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Random Access Compressed Sensing for
Energy-Efficient Underwater Sensor Networks
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Abstract—Inspired by the theory of compressed sensing and
employing random channel access, we propose a distributed
energy-efficient sensor network scheme denoted by Random
Access Compressed Sensing (RACS). The proposed scheme is
suitable for long-term deployment of large underwater net-
works, in which saving energy and bandwidth is of crucial
importance. During each frame, a randomly chosen subset of
nodes participate in the sensing process, then share the channel
using random access. Due to the nature of random access,
packets may collide at the fusion center. To account for the
packet loss that occurs due to collisions, the network design
employs the concept of sufficient sensing probability. With this
probability, sufficiently many data packets – as required for field
reconstruction based on compressed sensing – are to be received.
The RACS scheme prolongs network life-time while employing
a simple and distributed scheme which eliminates the need for
scheduling.

Index Terms—Sensor networks, compressed sensing, wireless
communications, underwater acoustic networks, random access.

I. I NTRODUCTION

Underwater sensor networks are envisioned as consisting
of a number of static sensor nodes and/or vehicles that are
deployed over a region of interest to monitor a physical phe-
nomenon. Applications of such networks are in oceanographic
data collection (e.g., temperature, salinity, zonal and merid-
ional currents), field monitoring and disaster prevention [1] [2].
Wireless acoustic communication is the physical layer technol-
ogy used in underwater networking. In this paper, we consider
a static area network, where sensor nodes are anchored to the
bottom of the ocean and deployed for long periods of time.
Each sensor node communicates its observations of the field
to a central node, referred to as the Fusion Center (FC) and
the FC reconstructs the map of the physical field. Bandwidth
and battery power are severely limited in underwater networks,
and hence energy and bandwidth efficiency are of particular
importance.

Exploiting the fact that most natural phenomena are com-
pressible (sparse) in an appropriate basis, we employ com-
pressed sensing to reduce the energy consumption of the
network. The theory of compressed sensing establishes that
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under certain conditions, exact signal recovery is possible
with a small number of random measurements [3][4]. Authors
in [5] are the first to introduce the application of compressed
sensing in networks. In [5][6] and [7] the authors used phase-
coherent transmission of randomly-weighted data from sensor
nodes to the FC over a dedicated multiple-access channel,
to form distributed projections of data onto an appropriate
basis at the FC. Note that in this approach sensors need to
be perfectly synchronized which is a difficult assumption to
maintain in underwater acoustic networks. Reference [8] pro-
poses compressive cooperative spatial mapping using mobile
sensors based on a small set of observations. In [9] ultra-
low power infrastructure monitoring is achieved by employing
data compression and a low-collision MAC protocol. In [10]
adaptive compressed sensing is applied to wireless sensor
networks. Initially, a random set of readings are observed at the
FC. If the accuracy level is not satisfactory a projection vector
is obtained and the data is updated. The authors determine the
projection vector so as to optimize the information gain per
energy expenditure. A number of references, such as [11], [12]
and [13] focus on phenomena that are sparse in the spatial
domain, e.g., event detection or tracking of multiple targets.
In [12] authors consider a decentralized network (without
FC), where active nodes exchange measurements locally. The
authors formulate sparse recovery as a decentralized consensus
optimization problem and show that their iterative algorithm
converges to a globally optimal solution. In [13] sensors are
tracking the location of an audio source, transmitting their
readings to the FC. In this setting, the signals appearing ateach
sensor are jointly sparse. The authors show that a very small
number of measurements can achieve the signal detection goal.
Authors in [14] and [15] also consider spatial mapping using
mobile sensors (robots), [15] proposes an efficient way to
reconstruct natural fields using random-walk-based sampling
and compressed sensing. Finally, in [16] capacity bounds of
an on-off random multiple access channel are determined by
transforming the problem to an equivalent compressed sensing
problem and using sparsity detection algorithms.

In this work, we consider an underwater sensor network
that measures a physical phenomenon for geographical and
environmental monitoring purposes. We assume that the phys-
ical phenomenon to be studied is compressible (sparse) in
the frequency domain. The proposed method, based on com-
pressed sensing and random access, results in a simple and
energy-efficient scheme referred to asRandom Access Com-
pressed Sensing(RACS). The system functions consist of (i)
a sampling procedure, during which sensor nodes perform
measurements; followed by (ii) a channel access method,
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during which measurements are transmitted to the FC; and
finally (iii) a reconstruction process, during which sparse
recovery algorithms are used to recover the measured field at
the FC. In the sampling procedure, inspired by the theory of
compressed sensing, we employ random sensing, while for the
channel access phase, we propose a simple random access. As
in any random access, the data packets of two or more sensors
may collide at the FC. The key idea is that random collisions
(which are inevitable) do not change the random nature of the
observations provided to the FC. Since the FC only needs to
receive some, and not all the sensor packets, it can simply
disregard the collisions. The FC obtains an incomplete set of
measurements (due to both random sensing and losses due
to random access) from which it reconstructs the field using
compressed sensing techniques. Note, however, that in order
to achieve successful reconstruction, a certain minimum num-
ber of measurements– as determined by compressed sensing
theory– are required at the FC. We thus need to compensate
for the collision losses by initially selecting the number of
participating sensors to be greater than the minimum number
of required packets. We provide an analytical framework for
system design based on the sufficient sensing probability.
Note that our method is completely distributed, requiring
no coordination among nodes. It also requires no downlink
feedback from the FC to the sensor nodes.

The paper is organized as follows: In Section II we introduce
the network model. In Section III, we outline the system
model and introduce the RACS scheme. Section IV provides
an analytical model for RACS based on which we propose a
network design methodology. In Section V we provide perfor-
mance assessment of our scheme and compare the energy and
bandwidth usage of RACS with that of a conventional network.
In Section VI using a real data example, we demonstrate
the performance of the RACS scheme. Finally, we provide
concluding remarks in Section VII.

Notation: We denote byℓp the p-norm of a vectorx =

[x1, . . . , xN ]T defined by ‖x‖ℓp
=

(

∑N
i=1 |xi|

p
)1/p

. If

V is a k × l matrix, vec(V) denotes thekl × 1 vec-
tor formed by stacking the columns of matrixV, i.e.,
vec(V) = [ v11 . . . vl1 . . . v1k . . . vlk ]T . We de-
note byB(N, p) the Binomial probability distribution of the
number of successes in a sequence ofN independent exper-
iments, each of which has a success probabilityp. Finally,
A ⊗ B denotes the Kronecker product of matricesA andB.

II. SYSTEM MODEL

Consider a grid network shown in Fig. 1, which consists of
N = IJ sensors uniformly distributed on a two-dimensional
plane, withJ andI sensors inx andy directions, respectively.1

The sensors are separated by distanced in each direction.
Let us define thecoverage areaA of a network as the total
area covered by the sensors, in our grid networkA = Nd2.
The network is deployed to monitor a physical phenomenon,
u(x, y, t), (e.g., temperature, pressure, current, etc.) over a

1Note that the results of this paper can be easily extended to three-
dimensional (volume) networks as well.

Fig. 1. An area sensor network consisting ofN = IJ sensor nodes.

long period of time. Such long-term monitoring is crucial in
climate monitoring or environmental surveillance applications.

In framen, the sensor node located at position(i, j) in the
network grid acquires a measurementuij(n) = u(xj , yi, n),
where xj and yi denote the sensor’s position in the 2-
dimensional space. The measurements are encoded, along with
the sensor’s location tag, into a data packet ofL bits, which
is then modulated and transmitted to the FC. Upon reception,
the FC demodulates the signal and extracts the measurement
information from which it reconstructs the map of the field.
Assuming that the system has bandwidthB and that each
sensor transmits at a bit-rate equal to the bandwidth, the packet
duration isTp = L/B. Let Di denote the distance of nodei
from the FC, wherei ∈ {1, . . . , N}. The propagation delay of
sensori’s packet is thus given byτi = Di

c , wherec = 1500
meters/sec is the nominal speed of sound.

In this paper, we consider a frame-based (slotted) transmis-
sion, i.e., the FC collects the incoming data packets duringa
frame of lengthT . At the end of the frame, the FC reconstructs
the field based on the data packets received during that frame.
Once the reconstruction is performed, the frame is discarded
and FC waits for a new set of data in the next frame. In order
to determine a reasonable frame durationT , we consider the
correlation properties of the physical processu(x, y, t). Let
us define the coherence timeTcoh of a process as the time-
duration over which the process almost de-correlates in time,
i.e., the process is slowly varying duringTcoh. A conventional
design choice is thus to obtain a new map of the fieldu(x, y, t)
at least once perTcoh.

The map of the process over the entire sensor network is
denoted byU(n)

U(n) =

















u11(n) . . . u1J(n)
...

...
...

. . . uij(n) . . .
...

...
...

uI1(n) . . . uIJ (n)

















(1)

The data gathering procedure in a network consists of
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two phases: a) sensing and b) communication. The sensing
phase can be (i) deterministic (conventional case), in which
case all the sensors sample the physical phenomenon; or (ii)
random (compressed), in which case only a random subset
of sensor nodes participate in sensing. The nodes that have
taken part in sensing now need to access the channel in
order to communicate their measurements to the FC. Multiple-
access schemes are generally divided into two categories:
(i) deterministic access methods, e.g., TDMA, FDMA, and
CDMA; and (ii) random access methods, e.g., Aloha, CSMA,
and CSMA/CD. In what follows we will consider both types
of access for use with compressed sensing, while we consider
deterministic sensing as a benchmark for comparison.

A. Conventional Network (Benchmark)

As a benchmark design, we consider a sensor network with
deterministic sensing and deterministic access, i.e., in each
frame, allN nodes conduct measurements and transmit their
measurement packets to the FC using a deterministic multiple-
access scheme. We assume that the conventional network
employs standard TDMA. This requires scheduling at each
node such that packets from different nodes arrive back-to-
back at the FC. Fig. 2 depicts the required scheduling process.
The received data at the FC at framen, denoted byy(n), is
given by

y(n) = u(n) + z(n) (2)

where,u(n) = vec(U(n)) and z(n) represents the sensing
noise which arises due to the limitations in the sensing device.
The communication noise translates into bit errors, i.e., it
does not appear as an additive term in Eq. (2). In the present
analysis we neglect the communication noise. In TDMA, one
frame of data containsN packets; therefore,T = NTp. The
network needs updated measurements everyT ≤ Tcoh. The
total number of nodes that can be deployed in a conventional
network is thus upper-bounded by

N ≤
Tcoh

Tp
(3)

where Tcoh is the property of the monitored field. Conse-
quently, the coverage area of a conventional network is limited
to A = Tcohd2/Tp.

III. RANDOM SENSING

Most natural phenomena have a compressible (sparse) rep-
resentation in the spatial frequency domain, and we therefore
assume that the vector of Fourier coefficients ofU(n) is
sparse. Specifically, ifV(n) is the two-dimensional spatial
discrete Fourier transform ofU(n), it can be shown that
v(n) = (WJ ⊗ WI)u(n), where v(n) = vec(V(n)) and
WI is the matrix of discrete Fourier transform coefficients
(WI [m, k] = e−j2πmk/I ). Thus, in our case, the Fourier
representationv(n) is assumed to be sparse. Note that asparse
signal is a signal that can be represented by a small number of
non-zero coefficients, compared to the dimension of the signal.
As an example, Fig. 3 shows the zonal currents recorded at
the Southern California bight, and their corresponding discrete

Fig. 2. The scheduling required at each node in the benchmark case of
TDMA.

Fourier transform. One can show that almost99% of the en-
ergy of the signal is contained inS = 13 Fourier coefficients.
Based on the theory of compressed sensing, if a signal has
a sparse representation in some domain, it can be recovered
from a small subset of random measurements [3], [4]. Thus
taking into account the sparsity of natural phenomena, we can
reduce the number of measurements required for field recovery
from N to someM < N .

Let us assume that all the nodes know the beginning time of
a frame at the FC. At framen, a subset of sensors is selected
at random to conduct measurements. By randomly selecting
sensors, we perform the compression directly in the spatial
domain. If we denote byy(n) the observations of a random
subset ofM sensors, the received data vector at the FC can
be expressed as

y(n) = R(n)u(n) + z(n) (4)

whereR(n) is anM ×N random selection matrix for frame
n, consisting of M rows of the identity matrix selected
uniformly at random. Noting thatu(n) = Ψv(n), where
Ψ = (WJ⊗WI)

−1 is the Inverse Discrete Fourier Transform
(IDFT) matrix, Eq. (4) can be re-written in terms of the sparse
vectorv(n) as

y(n) = R(n)Ψv(n) + z(n) (5)

The IDFT matrixΨ is referred to as the representation basis,
which is the basis over whichu(n) has a sparse representation.

To reconstruct the field at the end of the framen, the FC
first tries to recover the vectorv(n) as accurately as possible,
then uses it to construct the mapU(n). Given the observations
y(n), the random selection patternR(n) and the sparsity basis
Ψ, and in the absence of sensing noisez(n) – which is the
case we will be focusing on – reconstruction can be performed
by solving the following minimization problem:

minimizẽv(n) ‖ṽ(n)‖ℓ1 subject toR(n)Ψṽ(n) = y(n). (6)

The theory of compressed sensing (specifically, [17]) states
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(b) amplitude of the Fourier transform of the field.

Fig. 3. (a) Zonal current (m/s) at a latitude of32.5◦, plotted versus the
longitude[238.5◦, 243◦]; and (b) the amplitude of the corresponding spatial
Fourier transform. Almost 99% of the energy of the signal of sizeN =
204 is contained inS = 13 Fourier coefficients. This data is accessible at
http://ourocean.jpl.nasa.gov.

that as long as the number of observations, picked uniformlyat
random, is greater thanNs = CS log N , then with very high
probability the solution to the convex optimization problem (6)
is unique and is equal tov(n). HereC is a constant that is
independent ofN andS (see [17] for the details).

We thus conclude that in our wireless network setting,
it suffices to ensure that the FC collects at leastNs pack-
ets picked uniformly at random from different sensors to
guarantee accurate reconstruction of the field with very high
probability.

A. Centralized Random Sensing / Deterministic Access (R/D)

We focus on the centralized selection to illustrate the
random sensing concept before moving on to the distributed
selection in the next section. In this scheme, the FC picks
a random subset ofM sensors for sampling and broadcasts
the selected set of nodes in each frame. In order to obtain
perfect reconstruction, it has to be thatM ≥ Ns. The selected
nodes then sample the physical processu(x, y, t) and send

Fig. 4. The frame structure in the R/D scheme. The FC broadcaststhe
selected subset, the nodes then schedule their transmissions.

their measurements back to the FC using a multiple-access
method of choice. Since the FC broadcasts the selected subset,
all sensors learn when a frame will start, which nodes will
be transmitting and their transmission order. Therefore, the
network can simply use deterministic access (TDMA) with
M slots as shown in Fig. 4. All transmitting nodes organize
their transmissions such that they are received at the FC in
the requested order. Thus, a frame of durationT consists of
the round-trip broadcast time followed byM packets of data,
i.e, T = 2τmax + MTp, whereτmax = 1

c maxi∈{1,...,N} Di

denotes the longest propagation delay in the network.
The required number of observationsNs = CS log N

depends on the value of the constantC, a theoretical upper-
bound for which is offered in [17]. However, one can find
Ns empirically as the number of measurements for which
the reconstruction error is negligible. The empirical value of
Ns is typically much smaller than the one obtained using
the theoretical bounds. Here, we illustrate findingNs in our
setting for the following example set of system parameters:
I = 50, J = 20, andS = 10. We study the recovery of these
signals from different numbers of random measurements in
a noise-free setting. Fig. 5 shows the average reconstruction
error plotted versus the number of measurements. As seen in
the figure, forM ≥ 57 full recovery is attained. Hence, for
the given system parameters, a reasonable choice forNs is
determined to beNs = 57.

B. Distributed Random Sensing / Random Access (R/R)

As discussed in Section III-A, centralized random sensing
requires scheduling among sensors by downlink transmission
from the FC. In order to eliminate the need for downlink
transmissions at each frame, we decentralize the process of
selecting a random subset of nodes. This can be done by
equipping the sensors with independent, identically distributed
Bernoulli random generators, i.e., by having each sensor toss
an independent coin. At the beginning of a frame, each node
determines whether it will participate in the sensing process,
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Fig. 5. For a network of sizeN = 1000 and Nsim = 100 randomly
generated signals with sparsityS = 10, the average normalized reconstruction
error is plotted versus the number of measurementsM . The required number
of measurements to obtain perfect reconstruction isNs ≈ 57 as shown in the
figure.

which occurs with some probabilityp. The total number of
sensors selected for sampling in a frame,M , is now a random
variable with a Binomial distribution,M ∼ B(N, p).

The principle of distributed sensing is thus very similar
to that of the centralized sensing from the viewpoint of
providing a random subset of observations. Its advantage is
in the fact that it eliminates the need for duplexing, i.e.,
no downlink transmission is required from the FC. However,
deterministic access is no longer applicable, because a node
has no knowledge of the other nodes that transmit, and
hence cannot schedule its transmission.2 If we couple random
sensor selection with random channel access this problem is
eliminated. Furthermore, employing random access eliminates
the overhead broadcast time and the next data frame starts
immediately.

In random access, each sensori picks a random transmission
delay θi uniformly in [0, T − Tp]. In this scheme there is
possibility of collision. A collision is said to have occurred if
packets from different sensors overlap in time at the FC. The
key idea in RACS is to let the FC simply discard the colliding
packets. This approach is motivated by the compressed sensing
theory and the fact that the FC does not carewhich specific
sensors are selected, as long as (i) the selected subset is chosen
uniformly at random, and (ii) there are sufficiently many
collision-free packets received to allow for the reconstruction
of the field. Therefore, in a RACS scheme, once a collision
is detected the FC simply discards the colliding packets and
reconstructs the field using the rest. Note that the random
reduction matrixR(n) in Eq. (5) now includes both the effects
of random selection and of random collisions.

The proposed frame-based RACS is summarized below:

Step 1. At the beginning of a frame, sensor nodei tosses a
coin to determine whether it participates in sensing

2One could in principle reserveN slots, but since only a subset of sensors
transmit such a scheme would be wasteful.
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Fig. 6. Average number of collision-free packetsK versus p; system
parameters areN = 1000, T = 120 s andTp = 0.2 s.

(with probabilityp) or stays inactive (with probability
1 − p) during that frame.

Step 2. If nodei is selected for sensing, it measures the
physical quantity of interest and encodes it into a
packet ofL bits. The sensor’s location is also included
in the packet.

Step 3. Nodei picks a uniformly-distributed delayθi for the
transmission of its packet.

Step 4. FC collects the packets received during one frame.
If a collision is detected, FC discards the colliding
packets.

Step 5. At the end of the frame, FC uses the correctly received
packets to reconstruct the data usingℓ1 minimization
(or other sparse recovery methods [18]). We assume
that packets which do not collide are correctly re-
ceived.

Let K denote the number of correctly received packets at
the FC during one frame. Fig. 6 shows the average number
of collision-free received packetsK versus the per-node
sensing probabilityp, for an example network ofN = 1000,
Tp = 0.2 s andT = 120 s. As seen in the figure, there is
an interplay between the number of measurements and the
number of collisions. While increasingp results in a greater
number of measurementsM , and could thus improve the
accuracy of reconstruction, it also increases the probability
of collision and after a certain point may even decrease the
number of useful packets received at the FC. Hence, there
exists a trade-off in choosing the value ofp. We will outline
the probability distribution ofK analytically in Section IV.

In designing a RACS network, the underlying figure of merit
is the reconstruction quality. The reconstruction error has to
be within an acceptable range in order to obtain a certain
reconstruction quality. In addition, among the set of design
parameters that meet the required reconstruction quality,our
goal is to choose the ones that minimize the average energy
consumption of the sensor network. Fig. 7(a) shows the
average normalized reconstruction error plotted versus the per-
node sensing probabilityp, for randomly generated sparse
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Fig. 7. Average normalized reconstruction error versusp and the correspond-
ing energy consumption. Within the region where perfect reconstruction is
achievable we choose the smallestp as this choice results in the least energy
consumption.

data. The normalized error is defined as
||û(n)−u(n)||ℓ2

||u(n)||ℓ2
, where

u(n) is the actual data and̂u(n) is the recovered data. As
noted in the figure, accurate reconstruction is possible for
a range of values ofp. Fig. 7(b) shows the corresponding
normalized average energy consumption of the network versus
p. In order to minimize the energy consumption of the network
while maintaining the average quality of reconstruction, we
choose the smallest value ofp for which accurate reconstruc-
tion is possible.

IV. N ETWORK DESIGN

In the R/D scheme of Section III-A, the number of correctly
received packets at the FC,K, is equal to the number of
sensor nodes selected for transmission,M . Thus, choosing
M = Ns provides a sufficient number of packets at the FC.
In the R/R case however,M andK are both random variables.
The fact thatK is a random variable now implies that there
can be no guarantee thatK will be greater thanNs, i.e.,
obtaining a sufficient number of packets cannot be guaranteed.
A probabilistic approach to the system design thus becomes

necessary.
In what follows, we analyze the distribution function of

the number of correct packets at the FC. We then study the
conditions under which this random variable yields a sufficient
number of measurements,Ns = CS log N . These conditions
in turn imply a per-nodesensing probability, p.

A. Packet Reception Model

Given a sensing probabilityp, the average packet generation
rate per node is given byλ1 = p

T−Tp
. Thus the aggregate

arrival rate of packets at the FC isλ = Np
T−Tp

. In order to
determine the probability of collision, we note that the packet
arrival process resembles a Poisson process. Accordingly,we
model the probability of no collision as the probability that no
packet arrives in an interval of length2Tp,

Prob{no collision} = e
−2

NpTp

T−Tp (7)

The probability that a packet is successfully received at the
FC within a frame durationT is thus given by

q = pe
−2

NpTp

T−Tp (8)

We now conjecture thatK has a binomial distribution with
parameterN and probabilityq, i.e.,

PK(k) = Prob{K = k} = B(N, q) =

(

N

k

)

qk(1 − q)N−k (9)

where q is given by Eq. (8). To empirically verify the con-
jecture, we conduct simulation experiments. Fig. 8(a) shows
the histogram of the number of correctly received packets
obtained from simulation. In this figure, thePK(k) obtained
from measurements is compared with that of the hypothesized
modelB(N, q) whereq is given by Eq. (8), and an estimated
modelB(N, qest) where

qest =
1

Nsim

∑Nsim

i=1 k(i)

N

where k(i) is the number of successfully received packets
in the i-th simulation run andNsim is the total number of
runs. We note thatq and qest are very close, and that our
conjecture forPK(k) provides a reasonable match with the
simulated data. Fig. 8(b) shows the complementary cumulative
distribution function, QK(k) = Prob{K ≥ k}, for the
simulated data, as well as for the model (9) andB(N, qest).
Again, we note a close match. Consequently, we will rely on
the model (9) for system design.

B. Performance Requirement

In order to perform field reconstruction, the FC needs to
collect at leastNs collision-free packets during one frame.
However, since the packet arrival process is random, there is
no guarantee that the FC will collect sufficiently many packets.
Hence, we define theprobability of sufficient sensingas the
probability that the FC collectsNs or more correct packets,
and we specify the performance requirement as the minimum
probability of sufficient sensing,Ps. In other words, we ask
that the FC collect at leastNs correct packets during one frame
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Fig. 8. The probability distributionPK(k) and the complementary cumu-
lative distribution functionQK(k) for N = 1000, Tp = 0.2 s, T = 120 s,
p = 0.1 andNsim = 10000 simulation runs.

with probabilityPs or higher. This condition can be expressed
as

Prob{K ≥ Ns} = QK(Ns) ≥ Ps (10)

where QK(k) is the complementary cumulative distribution
function. Using the model (9), we note that

QK(Ns) ≥ Ps for q ≥ qs (11)

C. Design Objective

The design objective is to determine theper-node sensing
probability ps that ensures sufficient sensing. The first step in
the design approach is to solve forqs in Eq. (11). This can
be done numerically for a givenNs andPs. The procedure is
illustrated in Fig. 9. Note thatqs depends only onPs andNs.

Now, using Eq. (8) we have thatqs = pse
−βps whereβ =

2NTp

T−Tp
. Given a specific value ofqs, this relationship is used to

determine the underlyingps andβ. Our design approach is to
minimize the energy consumption; hence, we want to identify
that solution which yields the smallestps, since, as we will see
in Section V, it yields the least energy consumption. Fig. 10
shows the plots ofq versusp for various values ofβ. As seen
in this figure, for a givenqs, the curve with a smallerβ yields
a smallerps. The smallestβ corresponds toT = Tcoh and is
determined as

βmin =
2NTp

Tcoh − Tp
. (12)

Using this value, we findps as the solution of

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

Q
K
(N

S
)

P
s

q
s

Fig. 9. Given a desired probability of sufficient sensingPs, and a sufficient
number of packetsNs, one can determine the corresponding valueqs. For
example,Ps = 0.9 andNs = 57 (see Fig. 5) yieldsqs = 0.068.
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Fig. 10. The probabilityq of Eq. (8) plotted versusp for different values of
β =

2NTp

T−Tp
. For a givenqs a smallerβ implies a smallerps.

qs = pse
−2

psNTp

Tcoh−Tp (13)

This procedure is illustrated in Fig. 11.
The following example describes the complete design pro-

cedure. Let us assume a network of sizeN = 1000, measuring
a phenomenon with sparsityS = 10 in the frequency domain.
Fig. 5 implies that the required number of collision-free
packets for perfect recovery isNs = 57. For the givenNs

and a desired sufficient sensing probability of sayPs = 0.9,
Fig. 9 implies thatqs = 0.068. Let us assume that the packet
duration isTp = 0.2 s and that the coherence time of the
process isTcoh = 120 s. Using Fig. 11, which showsq as a
function of p based on Eq. (13), one can determine the per-
node sensing probabilityps = 0.093.

Note that there is a possibility thatqs is too high for a
solution ps to exist. Fig. 12 showsq versusp for different
bandwidthsB = 2 kbps−5 kbps. For the givenqs = 0.068, we
note from this figure that ifB = 2 kbps or 3 kbps, there is no
solution forps; however, forB = 4 kbps or 5 kbps a solution
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Fig. 11. Givenqs, the per-node sensing probabilityps is determined using
the model (13). For example,qs = 0.068 implies ps = 0.093.
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Fig. 12. The probabilityq versusp for B = 2 kbps− 5 kbps; System
parameters areN = 1000, T = 120 s, L = 1000 bits. We note that in order
for a solution to exist a minimum bandwidth is required.

exists. Thus, in order for a solution to exists, a minimum
bandwidth is required. There is also a possibility of having
two solutions forps; if this occurs, we choose the smaller of
the two as it corresponds to fewer sensors transmitting, which
in turn translates into lower energy consumption as we will
see in Section V.

The resulting complementary cumulative distribution func-
tion QK(k) is shown in Fig. 13, which confirms that the choice
of p = 0.093 satisfies Eq. (11), i.e., that the desired sufficient
sensing is achieved.

In summary, we have a design approach that avails itself of
a simplified model. For a givenN , a coherence timeTcoh, and
a packet durationTp, the model (13) is used to determine the
per-node sensing probabilityp such that the desired probability
of sufficient sensingPs is met.

V. PERFORMANCEANALYSIS

In this section, we compare the performance of the RACS
scheme with that of a conventional network (Section II-A).
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Fig. 13. Complementary cumulative distribution functionQK(k) plotted
for ps = 0.093 confirms that the desired sensing probability is achieved, i.e,
QK(Ns) ≥ Ps for Ns = 57 andPs = 0.9.

In an underwater deployment, network lifetime is of utmost
importance since re-charging batteries is difficult. Energy
per successfully delivered bit of information thus naturally
emerges as a figure of merit for system performance. In light
of a sensor network based on compressed sensing, we define
a figure of merit as the total average energy required for one
field reconstruction. One of the performance measures that we
consider is thus the average energy consumption of the net-
work needed to sense a given area. Since bandwidth is severely
limited in an underwater acoustic network, another measure
of performance is the minimum bandwidth required. In what
follows we analytically derive these performance metrics for
the two schemes based on compressed sensing (R/D and R/R)
and compare the results to those of a conventional system.

If by PT we denote the per-node transmit power, the
consumed energy per node is given by

E0 = PT Tp

whereTp is the packet duration, i.e., the time during which a
node is active. The total consumed energy in the conventional
TDMA network is given by

Econv = NE0 =
A

d2
E0 (14)

where,A = Nd2 is the coverage area of the network. The
frame duration in a conventional network isT = NTp ≤ Tcoh.
Hence, noting thatTp = L/Bconv, the bandwidth requirement
is given by

Bconv ≥
NL

Tcoh
(15)

For the R/D scheme, the total energy required for one field
reconstruction is given by

ER/D = ME0 = CS log(N)E0 = CS log(
A

d2
)E0 (16)

The frame duration in R/D is given byT = 2τmax + MTp.
Moreover, the network needs updated data everyTcoh; there-
fore, MTp + 2τmax ≤ Tcoh. This condition results in a
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minimum bandwidth requirement of

BR/D ≥
LCS log(N)

Tcoh − 2τmax
(17)

Finally, in the R/R scheme, the average consumed energy for
one field reconstruction is

ER/R = psNE0 = ps
A

d2
E0 (18)

wherepsN is the average number of nodes that transmit in
one frame. Note thatps in the above expression is implicitly
dependent onN , through the design procedure outlined in
Section IV.

The observations that we made from Fig. 12 imply that in
order for a set of design parameters to satisfy the sufficient
sensing condition, a minimum bandwidth is required. The
minimum required bandwidth is obtained by identifying the
maximum ofq, i.e., by taking the derivative ofq with respect
to p and setting it equal to zero. Let us assume thatβmin > 1,
which is the case of our interest.3 The maximum value ofq
is then obtained asqmax = 1/eβmin. In order for sufficient
sensing to occur, we need to haveqs ≤ qmax, which results
in the minimum bandwidth requirement as

BR/R ≥ (2eNqs + 1)
L

Tcoh

Fig. 14 shows the energy consumption normalized with
respect toE0, versus the normalized coverage areaA

d2 for
the three schemes above. Note thatTcoh = 800 s results in a
maximum of N = 4000 nodes in a conventional network.
As seen in the figure, for the same coverage area, RACS
offers energy savings of an order of magnitude compared to
the the conventional scheme. By reducing the energy con-
sumption, RACS extends the life-time of the sensor network.
Fig. 15 shows the minimum bandwidth required, versus the
size of the networkN . For the same network size, RACS
requires lower bandwidth compared to the the conventional
scheme. For example, in a network ofN = 2500 nodes,
R/R scheme requires only a bandwidth of1.2 kbps, whereas
the conventional network requires3.1 kbps. The savings in
bandwidth are a significant feature from the viewpoint of
acoustic communications.

VI. REAL DATA EXAMPLE

To visually illustrate the field recovery process, we em-
ploy RACS to sense a real field. We consider zonal
current data collected at Southern California bight at 3
GMT on August 19, 2010 at latitudes[32.5◦, 32.58◦] and
longitudes [238.8◦, 243◦]. This data set is accessible at
http://ourocean.jpl.nasa.govand is shown in Fig. 16(a). We
note that almost 99% of the energy of the signal is contained
in S = 17 Fourier coefficients. ForNs = 285, assuming a
sufficient sensing probabilityPs = 0.9, a desired updating
interval T = 1000 s, and a packet durationTp = 0.2 s,
following the design approach of Section IV, the per-node
sensing probability is determined to beps = 0.439. Fig. 16(b)

3In the case thatβmin ≤ 1, qmax = e−βmin and the analysis follows
similarly.
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Fig. 14. Total network energy consumption, normalized with respect to the
energyE0 needed by one node to transmit one data packet, plotted versus
normalized coverage areaA/d2. System parameters areT = 800 s and
Tp = 0.2 s. The sparsity levelS = 10 is assumed to remain fixed.
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Fig. 15. Minimum required bandwidth versus the size of the network N
for the conventional, R/D and R/R schemes. System parameters are S = 10,
T = 800 s, L = 1000 bits andτmax = 0.33 s.

shows the map of the field recovered using RACS with
this probability.4 In this example recovery has been achieved
consuming less than half the energy of a conventional network,
ER/R/Econv ≈ 0.4. In order to study the error behavior of the
scheme as a function of sensing probability, Fig. 17 shows the
normalized reconstruction error versus the per-node sensing
probabilityp. Saturation region is not present in this figure, as
it is in Fig. 7(a), since the updating intervalT is long enough
to keep the number of packet collisions from dominating the
error.

VII. CONCLUSION

We proposed a networking scheme that combines the con-
cepts of random channel access and compressed sensing to
achieve energy and bandwidth efficiency. This scheme is

4For reconstruction, we usedCVX, a package for specifying and solving
convex programs [19].
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Fig. 16. The sensing field is recovered employing RACS withps = 0.439,
T = 1000 s, andTp = 0.2 s.
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Fig. 17. Normalized reconstruction error versusp for the zonal current data
of Fig. 16.

suitable for large networks, deployed for long-term monitoring
of slowly varying phenomena. The underlying condition is that
the measured physical phenomenon has compressible (sparse)
representation in the frequency domain, which is the case
in many natural fields. The proposed method is completely
decentralized, i.e., sensor nodes act independently without the
need for coordination with each other or with the FC. The only
downlink feedback needed is an occasional synchronization
beacon.

To account for the random packet loss caused by collisions,
it becomes necessary to employ a probabilistic approach
in the system design, thus we introduced the concept of

sufficient sensing probability. With this probability, which is
the system design target, the FC is guaranteed to acquire a
sufficient number of observations per frame to reconstruct
the measured field. A desired probability of sufficient sensing
then points to the necessary per-node sensing probability.The
performance of RACS was assessed analytically in terms of
the energy consumption and bandwidth requirement, demon-
strating substantial savings over a conventional scheme based
on deterministic sensing and access.
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