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Abstract—The problem of recovering a low-rank matrix con-
sistent with noisy linear measurements is a fundamental problem
with applications in machine learning, statistics, and control.
Reweighted trace minimization, which extends and improves
upon the popular nuclear norm heuristic, has been used as an
iterative heuristic for this problem. In this paper, we present
theoretical guarantees for the reweighted trace heuristic. We
quantify its improvement over nuclear norm minimization by
proving tighter bounds on the recovery error for low-rank
matrices with noisy measurements. Our analysis is based on the
Restricted Isometry Property (RIP) and extends some recent
results from Compressed Sensing. As a second contribution,
we improve the existing RIP recovery results for the nuclear
norm heuristic, and show that recovery happens under a weaker
assumption on the RIP constants.

I. INTRODUCTION

The noisy affine rank minimization problem aims to find the

lowest rank matrix consistent with noisy linear measurements,

minimize rank(X)
subject to ‖A(X)− b‖2 ≤ ε,

(1)

where X ∈ R
m×n is the variable, A : R

m×n → R
p is

a linear map, b = A(X0) + e denotes the noisy measure-

ments with ‖e‖2 ≤ ε. X0 ∈ R
m×n is the matrix we aim

to recover. We denote its singular value decomposition by

X0 = UΣV T = X0,r + (X0 −X0,r), where X0,r is formed

by truncating the SVD after r terms. This problem (and

its variations) have many applications including collaborative

filtering, quantum tomography, system identification, and Eu-

clidean embedding (see e.g. [19], [6] and references therein).

When X is a diagonal matrix, problem (1) reduces to the

classical problem of compressed sensing, where the goal is to

recover a sparse vector. Many approaches for problem (1) have

been proposed using this analogy, including the nuclear norm

heuristic [10] (analogous to �1 minimization), the reweighted

trace heuristic [11] (analogous to reweighted �1), and SVT [1],

as well as alternative methods not based on norm minimization

such as ADMiRA [14], and SVP [15].

The Nuclear Norm Heuristic (NNH) has been particularly

popular and has been extensively studied from both theoretical

and algorithmic perspectives. This heuristic replaces rank in

the objective of (1) with the nuclear norm (also known as

the Schatten 1-norm or trace norm) of the matrix, denoted

by ‖X‖∗ =
∑min{m,n}

i σi(X) where σi(X) are the singular

values. NNH solves the convex problem

minimize ‖X‖∗
subject to ‖A(X)− b‖2 ≤ ε.

(2)
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This heuristic is improved upon by the Reweighted Trace
Heuristic (RTH) [11], discussed in section III, which uses

a weighted objective with iterative weight updates. RTH can

also be interpreted as locally minimizing a smooth concave

function, logarithm of the determinant of the matrix, instead

of its rank. Both RTH and its vector analog, reweighted �1
minimization [8], empirically show better recovery properties

than NNH or �1 minimization (see [8], [12], [17]). Recently,

analytical results for the reweighted �1 heuristic were given

by Needell in [18]. However, no theoretical guarantees on the

performance of the RTH have been available.
In this paper, we present the first theoretical guarantees for

the RTH, in the case where the matrix variable is positive

semidefinite and the map A satisfies the Restricted Isometry
Property (RIP). Extending the approach in [18], we quantify

the improvement of RTH over nuclear norm minimization by

proving tighter bounds on the recovery error for low-rank

matrices with noisy measurements. As another contribution,

we extend recent RIP results for �1 minimization [2], [4], [3]

to the NNH, and show that recovery happens under a weaker
assumption on the RIP constants. The weaker condition is

useful in our analysis of the RTH, and may also be of

independent interest.
Recent results [6] show random maps satisfying RIP guaran-

tee recovery with the least possible number of measurements,

O(max{m, n}r). These maps also yield very tight (in an

oracle sense) error bounds for noisy recovery. Furthermore,

even in applications where the RIP is not satisfied such as

Matrix Completion, restricted versions of it (e.g.,[15]) have

proven useful. These results encourage the use of RIP as an

analytical tool in certain contexts such as analysis of noisy

recovery. It may also lead to more applications that use random

ensembles.
The paper is organized as follows. The improved RIP

conditions are derived in Section II, and are used in the

analysis of the RTH given in Section III. In Section IV, we

put our contributions in perspective and discuss some possible

extensions of this work.

II. RIP RESULT FOR THE NUCLEAR NORM HEURISTIC

In this section, we give an RIP-based recovery result for the

Nuclear Norm Heuristic (NNH), extending the improvements

from compressed sensing ([2],[4]). We begin with a few

definitions.

Definition II.1. The r-restricted isometry constant δr of a
linear operator, A : R

m×n → R
p is the smallest constant for

which

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F (3)

holds for all matrices X of rank at most r.
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Definition II.2. Let t = min (m, n). If r + r′ ≤ t, the r, r′-
restricted orthogonality constant θr,r′ of a linear operator A :
Rm×n → R

p is the smallest constant for which

|〈A(X),A(X
′
)〉| ≤ θr,r′‖X‖F ‖X ′‖F (4)

holds for all matrices X of rank at most r and all matrices
X

′
of rank at most r′, where X, X

′
are such that if the

SVD of X is X = [UrUm−r]
[

Σr 0
0 0

] [
V T

r

V T
n−r

]
then

X
′

= Um−rZ1 + Z2V
T
n−r for some Z1 ∈ R

(m−r)×n, Z2 ∈
R

m×(n−r).

We note that in the above definition of θr,r′ , X, X
′

satisfy

〈X, X
′〉 = 0. It can be shown that (similar to the vector case

in [7])

θr,r′ ≤ δr+r′ , θr1,r2 ≤ θr3,r4∀r1 ≤ r2, r3 ≤ r4 s.t.

r1 + r2 ≤ t, r3 + r4 ≤ t. (5)

Our recovery result for the nuclear norm heuristic is as

follows:

Theorem II.3. Let A have a (2r + αr)-restricted isometry
constant δ2r+αr and a (2r + αr, βr)-restricted orthogonality
constant θ2r+αr,βr, where 2α ≤ β ≤ 4α. Let X∗ be the
solution obtained through nuclear norm norm minimization
and X0 be as defined before. If δ2r+αr + 1√

β
θ2r+αr,βr < 1,

then H = X∗ −X0 satisfies

‖H‖F ≤ Cε +
B√
r
‖X0 −X0,r‖∗,

where the constants B, C are a function of the isometry and
orthoganality constants.

The following nuclear norm inequality proves useful in

getting sharper bounds and can be shown through the fact

that the nuclear norm is the dual norm of the spectral norm.

Lemma II.4. For any block matrix, X =
[

X1 X2

X3 X4

]
,

‖X‖∗ ≥ ‖X1‖∗ + ‖X4‖∗.

Now, we come to the proof of the main theorem.

Theorem II.3 Proof: The proof goes along similar

lines to that in [5],[4] where the idea of support split-

ting is used to show that a sparse vector can be re-

covered through (�1) minimization if the matrix A defin-

ing the constraint set satisfies RIP. Let SVD of X0 =[
Ur Um−r

] [
Σr 0
0 Σ̄

] [
V T

r

V T
n−r

]
= X0,r +(X0−X0,r),

with X0,r = UrΣrV
T
r . Define PU = UrU

T
r ,PU⊥ =

Um−rU
T
m−r,PV = VrV

T
r ,PV ⊥ = Vn−rV

T
n−r. Let H =

PT (H) + PT⊥(H), with

PT (H) = PUHPV + PUHPV ⊥ + PU⊥HPV

PT⊥(H) = PU⊥HPV ⊥ (6)

We note that T denotes the set {Z : Z = PUHPV +
PUHPV ⊥ + PU⊥HPV for some H ∈ R

m×n}. And T⊥

denotes the set {Z : Z = PU⊥HPV ⊥ for some H ∈ R
m×n},

i.e. the set of all matrices whose row and column spaces

are orthogonal to the row and column space of X0,r. Also

note that rank(PT (H)) ≤ 2r and that XT
0,rPT⊥(H) =

X0,rPT⊥(H)T = 0.

We define UT HV =
[

UT
r HVr UT

r HVn−r

UT
m−rHVr UT

m−rHVn−r

]
=[

H̄1 H̄2

H̄3 H̄4

]
. Therefore, ‖X0‖∗ ≥ ‖X0 +H‖∗ = ‖UT (X0 +

H)V ‖∗ =
∥∥∥∥
[

Σr + H̄1 H̄2

H̄3 Σ̄ + H̄4

]∥∥∥∥
∗
≥ ‖Σr + H̄1‖∗ +

‖Σ̄ + H̄4‖∗ ≥ ‖X0,r‖∗ − ‖PUHPV ‖∗ − ‖X0 − X0,r‖∗ +
‖PU⊥HPV ⊥‖∗, where the second inequality follows from

Lemma II.4. Thus,

‖PT⊥(H)‖∗ ≤ ‖PUHPV ‖∗ + 2‖X0 −X0,r‖∗ (7)

Let PT⊥(H) = [U∗U11U12U21U22..] ΣH⊥ [V∗V11V12V21V22..]
T

be the SVD of PT⊥(H), with the singular values in

ΣH⊥ decreasing from top to the bottom. ΣH⊥ is made

up of diagonal blocks Σ∗, Σ11, Σ12, Σ21, Σ22, . . . with

Σ∗ and Σi1 of size αr and Σi2 of size (β − α)r
(2α ≤ β ≤ 4α) ∀i ≥ 1. Denote, H∗ = U∗Σ∗V T

∗ and

Hi1 = Ui1Σi1V
T
i1 , Hi1 = Ui2Σi2V

T
i2 , Hi = Hi1 + Hi2

∀i ≥ 1.

At this point, we note that our goal is to have a good bound

on ‖H‖2F = ‖PT (H) + H∗‖2F +
∑

i≥1 ‖Hi‖2F . Thus two key

steps follow. The first is to get a good inequality between∑
i≥1 ‖Hi‖F and ‖PT (H) + H∗‖F . We combine (7) and the

shifting inequality(see e.g. [4]) towards this end. The second

step is to get a bound on ‖PT (H) + H∗‖F using RIP and

restricted orthogonality.

We note that the shifting inequality can be used to get tighter

�2, �1 inequalities between pairs of vectors. This idea is easily

extended to matrices by applying the shifting inequality to the

singular values as below.

‖H1‖F =‖H11 + H12‖F ≤ ‖H∗‖∗ + ‖H11‖∗√
βr

‖Hi‖F =‖Hi1 + Hi2‖F

≤‖H(i−1)2‖∗ + ‖Hi1‖∗√
βr

, ∀i ≥ 2 (8)

Using the inequalities in (8), (7) and Lemma II.4 it is easy

to see that,

∑
i≥1

‖Hi‖F ≤ 1√
βr

⎛
⎝‖H∗‖∗ +

∑
i≥1

‖Hi‖∗
⎞
⎠

≤
√

1
β
‖PT (H)‖F +

2√
βr
‖X0 −X0,r‖∗(9)

We upper and lower bound |〈A(H),A(PT (H) + H∗)〉| to

derive a bound for PT (H) + H∗ and thus a bound for

H . Denoting, S = |〈A(H),A(PT (H) + H∗)〉| it can be

shown(analogous to the derivation in Section 3.2 [4]) that,
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S ≥ ‖PT (H) + H∗‖F ((1− δ2r+αr

−
√

1
β

θ2r+αr,βr)‖PT (H) + H∗‖F −

θ2r+αr,βr
2√
βr
‖X0 −X0,r‖∗) (10)

and that,

S ≤ 2ε
√

1 + δ2r+αr‖PT (H) + H∗‖F (11)

Combining (10) and (11), we get,

‖PT (H) + H∗‖F ≤ 2ε
√

δ2r+αr + 1

1− δ2r+αr −
√

1
β θ2r+αr,βr

+
θ2r+αr,βr

2√
βr
‖X0 −X0r‖∗

1− δ2r+αr −
√

1
β θ2r+αr,βr

(12)

Combining, (12) and (9), we get a bound on ‖H‖F ,

‖H‖2F = ‖PT (H) + H∗‖2F +
∑
i≥1

‖Hi‖2F

≤ ‖PT (H) + H∗‖2F + (
∑
i≥1

‖Hi‖F )
2

≤
(

Cε +
B√
r
‖X0 −X0r‖∗

)2

(13)

where, C =
2
√

1+δ2r+αr

√
1+ 1

β

1−δ2r+αr−
√

1
β θ2r+αr,βr

, B =

2√
β

( √
1+ 1

β θ2r+αr,βr

1−δ2r+αr−
√

1
β θ2r+αr,βr

+ 1

)
. Note that for (12) to

hold, we need that the denominator to be positive, i.e.

δ2r+αr +
√

1
β

θ2r+αr,βr < 1 (14)

Let β = 4α. Assume that r = 10k + ω, where 0 ≤ ω ≤ 9
and k ∈ Z+. Then, (2r + αr) + (4α)r < ζr (ζ ∈ Z+) if

αr < ζ−2
5 r = 2k(ζ − 2) + ω ζ−2

5 . Choose α such that,

αr =
{

2k(ζ − 2) if 0 ≤ ω ≤ 4
2k(ζ − 2) + ζ − 2 otherwise

(15)

Then, αr, βr = 4αr are integers. Using (5), we get that

δ2r+αr +
√

1
β θ2r+αr,βr < δζr(1 + 1√

β
) < 1 if δζr <

√
β

1+
√

β
.

In particular if ω = 0, we get that for ζ = 3, 4, 5,

δ3r < 2
√

5 − 4 = 0.4721, δ4r < 8−√
40

3 = 0.558 and

δ5r < 12−√
60

7 = 0.607 are sufficient for (14) to hold and

thus for (13) to hold. Even if ω �= 0, for reasonably large k,

the upper bound on the RIP constants(δ3r, δ4r, δ5r) that are

sufficient for recovery very quickly tend to the upper bounds

above. It can also be shown by extending the analysis in [2]

that δ2r < 0.307 is sufficient for (14) to hold and thus for (13)

to hold. Also observe that with zero measurement error,(ε = 0)

and rank(X0) ≤ r, the nuclear norm minimization exactly

recovers X0(if at least one of the above conditions on δ2r,

δ3r, δ4r, δ5r are satisfied).

Our δ2r < 0.307 result compares well with the recent SVP

result [15], where if δ2r < 1
3 , the SVP algorithm guarantees

recovery. The SVP algorithm, though efficient requires apriori

knowledge of the rank of X0. Our results also improves greatly

on the previous result of [19] and [9], where recovery is shown

using nuclear norm minimization if δ5r < 0.21, the result of

δ3r <
√

3√
3+4

= 0.302 in [13] and also on the RIP result of

δ4r <
√

2− 1 given in [6] for recovery using NNH. We also

note Theorem 2.3 in [6] mentions that if p > O(nr), then

recovery can be guaranteed with high probability if the map

A is chosen from certain random distributions. Our δ2r result

reduces the constant in O(nr) by a factor of around 2 as

compared to the δ4r result given in [6].

III. RIP RESULT FOR REWEIGHTED TRACE HEURISTIC

In this section we use the guarantee result in the previous

section to give a first guarantee result for the Reweighted
Trace Heuristic(RTH). The RTH iteratively minimizes the

linearization to a concave surrogate for rank(X), the surrogate

being log det(X+γI), where γ > 0. The (k + 1)th
iteration of

the RTH [11] when X is restricted to be positive semidefinite

is given by:

Xk+1 = argminX Tr (Xk + γk+1I)−1
X

subject to X ≥ 0, ‖A(X)− b‖2 ≤ ε
(16)

where, γk+1 > 0 is a constant to ensure invertibility, A :
R

m×m → R
p and b = A(X0) + e, ‖e‖2 ≤ ε. Interestingly,

our analysis shows that γk plays an important role in bounding

the error of recovery. We make an additional assumption

that X0 be of rank at most r with SVD, X0 = UΣV T =

[UrUm−r]
[

Σr 0
0 0

] [
V T

r

V T
m−r

]
.

Let W k = Xk + γk+1I and let, Xk+1 = X0 + Hk+1. Let

the smallest non-zero singular value of X0 be μ. Also, we

assume that ‖Xk −X0‖F ≤ Mk.

We then have the following theorem that gives conditions

for the reweighted trace heuristic to have a better recovery

error bound than nuclear norm minimization.

Theorem III.1. Let A have the RIP constant δ3r, obeying
δ3r < 2

√
5 − 4. Let X1 be the solution obtained through

nuclear norm minimization (2).Then ‖Xk −X0‖F ≤ E(k) =

2ε
√

1 + δ3r

√
1+ 10

8 C2
1,k

1−δ3r(1+C1,k

√
10
8 )
∀k ≥ 2, where C1,k is a con-

stant that depends on E(k − 1), γk, μ. If C1,k < 1 ∀k ≥ 2,
then the sequence, {E(k)} converges to a limit E < E(1). In
particular, if μ > 3E(1) and γk = E(k−1)(μ+E(k−1))

μ−3E(k−1) ∀k ≥ 2
then the sequence, {E(k)} converges to a limit E < E(1).

Before we proceed with the proof, we list some useful

inequalities for eigenvalues and singular values.

Lemma III.2. [16] Let A, B ∈ R
n×n be hermitian matrices.

Let λ1(C) ≥ λ2(C) . . . λn−1(C) ≥ λn(C) denote the ordered
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eigen values of any matrix C. Let the singular values be
ordered similarly and be denoted by σi(C). Then,

λi(A) + λn(B) ≤ λi(A + B) ≤ λi(A) + λ1(B)
σi(A + B) ≤ σi(A) + σ1(B)

σi(A)σn(B) ≤ σi(AB) ≤ σi(A)σ1(B) (17)

If both A, B are positive semidefinite, then the following
inequality also holds.

λi(A)λn(B) ≤ λi(AB) ≤ λi(A)λ1(B) (18)

Theorem III.1 proof: The proof is inspired by the

analysis in [18] and is shown in two parts. In the first part,

we assume a bound on the error, ‖Hk‖F ≤ Mk from the

previous iteration and derive a bound on the error ‖Hk+1‖F

for the next iteration of the RTH. In the second part of the

proof, we use the recursive error bound expression derived in

first part to show that the error bounds converge to a limiting

error bound of RTH under the assumptions of the theorem.

Proof Part 1 To simplify the notation, we drop the su-

perscripts on γk+1, Hk+1, Mk, Xk, W k and refer to them

as γ, H, M, X, W respectively in this part of the proof. It

follows from (16) that Tr W−1X0 ≥ Tr W−1(X0 + H) =
Tr W−1X0 + Tr (W k)−1

H . Thus,

Tr W−1H ≤ 0 (19)

We can decompose the matrix UT XkU as UT XkU =[
X̄1 X̄2

X̄3 X̄4

]
and UT WU as W̄ =

[
W̄1 W̄2

W̄3 W̄4

]
=

UT WU =
[

X̄1 + γI X̄2

X̄3 X̄4 + γI

]
. Note that UT W−1U =

(W̄ )−1
is given by W̄−1 =

[
W̄−1

1 W̄−1
2

W̄−1
3 W̄−1

4

]
where,

W̄−1
1 = (X̄1 + γI − X̄2(X̄4 + γI)−1

X̄3)
−1

W̄−1
4 = (X̄4 + γI − X̄3(X̄1 + γI)−1

X̄2)
−1

W̄−1
2 = −(X̄1 + γI)−1

X̄2 × W̄−1
4

W̄−1
3 = −(X̄4 + γI)−1

X̄3 × W̄−1
1 (20)

are obtained through the formula for block matrix inversion.

Multiplying on left side of UT XkU by U and right hand side

by UT , we get four terms which sum to Xk. This results

in an additive decomposition: X = X1 + X2 + X3 + X4.

A similar additive decomposition for W−1, H gives W−1 =
W−1

1 + W−1
2 + W−1

3 + W−1
4 , H = H1 + H2 + H3 + H4.

(19) can be decomposed as:

Tr W−1H4 ≤ −Tr W−1(H1 + H2 + H3) (21)

It holds that Tr W−1H4 = Tr W−1
4 H4, since the other

terms in the additive decomposition of (W k)−1
cancel out.

Let H̄ = UT HU =
[

H̄1 H̄2

H̄3 H̄4

]
.

Note that both, W−1
4 and H4 are positive semidefinite

(X0 + H = Xk+1 ≥ 0 =⇒ H̄4 ≥ 0 =⇒ H4 ≥ 0).

Also, Tr W−1
4 H4 = Tr UT W−1

4 UUT H4U = Tr W̄−1
4 H̄4 ≥

σmin(W̄−1
4 ) Tr(H̄4) = σmin(W̄−1

4 ) Tr(H4), where the last

inequality follows from (17). σmin(W̄−1
4 ) ≥ 1

M+γ and thus,

Tr W−1
4 H4 ≥ 1

M + γ
Tr(H4) =

1
M + γ

‖H4‖∗ (22)

We note at this point that PT (H) = H1 + H2 + H3

and PT⊥(H) = H4 (where PT ,PT⊥ are as defined in

(6)). We now upper bound −Tr W−1PT (H) in terms of

‖PT (H)‖∗. Note that, −Tr W−1PT (H) = −Tr(W1
−1 +

W2
−1 + W3

−1)PT (H). We can bound the above quantity

by observing that |Tr A′B| ≤ ‖A‖2‖B‖∗ for any two A, B.

Thus,

|Tr W−1PT (H)|≤‖(W−1
1 + W−1

2 + W−1
3 )‖2‖PT (H)‖∗

=‖UT (W−1
1 + W−1

2 + W−1
3 )U‖2‖PT (H)‖∗

≤(‖W̄−1
1 ‖2 + ‖W̄−1

3 ‖2)‖PT (H)‖∗
where the last inequality uses the fact that ‖W̄−1

3 ‖2 =
max(‖W̄−1

3 ‖2, ‖W̄−1
2 ‖2). We now upper bound each of

‖W̄−1
1 ‖2, ‖W̄−1

3 ‖2.Define G(M, γ) = M+γ
γ(μ−M)+γ2−M2 . Then,

‖W̄−1
3 ‖2 ≤ ‖W̄−1

1 ‖2 M

γ
≤ G(M, γ)M

M + γ
.

Thus,‖W̄−1
1 ‖2 + ‖W̄−1

3 ‖2 ≤ G(M, γ). The above inequalities

can be checked using the definitions in (20) and the inequali-

ties in (17),(18). One key step is bounding σmin(X̄1 + γI) =
λmin(X̄1+γI) = λmin(X̄1)+γ. Since, ‖X−X0‖2 ≤ M , we

have that ‖X̄1−Σ‖2 ≤ M . Since, X̄1−Σ is symmetric, ‖X̄1−
Σ‖2 ≥ |λi(X̄1 − Σ)| and thus λmin(X̄1 − Σ) ≥ −M . From

(17), we have that λmin(X̄1 − Σ) ≤ λmin(X̄1) − λmin(Σ).
Hence, λmin(X̄1 + γI) ≥ μ −M + γ. The inequalities now

follow by using the fact that W̄−1  0 and through successive

applications of the inequalities in (17). Therefore,

−Tr W−1PT (H) ≤ G(M, γ)‖PT (H)‖∗ (23)

Combining (21),(22), and (23), we have that,

‖PT⊥(H)‖∗ ≤ (M + γ)G(M, γ)‖PT (H)‖∗ (24)

Thus we have bounded the ‖PT⊥(H)‖∗ in terms of

‖PT (H)‖∗. We can now proceed using a similar analysis as

in section II to obtain a bound for ‖H‖F . We get that,

‖H‖F ≤ 2ε

√
1 + 1

β C1(M, γ)2
√

1 + δ2r+αr

1− δ2r+αr − C1(M, γ)
√

1
β θ2r+αr,βr

(25)

where, C1(M, γ) = (M + γ)G(M, γ) and α, β are as defined

earlier.

Proof Part 2 Note that, the recovery error using nuclear norm

minimization (13) can be obtained by setting C1(M, γ) = 1 in

(25). To simplify our analysis, we let β = 4α with α chosen

as in (15). Then,δ2r+αr < δ3r, θ2r+αr,βr < δ3r. Therefore, a

weaker upper bound can be obtained from (25) as

‖H‖F ≤ D(M, γ)ε, (26)
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where, D(M, γ) = 2ε
√

1 + δ3r

√
1+ 1

β C1(M,γ)2

1−δ3r(1+C1(M,γ)
√

1
β )

. Let

E(k+1) = D(E(k), γk+1) ∀k ≥ 1. Also denote C1,k+1 =
C1(E(k), γk+1) ∀k ≥ 1. Thus,E(k + 1) denotes an upper

bound on the error at the end of iteration k + 1. Since the

weight is chosen to be identity in the first iteration,we have

that E(1) = D1ε, where D1 =
2
√

1+δ3r

√
1+ 1

β

1−δ3r(1+
√

1
β )

.

Note that E(2) ≤ E(1) iff C1,2 ≤ 1. This gives us a bound

on μ (the minimum non-zero singular value in X0):

μ ≥ 3E(1) +
2
γ

E(1)2 (27)

Assuming that E(k) ≤ E(k − 1) for all previous k,it holds

true that C1,k+1 ≤ C1,k and thus E(k + 1) ≤ E(k) for all k.

Assuming δ3r < 2
√

5−4 (see results from section II), E(k) is

always positive. Thus,E(k) converges to a limit E. The limit

can be obtained by solving the equation, E = D(E, γ). Given

a μ, the optimal, γ2(μ) = E(1)(μ+E(1))
(μ−3E(1)) minimizes E(2). We

also require that μ ≥ 3E(1)+ 2
γ2 E(1)2, i.e. γ2 > 2E(1)2

μ−3E(1) for

E(2) < E(1). This is ensured if μ ≥ 3E(1) (since γ2 > 0).

Hence, if γk is chosen so that E(k) is minimized, i.e. γk =
E(k−1)(μ+E(k−1))

(μ−3E(k−1)) , then the limiting error bound, E < E(1).

IV. DISCUSSION AND FUTURE WORK

We gave an RIP-basesd deterministic recovery result for

nuclear norm minimization with RIP constants that are better

than in existing results([9],[13],[19]). We then used this result

to give a guarantee of recovery for RTH. To understand how

RTH compares with the NNH, we vary δ3r, ν(where we let

μ ≥ νE(1)) and using the recursive expressions for E(k),
we compute how E(k)/E(1) varies for k = 2, 3, 4, 5 . We

choose γk optimally at each iteration as defined in the previous

section. The results in Table I show that E(k)/E(1) decreases

and converges as k increases which is consistent with the

statements in Theorem III.1. A surprising phenomenon is

that as δ3r increases from 0.2 to 0.45, E(k)/E(1) reduces

drastically. This can be explained by the fact that as δ3r

increases and approaches 0.472, E(1) becomes very large but

since C1,k < 1, E(k) doesn’t grow as large and hence the

small ratio. The second to last column shows the rapid growth

of E(1) with increase in δ3k. The last column shows that if

μ > 3E(1) and if γk is chosen optimally at each iteration,

then the upper bound on the error, E(k) is consistently small

for large k.

We also observe that if γk is fixed,(e.g. = 10E(1)), then

E(5)/ε is much larger than if γk were chosen greedily at each

iteration. So it is natural to ask if choosing γk adaptively at

each iteration as a function of the error bound in the previous

iteration would lead to improved numerical results. We have

given results for RTH when the constraint set is restricted to

be positive semidefinite. Further work could include extending

this result when the constraint set is convex but not restricted

to be positve semidefinite.

δ3r ν
E(2)
E(1)

E(3)
E(1)

E(4)
E(1)

E(5)
E(1)

E(1)
ε

E(5)
ε

0.2
5 0.83 0.75 0.712 0.694 5.702 3.955
10 0.603 0.537 0.528 0.527 5.702 3.006

0.3
5 0.755 0.610 0.532 0.496 9.382 4.6543
10 0.482 0.398 0.383 0.382 9.382 3.58

0.4
5 0.564 0.299 0.217 0.2 23.233 4.645
10 0.275 0.187 0.181 0.18 23.233 4.187

0.45
5 0.284 0.075 0.06 0.06 77.05 4.59
10 0.103 0.059 0.058 0.058 77.05 4.476

TABLE I
COMPARING UPPER BOUNDS ON RECOVERY ERROR AT DIFFERENT

ITERATIONS OF REWEIGHTED NUCLEAR NORM MINIMIZATION WITH THE

RECOVERY ERROR OF NUCLEAR NORM MINIMIZATION, E(1)
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