that of the hypothesized
Fig. 7. Average normalized reconstruction error versad the correspond-

ing energy consumption. Within the region where perfect nstaiction is mOdeIB(N’ Q) Whereq IS given by Eq. (8)' and an estimated
achievable we choose the smallpsas this choice results in the least energymodel B(N, g..;) where

consumption. N, )
_ Mo Limi k()
Udé )—u(n)|| et N
. . . a(n)—u(n)l|e. . .
data. The normalized error is defined Tatle, where  \yhere k(i) is the number of successfully received packets

u(n) is the actual data and(n) is the recovered data. Asin the i-th simulation run andV,;,, is the total number of
noted in the figure, accurate reconstruction is possible fains. We note thay and ¢.,; are very close, and that our
a range of values op. Fig. 7(b) shows the correspondingconjecture forPx (k) provides a reasonable match with the
normalized average energy consumption of the network gersjmulated data. Fig. 8(b) shows the complementary cunvelati
p- In order to minimize the energy consumption of the networistribution function, Qx (k) = Prob{K > k}, for the
while maintaining the average quality of reconstructiore Wsimulated data, as well as for the model (9) @BV, g..: ).
choose the smallest value pffor which accurate reconstruc- Again, we note a close match. Consequently, we will rely on
tion is possible. the model (9) for system design.

IV. NETWORK DESIGN B. Performance Requirement

In the R/D scheme of Section IlI-A, the number of correctly In order to perform field reconstruction, the FC needs to
received packets at the FUs, is equal to the number of collect at leastN, collision-free packets during one frame.
sensor nodes selected for transmissidf, Thus, choosing However, since the packet arrival process is random, there i
M = N, provides a sufficient number of packets at the FQo guarantee that the FC will collect sufficiently many paske
In the R/R case howevel/ and K are both random variables.Hence, we define thprobability of sufficient sensings the
The fact thatK is a random variable now implies that thergrobability that the FC collect®v, or more correct packets,
can be no guarantee th&l will be greater thanNy, i.e., and we specify the performance requirement as the minimum
obtaining a sufficient number of packets cannot be guardnteprobability of sufficient sensingP;. In other words, we ask
A probabilistic approach to the system design thus becontbsat the FC collect at leas{, correct packets during one frame
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Fig. 8. The probability distributionPx (k) and the complementary cumu-
lative distribution functionQ i (k) for N = 1000, T, = 0.2 s,T = 120 s,

p = 0.1 and Ng;,,, = 10000 simulation runs. T 006
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with probability P, or higher. This condition can be expresse:
as 0.02f

where Qk (k) is the complementary cumulative distributior
function. Using the model (9), we note that
Fig. 10. The probability; of Eq. (8) plotted versup for different values of

Qr(Ns) > P, for q>gqs (11) 8= ;]X—TT‘; For a givengs a smallerg implies a smalleps.
C. Design Objective o
The design objective is to determine tper-node sensing Gs = pse Teon—17 (13)

probability p, that ensures sufficient sensing. The first step
the design approach is to solve fgr in Eq. (11). This can
be done numerically for a givelV, and P,. The procedure is
illustrated in Fig. 9. Note thaj, depends only o, and V.

NNTOW, using Eq. (8) we have that = p,e=%Ps where3 =
2

LPhis procedure is illustrated in Fig. 11.

The following example describes the complete design pro-
cedure. Let us assume a network of sive= 1000, measuring

a phenomenon with sparsity = 10 in the frequency domain.

2NTy - Given a specific value of,, this relationship is used to Fig. 5 implies that the requ_ired number of co!lision-free
determine the underlying, and 3. Our design approach is to packets fo_r perfecF recovery .'y‘“ = 5T. _F_or the givenn
minimize the energy consumption; hence, we want to identify da .deS|.red sufficient sensing probability of séy= 0.9,
that solution which yields the smallgst, since, as we will see '9. 9 'mP"eS thatg, = 0.068. Let us assume that .the packet
in Section V, it yields the least energy consumption. Fig. 1 ration .'STP =02s and. that'the coherence time of the
shows the plots of versusp for various values of3. As seen Process ISTeon =120 s. Using Fig. 11, which ShO.W@ as a
in this figure, for a giveny., the curve with a smalles yields function of p based on Eg. (13), one can determine the per-

a smallerp,. The smallests corresponds td" = T, and is node sensing probgbﬂﬂys - 0093 . .
determined as Note that there is a possibility that, is too high for a
ONT. solution p, to exist. Fig. 12 showg versusp for different
——r_ (12) bandwidthsB = 2 kbps-5 kbps. For the give; = 0.068, we
Teon — T note from this figure that if8 = 2 kbps or 3 kbps, there is no
Using this value, we fing, as the solution of solution forp,; however, forB = 4 kbps or 5 kbps a solution

ﬂmin =
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] ) ] o ] ) Fig. 13. Complementary cumulative distribution functiGhg (k) plotted
Fig. 11. Givengs, the per-node sensing probabilit is determined using for p, = 0.093 confirms that the desired sensing probability is achieved, i.
the model (13). For examplgs = 0.068 implies ps = 0.093. Qi (Ns) > Ps for Ny = 57 and P; = 0.9.
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T T
——— B=2 kbps

B=3 kbps
0.1 - B=4 kbps
—— B=5 kbps

In an underwater deployment, network lifetime is of utmost
importance since re-charging batteries is difficult. Egerg
per successfully delivered bit of information thus natiyral
emerges as a figure of merit for system performance. In light

0.081

5,700 _ of a sensor network based on compressed sensing, we define
o 0.0 - a figure of merit as the total average energy required for one
/ field reconstruction. One of the performance measures that w

ooalf/ 1 consider is thus the average energy consumption of the net-
work needed to sense a given area. Since bandwidth is sgverel

002k | limited in an underwater acoustic network, another measure

of performance is the minimum bandwidth required. In what
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ follows we analytically derive these performance metrios f
0 0 hoods ez 0% 03 0% 04 0% 08 the two schemes based on compressed sensing (R/D and R/R)
and compare the results to those of a conventional system.
Fig. 12. The probability; versusp for B = 2 kbps— 5 kbps; System If by Pr we denote the per-node transmit power, the

parameters aréV :_1000, T = 120 s, L = 10QO bits. We note that in order ~onsumed energy per node is given by
for a solution to exist a minimum bandwidth is required.

Eo = PrT,

exists. Thus, in order for a solution to exists, a minimurwhereT, is the packet duration, i.e., the time during which a
bandwidth is required. There is also a possibility of havingode is active. The total consumed energy in the converitiona
two solutions forp,; if this occurs, we choose the smaller off DMA network is given by

the two as it corresponds to fewer sensors transmittingclvhi
in turn translates into lower energy consumption as we will d2

Se‘?'r:g iiilltci): Vc.om lementary cumulative distribution fun where, A = Nd” is the coverage area of the network. The
9 P ry Yrame duration in a conventional networkiis— NT, < Teop.

tion Qx (k) is shown in Fig. 13, which confirms that the choic . - . .
of p = 0.093 satisfies Eq. (11), i.e., that the desired sufficier?tence’ noting thaf, = L/ Beony, the bandwidth requirement

L : iS given by

sensing is achieved. NI
In summary, we have a design approach that avails itself of Beonw >

a simplified model. For a givefV, a coherence tim&.,;, and

a packet duratiorT},, the model (13) is used to determine the For the R/D scheme, the total energy required for one field

per-node sensing probabilifysuch that the desired probabilityreconstruction is given by

of sufficient sensing®; is met.

A
Econv = NEO = 7EO (14)

(15)

coh

A

V. PERFORMANCEANALYSIS The frame duration in R/D is given by = 27,4, + MT,.
In this section, we compare the performance of the RAQ@oreover, the network needs updated data evegy,; there-
scheme with that of a conventional network (Section ll-Afore, MT, + 274 < Teon. This condition results in a



minimum bandwidth requirement of o ‘
—— conventional
LCSlog(N) 17) - -RR

B >
R/D = coh — 2Tmam
Finally, in the R/R scheme, the average consumed energy
one field reconstruction is

Er/r =psNEy = ps%Eo (18)
wherep, N is the average number of nodes that transmit i
one frame. Note thab, in the above expression is implicitly
dependent onV, through the design procedure outlined ir
Section V.

The observations that we made from Fig. 12 imply that i ‘ ‘
order for a set of design parameters to satisfy the sufficie Hooo 1500 O e e e (o 3500 4000
sensing condition, a minimum bandwidth is required. Th_
minimum required bandwidth is obtained by identifying the. . . ,

. . . L . Fig. 14. Total network energy consumption, normalized witspeet to the
maximum ofg, i.e., by takmg the derivative of with respect energy Ep needed by one node to transmit one data packet, plotted versus
to p and setting it equal to zero. Let us assume that, > 1, normalized coverage ared/d?. System parameters aff = 800 s and
which is the case of our interestThe maximum value ofy Tp = 0.2 s. The sparsity leveb = 10 is assumed to remain fixed.
is then obtained a8,,,, = 1/eBmin- In order for sufficient
sensing to occur, we need to haye < ¢4, Which results
in the minimum bandwidth requirement as

10°

normalized energy consumption

T
conventional
l|---RR
- =RID

>

BR/R e (2eNqs + 1)Twh

Fig. 14 shows the energy consumption normalized wi
respect toF,, versus the normalized coverage arga for
the three schemes above. Note tfigf;, = 800 s results in a
maximum of N = 4000 nodes in a conventional network.
As seen in the figure, for the same coverage area, RA(
offers energy savings of an order of magnitude compared
the the conventional scheme. By reducing the energy cc
sumption, RACS extends the life-time of the sensor networ
Fig. 15 shows the minimum bandwidth required, versus tt
size of the networkN. For the same network size, RACS
requires lower bandwidth compared to the the conventional
scheme. For examp|e, in a network &f = 2500 nodes, Fig. 15. Minimum required bandwidth versus the size of thevoet N
R/R scheme requires only a bandwidth og kbps, whereas fTor:thBeogc’;"z”iof&!b%/i?s 21?1?15,/1 S:ihgggss'.syswm parameters & 10,
the conventional network requires1 kbps. The savings in
bandwidth are a significant feature from the viewpoint of

minimum required bandwidth (Kbps)

0 I I I I I
1000 1500 2000 2500 3000 3500 4000
N

acoustic communications. shows the map of the field recovered using RACS with
this probability* In this example recovery has been achieved
V1. REAL DATA EXAMPLE consuming less than half the energy of a conventional nétwor

To visually illustrate the field recovery process, we emER/R/EC"”’“ ~ 0.4. In order to study the error behavior of the

ploy RACS to sense a real field. We consider Zongf:heme as a function of sensing probability, Fig. 17 shoes th

current data collected at Southern California bight at %ormalized reconstruction error versus the per-node sgnsi
GMT on August 19, 2010 at latitudei$2.5°, 32.58°] and probability p. Saturation region is not present in this figure, as

longitudes [238.8°, 243°]. This data set is accessible a.t iiin Fitgh. (@), sk,)incefthe ukpq[atinlﬁ i.ntervaI Is Igng gnc;pgh h
http://ourocean.jpl.nasa.goand is shown in Fig. 16(a). We ©© X€€P the number of packet collisions from dominating the

note that almost 9% of the energy of the signal is contained® "

in S = 17 Fourier coefficients. FoiV, = 285, assuming a

sufficient sensing probability?, = 0.9, a desired updating VII. CONCLUSION

interval T = 1000 s, and a packet duratioff,, = 0.2 s, We proposed a networking scheme that combines the con-
following the design approach of Section IV, the per-nodeepts of random channel access and compressed sensing to
sensing probability is determined to pg = 0.439. Fig. 16(b) achieve energy and bandwidth efficiency. This scheme is

3In the case thaB,in < 1, gmaee = e Pmin and the analysis follows  “For reconstruction, we use@vX, a package for specifying and solving

similarly. convex programs [19].
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0s sufficient sensing probability. With this probability, vehi is
the system design target, the FC is guaranteed to acquire a
sufficient number of observations per frame to reconstruct
o the measured field. A desired probability of sufficient segsi
then points to the necessary per-node sensing probafiliy.
performance of RACS was assessed analytically in terms of
o1 the energy consumption and bandwidth requirement, demon-
strating substantial savings over a conventional schersedba
on deterministic sensing and access.
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