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Abstract— Models or signals exhibiting low dimensional
behavior (e.g., sparse signals, low rank matrices) play an
important role in signal processing and system identification.
In this paper, we focus on models that have multiple structures
simultaneously; e.g., matrices that are both low rank and sparse,
arising in phase retrieval, quadratic compressed sensing, and
cluster detection in social networks. We consider the estima-
tion of such models from observations corrupted by additive
Gaussian noise. We provide tight upper and lower bounds on
the mean squared error (MSE) of a convex denoising program
that uses a combination of regularizers to induce multiple
structures. In the case of low rank and sparse matrices, we
quantify the gap between the MSE of the convex program and
the best achievable error, and we present a simple (nonconvex)
thresholding algorithm that outperforms its convex counterpart
and achieves almost optimal MSE.

This paper extends prior work on a different but related
problem: recovering simultaneously structured models from
noiseless compressed measurements, where bounds on the num-
ber of required measurements were given. The present work
shows a similar fundamental limitation exists in a statistical
denoising setting.

Index Terms— simultaneously structured, low rank and
sparse, denoising, estimation, compressed sensing

I. INTRODUCTION

Suppose we would like to identify an unknown system
or model, given limited and/or noisy observations of the
system, and with the prior information that the system has
a low-dimensional structure. To do this, one can setup an
optimization problem that minimizes the error for fitting
the observations, and penalizes (an appropriate notion of)
model complexity. This setup is nowadays commonplace in
signal processing, statistical learning, and dynamical system
identification. Recent research has focused on theoretical
analysis of classes of structures and their corresponding
convex penalties, e.g., sparsity of coefficients induced by
the `1 norm, or low-rankness of a matrix induced by the
nuclear norm [3], [4], [14], [10]. As an example in linear
dynamical systems identification, system order or McMillan
degree is captured by the rank of an appropriate Hankel
matrix, and penalties encouraging a low-rank solution have
been employed [26].
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We consider the problem of estimation for structured mod-
els [1], [2], [13]: how well can a signal x0 be estimated from
corrupted observations y = x0+z, where z is additive noise?
The aim is to find a signal that both fits the observations
and satisfies the structural requirements, such as sparsity.
Various estimation problems involving sparse vectors, low
rank matrices and sum of low rank and sparse matrices
have been analyzed in [1], [6], [11], [12]. Existing work
has focused on models with a single structure only, whereas
in practice, a model often has more than one structure at the
same time. For example, simultaneously sparse and low-rank
matrices arise in applications such as sparse phase retrieval
(see, e.g., [21], [25], [24]), as well as cluster detection
[7], [8]. The paper [9] proposed a general framework for
recovery of such signals from linear observations using
a combination of known penalties corresponding to each
structure. It showed that, surprisingly, no combination of the
individual penalties can do any better, order-wise, than an
algorithm which uses only the best individual penalty and
which essentially exploits only one of the several structures.
The papers [20], [30] are in similar nature to [9].

The present paper focuses on the estimation problem for
simultaneously structured signals and considers the convex
program,

argmin
x

1
2
‖y−x‖2

2 +
S

∑
i=1

λi‖x‖(i) (I.1)

to estimate x0 where the penalty function ‖ ·‖(i) is chosen to
exploit the structure i of x0. We give new sharp bounds on
the performance of (I.1) where we use mean-squared-error
(MSE) as the performance metric. Specifically,
• In Section III, we analyze the problem for abstract

signals. In a similar flavor to [9], [20], [30], our lower
bounds on the MSE indicate that using a combination
of penalties may not do a much better job at estimation
than using only the best penalty.

• In Section IV, we specialize our results to the case of
low rank and sparse matrices where the structures are
sparsity, row/column sparsity and low rankness. While
this has been studied in [7], authors only provide upper
bounds to the estimation error. Our analysis are more
comprehensive and we additionally provide a sharp
MSE lower bound which provably verifies the belief
that one doesn’t gain much by using multiple penalties



in this special case. In particular, we show this in the
high signal-to-noise ratio (SNR) regime.

• In Section V, for sparse and low rank matrices, we
propose a simple and tractable algorithm, based on
thresholding the nonzero entries and singular values of
the matrix. We show that this approach can substan-
tially outperform the convex program in the same SNR
regime.

Section VI is dedicated to verify our theoretical predictions
and contrasting convex and nonconvex algorithms. Finally,
Section VII discusses open questions and avenues for future
research.

II. PROBLEM SETUP

Notation. For a vector x ∈ Rn, ‖x‖ denotes a general
norm, and ‖x‖∗ = sup‖z‖≤1 〈x,z〉 denotes the dual norm.
A subgradient of the norm ‖ · ‖ at x is a vector g for
which ‖z‖ ≥ ‖x‖+ 〈g,z−x〉 holds for any z. The set of all
subgradients is called the subdifferential, denoted by ∂‖x‖.
For a subspace M, denote its orthogonal complement by M⊥.
We use xM as a shorthand for the orthogonal projection of
x onto subspace M defined as

xM = arg min
w∈M

‖w−x‖2 .

The `1 norm of a vector or matrix is denoted by ‖ · ‖1 and
returns the sum of the absolute values of its entries. The `1,2
norm of a matrix is denoted by ‖·‖1,2 and returns the sum of
the `2 norms of the columns, i.e., ‖X‖1,2 = ∑i ‖xi‖2 where xi
is the i’th column, [11]. Also, ‖ ·‖0,2 denotes the nonconvex
function that returns the number of nonzero columns of a
matrix. Finally, the nuclear norm of a matrix X is denoted
by ‖X‖? and is equal to the sum of its singular values.

Remark: Due to space considerations, some of the proofs are
omitted. The reader is referred to the technical report [31].

A. Simultaneous structures

We consider a signal (or model) x0 ∈ Rn that has several
“low dimensional structures” simultaneously (e.g., sparsity,
group sparsity, or low-rank). Suppose the i’th structure
corresponds to a norm ‖ · ‖(i), that when used as a penalty,
promotes that structure (e.g., `1 norm for sparsity). We refer
to such a x0 a simultaneously structured model. As a central
example, consider a simultaneously sparse and low rank
matrix X0 ∈ Rn1×n2 , where nonzero entries lie on a k× k
submatrix, for some k� n, and rank is r� k. To induce
sparsity and low rank, we can use the `1 norm and the nuclear
norm, respectively, as penalties.

To simplify the analysis, in this paper we assume that
all the norms are decomposable at x0 which is defined as
follows.

Definition 2.1 (Decomposable Norm): A norm ‖ ·‖ is de-
composable at x ∈ Rn if there exist a subspace T ⊂ Rn and
a vector e ∈ T such that the subdifferential at x has the form

∂‖x‖= {z ∈ Rn : zT = e , ‖zT⊥‖
∗ ≤ 1}, (II.1)

and for all s ∈ T⊥ we have

‖s‖= sup
z∈T⊥,‖z‖∗≤1

〈s,z〉 . (II.2)

We refer to T as the support and e as the sign vector of x0
with respect to ‖ · ‖.
The prime example is the `1 norm. It is easy to check that
this norm is decomposable at vectors x0 with k nonzero
entries (called k-sparse vectors). The sign vector e is given
by entrywise signs, i.e., ei = sgn(x0,i), and the support T is
the subspace of vectors whose nonzero patterns are same as
x0. The `1, `1,2, and nuclear norms are decomposable at all
points in Rn.

B. The Denoising Problem

We consider the problem of estimating a simultaneously
structured model (signal) x0 ∈ Rn corrupted by additive
Gaussian noise z, where we observe the corrupted signal
y = x0 + z. Suppose x0 has S different known structures
(e.g., sparsity, block sparsity, or low rank), and that the i’th
structure is associated with the decomposable norm ‖·‖(i). To
estimate x0, we consider the following optimization problem,

x̂ = x̂(y) = argmin
x

1
2
‖y−x‖2

2 +
S

∑
i=1

λi‖x‖(i), (II.3)

where x̂(y) stands for the estimate obtained via (II.3) when
the observed vector is y, and λi are regularization parameters.
As a performance measure, we use the usual mean squared
error (MSE), ‖x̂− x0‖2

2; to obtain a measure independent
of noise statistics, we normalize the MSE by the noise
variance. The following definition characterizes the worst-
case estimation performance of the program (II.3) at x0.

Definition 2.2 (MSE risk): Consider the denoising pro-
gram (II.3) with regularization parameters λ1, . . . ,λS and
noise vector z with i.i.d. standard normal entries. We define
the MSE risk of the program (II.3) at x0 as

η({λi}S
i=1) = max

γ>0
E[‖x̂(γx0 + z)− γx0‖2

2]. (II.4)

That is, we consider scaled versions of x0 while keeping the
noise constant, and calculate the “worst case mean squared
error” [15], [16], [17]. The MSE risk is a function of the
signal x0, norms ‖ · ‖(i), and {λi}S

i=1. Observe that, scaling
does not change how structured the signal is; rank, sparsity
or block sparsity of γx0 is the same as x0 for nonzero γ .
Thus η({λi}S

i=1) provides a simple characterization of the
worst case MSE independent of the scaling. Note that instead
of scaling x0, we can obtain the same error measure by
keeping x0 fixed, scaling the noise vector and {λi}S

i=1 by
σ , then normalizing the error by σ2. This is because ‖ · ‖(i)
are homogeneous functions. Thus, we can think of γ as the
signal-to-noise ratio (SNR). We will see in Section III that
this error measure captures the fundamental properties of
structured signal estimation.
• Known results: Sparse signals and low rank matrices are
two important cases where the desired model has a single
structure. When x0 ∈ Rn is k-sparse, with the right tuning
of `1 norm, the MSE risk is as small as O

(
k log n

k

)
. This



differs from the minimum possible MSE risk, which is k,
by only a log-factor [1]. Here, by “minimum possible”,
we mean the smallest MSE risk over all estimators which
includes nonconvex functions such as cardinality `0. The
denoiser (estimator) with `1 norm is also known as the soft
thresholding operator. For a rank r matrix in Rn×n, the MSE
risk of properly tuned nuclear norm minimization is O (rn)
and orderwise optimal, [13], [18], [19].
• In this work, we provide bounds for the MSE risk of
(II.3) for simultaneously structured signals. In the case of
sparse and low rank matrices, our lower bound indicates a
fundamental limitation of using a combination of `1 norm
and the nuclear norm for estimation: As an example, assume
X0 is a rank 1 matrix whose entries are contained in a k×k
submatrix. While a mean squared error of O (k) is achievable
via a simple nonconvex algorithm, we show that, the risk for
problem (II.3) is lower bounded by O

(
min{k2,n}

)
, which

can be significantly higher than k.

III. BOUNDS ON MSE

In this section, we provide several results on the perfor-
mance of program (II.3), including upper and lower bounds
on the mean squared error and a formula that yields the exact
MSE risk (2.2). We first present a slight modification of a
result from [15] that gives the MSE risk in terms of the sub
differentials of the norms at x0.

Theorem 3.1 (Exact MSE risk, [15]): Consider the pro-
gram (II.3) with noise vector z∼N (0, I) and regularization
parameters {λi}S

i=1.
• Recall Definition 2.2. The MSE risk is given as follows,

η({λi}S
i=1) = E[dist(z,∑

i
λi∂‖x0‖(i))2], (III.1)

where dist(z,C) denotes the Euclidean distance of a
point z to the set C.

• Furthermore, the equality in (II.4) is achieved as γ→∞,
i.e. the scaling that maximize the MSE is infinity.

Since MSE risk is the worst case mean squared error over
all scalings, the equation (III.1) also provides an upper bound
to the mean squared error of program II.3.

E[‖x̂(x0 + z)−x0‖2
2]≤ E[dist(z,∑

i
λi∂‖x0‖(i))2] (III.2)

Next, we will give a sharp lower bound for the MSE risk
which is easier to interpret.

A. Lower bound on MSE

Recall the Definition 2.1. Let Ti and ei be the support
and sign vector corresponding to ‖ · ‖(i). Further, let Ri =
sups∈∂‖x0‖(i) ‖s‖2 which is the largest subgradient of the norm

at x0. Finally, let T∩ =
⋂S

i=1 Ti denote the joint support. We
define a quantity that will be useful for the next result. Let

ζi =
‖(ei)T∩‖2

2 n
R2

i dim(Ti)
, (III.3)

where (ei)T∩ is the orthogonal projection of vector ei onto the
subspace T∩. We can view {ζi}S

i=1 as a measure of correlation

among the subgradients of the norms over the joint support
subspace T∩. As argued in Section 2 of [9], often (and for
all norms mentioned in this paper) ζi lies between 0 and 1.

Theorem 3.2 (General lower bound): Consider the MSE
risk (III.1). Let ζi be as in (III.3) and assume〈

(ei)T∩ ,(e j)T∩
〉
≥ 0, (III.4)

for all i, j ≤ S. Finally, assume the model is reasonably
low-dimensional in at least one of the structures, namely,
that mini ζidim(Ti)≤ n. Then, the MSE risk given in (III.1)
satisfies

η({λi}S
i=1)≥

1
6S

min
1≤i≤S

ζidim(Ti). (III.5)

The proof of this result can be found in [31] and it is in a
similar nature to the proof of Theorem 3.2 of [9].
Interpretation: To have an intuitive interpretation, we can
view the dimension of support subspace Ti as the complexity
or “degrees of freedom” of the signal under structure i. For
example, for a k sparse signal, the support corresponding
to `1 norm is k dimensional. Ignoring the ζi terms (since
as mentioned before for all norms we consider they are
bounded by 1), Theorem 3.2 suggests the MSE risk is at
least on the same order as the dimension of the smallest
support subspace. Incorporating more norms for estimation,
may reduce the MSE risk, but only by a constant factor 1

S .
It is worth noting that (III.5) is independent of {λi}S

i=1.
Lower bounding MSE: Recall that MSE risk is the worst
case MSE. This means, for any ε > 0, for sufficiently large
SNR γ , the MSE in estimating γx0 from γx0 + z will be
greater than 1−ε

6S min1≤i≤S ζidim(Ti).

B. Upper bound on MSE

While Section III-A finds a lower bound on the MSE risk,
next, we give a deterministic upper bound to the estimation
error in the general decomposable norm framework.

Theorem 3.3: Let x0 be a simultaneously structured model
corresponding to {‖ · ‖(i)}S

i=1. Define the constants,

ρi , sup
v
{‖vTi‖2 : ‖v‖∗(i) ≤ 1}. (III.6)

for 1 ≤ i ≤ S corresponding to the i’th norm at x0 (see
Definition 2.1). Let z be the noise vector and x̂ be the
estimate obtained from program (II.3) for y= x0+z. Assume
for some set of non-negative constants {λ̄i}S

i=1 with ∑i λ̄i = 1,
we have λi ≥ λ̄i‖z‖?(i). Then, the error satisfies,

‖x̂−x0‖2
2 ≤min

4
S

∑
i=1

λi‖x0‖(i) ,

(
4

S

∑
i=1

λiρi

)2
 .

ρi is closely related to dim(Ti) and can be seen as a
measure of complexity of the signal under norm ‖ · ‖(i).
Theorem 3.3 generalizes Proposition 1 of [7] to arbitrary
mixtures of decomposable norms.

In the case of a simultaneously sparse and low rank matrix
X0 with k× k nonzero elements and rank r, we have the
following.
• For sparsity: Use `1 norm, ρ`1 = k.



• For low rank: Use nuclear norm, ρ? =
√

2r.
Using these, we can obtain upper bounds to the MSE which
are in similar nature to the ones given by Richard et al [7].

IV. MSE OF SIMULTANEOUSLY SPARSE AND LOW RANK
MATRICES

We now specialize our general bounds to the simultane-
ously sparse and low rank (S&L) matrices. Let us first start
with a description of our model.

Definition 4.1 (S&L): Let X0 ∈ Rn×n be a rank r matrix.
Assume the smallest submatrix containing nonzero entries of
X0 has dimensions k× k.
Observe that when k� n the matrix becomes sparse and if
additionally r� k, the matrix is low rank with respect to the
nonzero k× k submatrix. Hence, it exhibits two structures.
Observe that S&L matrices additionally have column and
row sparsity. Hence, the `1 norm, `1,2 norm and the nuclear
norm are strong candidates for the structure inducing func-
tions.

A. Lower bound on S&L MSE

Theorem 4.1 (S&L lower bound): Let X0 ∈ Rn×n. Con-
sider the following cases and the associated MSE risk.
(a) Assume X0 is a rank 1 matrix satisfying X0 = abT

where a,b are unit norm k sparse vectors. Then, MSE
risk of the program

min
X

1
2
‖Y−X‖2

F +λ`1‖X‖1 +λ?‖X‖? (IV.1)

at X0 obeys η(λ`1 ,λ?)≥ 1
12 min{‖a‖1‖b‖1k, n}.

(b) Assume X0 is same as in Definition 4.1. The MSE risk
of the program

min
X

1
2
‖Y−X‖2

F +λ`1,2‖X‖1,2 +λ`T
1,2
‖XT‖1,2 +λ?‖X‖?

(IV.2)
at X0 is lower bounded by 1

18 rn.
Proof: Observe that, to apply Theorem 3.2, one needs

the inner products of the projected sign vectors to be non-
negative. For S&L matrices, this was shown in [9], Section
5. For (IV.1), results in [9] give ζ`1 =

‖a‖1‖b‖1
k ,ζ? = 1 and

dim(T`1) = k2,dim(T?) = 2n−1≥ n which yields the desired
result with S = 2. For (IV.2), results in [9] give ζ`1,2 = ζ? = 1
and dim(T`1,2) = kn ≥ rn,dim(T?) = r(2n− r) ≥ rn which
again gives the desired outcome by setting S = 3.
Remark: In (a), when entries of a and b are ±1/

√
k, the

lower bound takes a simpler form, namely η ≥ min{k2,n}
12 .

What is remarkable is that this result shows using the best
possible combination is no better than using only one of the
`1 or nuclear norms.

B. Upper bound on S&L MSE

Lemma 4.2: Let noise Z have i.i.d. standard normal en-
tries. Let X0 be same as in Definition 4.1. Then, for the
optimal choice of λ`1 and λ? (i.e. the choice that minimize
the MSE risk), the MSE risk of the program (IV.1) at X0
satisfies

η(λ`1 ,λ?)≤min{c1k2 log
n
k
, c2n}. (IV.3)

Similarly, for the optimal choice of λ`1,2 ,λ`T
1,2
,λ?, the MSE

risk of program (IV.2) at X0 satisfies,

η(λ`1,2 ,λ`T
1,2
,λ?)≤ c2nr (IV.4)

for some positive global constants c1 and c2 .
Proof: To upper bound the minimum achievable MSE

risk, we will consider the optimal choice for only one of
the parameters and set the other one to zero. Consider the
first statement. If λ`1 = 0, λ? can be tuned to obtain MSE of
c2rn = c2n, [13]. Similarly, by setting λ? = 0 and optimally
tuning λ`1 , one can obtain c1k2 log n2

k2 ([1]), which gives the
desired result. For the second statement, the bound can be
achieved by only tuning the nuclear norm and setting the
block sparsity regularization parameters to 0.

C. Combining the bounds

Combining Lemma 4.2 with Theorem 4.1, we obtain tight
upper and lower bounds on the risk of optimally tuned
estimation of low rank and sparse matrices. Namely, we have
the following corollary.

Corollary 4.3: Assume X0 is as in Theorem 4.1 (a). Let
λ ∗`1

,λ ∗? be chosen to minimize the MSE risk of (IV.1), i.e.,
η∗=η(λ ∗`1

,λ ∗? )=minλ`1≥0,λ?≥0 η(λ`1 ,λ?). Then η∗ satisfies

1
12

min{‖a‖1‖b‖1k,n} ≤ η
∗ ≤min{c1k2 log

n
k
, c2n}.

(IV.5)
Assume X0 is as in Theorem 4.1 (b) and define minimum
MSE risk η∗ similarly, with λ`1,2 ,λ`T

1,2
,λ?. Then η∗ for the

program (IV.2) satisfies

1
18

rn≤ η
∗ ≤ c2nr . (IV.6)

Corollary 4.3 shows that we can sandwich the optimally
tuned risk between tight upper and lower bounds. For exam-
ple, the ratio between the bounds in (IV.5) is only a O(log n

k )

factor when ‖a‖1,‖b‖1 ≈ O(
√

k).

V. A TWO-STEP THRESHOLDING ALGORITHM

In this section, we present a simple and tractable (but non-
convex) algorithm for denoising an S&L matrix. Algorithm
1 first estimates the nonzero support of X0 and then uses
singular value soft thresholding, [13]. Our goal is to contrast
the performance of this algorithm with the convex programs
(IV.1) and (IV.2). For Algorithm 1, we have the following
result.

Theorem 5.1: Let X0 be same as in Definition 4.1 with
rank r = 1 and Y = γX0 +Z be the input to Algorithm 1.
Assume Z has i.i.d. standard normal entries. There exists a
scaling γ0 and sparsity level k0 such that for any γ > γ0 and
k > k0, with probability 1−2exp(−O (k)), we have,

‖X̂(Y)− γX0‖2
F ≤ c0k (V.2)

for some absolute constant c0 > 0.
In words, Theorem 5.1 says that, if the signal to noise ratio

γ is sufficiently large, Algorithm 1 will have an estimation
error that grows linearly in k. This is a significant improve-
ment over the convex program. In particular, combining



Algorithm 1 2-Step thresholding
Setup: X0 is same as in Definition 4.1.
Input: Noisy observation Y = X0 + Z ∈ Rn×n, sparsity k
and rank r.
Output: X̂(Y), estimate of X0.
Step 1: Find k rows and columns of Y with highest `2
norm. Set remaining columns and rows of Y to 0.
Step 2: Solve singular value soft thresholding,

X̂ = argmin
X

1
2
‖Y−X‖2

F +2.01
√

k‖X‖? (V.1)

Remark: In Step 2, the constant 2.01 is due to a technicality
in our proof. In general, any constant above 2 will work.

second statement of Theorem 3.1 with the MSE risk obtained
from Corollary 4.3 we find that, in the high SNR regime,
the convex program’s mean-squared-error is O

(
min{k2,n}

)
which can be significantly larger than k. The picture below
illustrates this gap for a rank 1 matrix.

6
O (n) MSE of the convex program (IV.2)

O
(
min{k2,n}

)
?

MSE of the program (IV.1)
min λ?‖X‖∗+λ`1‖X‖1 +

1
2‖Y−X‖2

F

gap!

MSE of Algorithm 1O (k)

6

VI. NUMERICAL RESULTS

Setup: The noise matrix Z has i.i.d. standard normal entries
and we estimate γX0 from γX0+Z with the convex program
(IV.1) or with Algorithm 1. We perform three experiments
to confirm our theoretical predictions. The underlying matrix
X0 is generated randomly as a rank one matrix abT

‖abT ‖F
where

a,b ∈ Rn are k sparse vectors whose nonzero entries are
i.i.d. standard normal. For the plots of convex programs,
results are averaged over 25 experiments. For Algorithm 1
this number is 200.

First, we aim to verify the risk formula given by Theorem
3.1. To do this, we solved (IV.1) for a 25×25 matrix, setting
(λ`1 ,λ?) = (0.8,5) and increased the SNR γ from 100 to
102. The sparsity k is varied from 3 to 24. In Figure 1, as γ

increases, the MSE increases as well and eventually becomes
quite close to the exact MSE risk given by (III.1).

Next, we compared (IV.1) and Algorithm 1 for 30× 30
matrices. We chose a high signal to noise ratio γ2 = 105 and
plotted the empirical mean squared errors corresponding to
Algorithm 1 and (IV.1) with (λ`1 ,λ?) = (0,8),(0.8,5) and

Fig. 1. MSE of convex program for various SNRs (λ`1 = 0.8, λ? = 5).
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the optimal parameters (λ ∗`1
,λ ∗? ). (λ ∗`1

,λ ∗? ) are numerically
estimated and they change as a function of k. In Figure 2,
we observe that MSE of Algorithm 1 has a linear increase
in k and it outperforms its convex counterparts in almost all
sparsity regimes, and the difference is more significant for
small k’s.

Fig. 2. Algorithm 1 vs convex program (IV.1).
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λℓ1 = λ∗
ℓ1
, λ⋆ = λ∗

⋆

λℓ1 = 0.8, λ⋆ = 5

λℓ1 = 0, λ⋆ = 8

Algorithm 1

Finally, in Figure 3, we plotted the MSE of Algorithm 1
where n = 200 and k ∈ {10,20,30}. We still observe that
MSE is linear in k for large γ . When γ is small, both γX0
and estimate of Algorithm 1’s are small hence, resulting MSE
is approximately zero. The interesting regime is when γ is
between 1 and 10. In this regime, step 1 of the Algorithm
fails to identify the correct nonzero rows that correspond
to X0 which introduces additional error. This contrasts with
the convex program, as in Figure 1, the MSE is a strictly
decreasing function of the SNR γ .

VII. CONCLUSIONS AND DISCUSSION

We studied the estimation of a low rank and sparse matrix
corrupted by noise. Interestingly, we showed that estima-
tion performance of an intuitive approach that combines
individual convex penalties can be significantly worse than
the best possible performance, while a simple nonconvex
algorithm we propose achieves an MSE on the order of the
best possible, in certain noise regimes.

A. Connection to Sparse PCA

The estimation of such a signal appears to be closely
related to finding the sparse principal component of a matrix.



Fig. 3. Performance of Algorithm 1 as a function of SNR.
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In sparse PCA, given the matrix A, the aim is to find a unit
vector x which maximizes xT Ax while ensuring x is sparse
and has unit length, [27], [28], [29]. A convex relaxation for
this problem is to lift x as X = xxT (observe that X will be
a low rank and sparse matrix), and solve the program

maxX 〈X,A〉−λ‖X‖1
subject to trace(X) = 1, X� 0.

This program is proposed in [29], and similar to the de-
noising program IV.1, makes use of the `1 norm and the
nuclear norm (or trace, for positive semidefinite matrices).
We may view A as a matrix which is sum of a true low rank
and sparse x0xT

0 and a noise term. Then, a term by term
comparison between sparse PCA (VII-A) and the denoising
program (IV.1) reveals that 〈X,A〉 corresponds to ‖X−Y‖2

F
and trace(X)= 1 with X� 0 corresponds to fixing the nuclear
norm ‖X‖?. Consequently, it would be interesting to analyze
the performance of the sparse PCA program for the i.i.d.
noise setup, and comparing with the results presented in this
work.

B. Simultaneous LASSO

In many applications, observations of the signal x0 are
given by a noisy linear map y = Ax0 +z. A reasonable way
to tackle this is to modify program II.3 as

min
x
‖y−Ax‖2

2 +
S

∑
i=1

λi‖x‖(i),

This problem, also known as the LASSO problem, can
be seen as a combination of compression and denoising
problems and has been analyzed for sparse vectors and low
rank matrices extensively (see [2], [16], [10]). It is interesting
to extend our bounds to the recovery error for this problem.
This would generalize and merge the results of the present
paper and [7], [9], [20], [30].
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