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Abstract

The problem of minimizing the rank of a matrix subject to affine constraints has many
applications in machine learning, and is known to be NP-hard. One of the tractable re-
laxations proposed for this problem is nuclear norm (or trace norm) minimization of the
matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions.

In this paper, we propose a family of Iterative Reweighted Least Squares algorithms
IRLS-p (with 0 ≤ p ≤ 1), as a computationally efficient way to improve over the perfor-
mance of nuclear norm minimization. The algorithms can be viewed as (locally) minimizing
certain smooth approximations to the rank function. When p = 1, we give theoretical guar-
antees similar to those for nuclear norm minimization, i.e., recovery of low-rank matrices
under certain assumptions on the operator defining the constraints. For p < 1, IRLS-p
shows better empirical performance in terms of recovering low-rank matrices than nuclear
norm minimization. We provide an efficient implementation for IRLS-p, and also present
a related family of algorithms, sIRLS-p. These algorithms exhibit competitive run times
and improved recovery when compared to existing algorithms for random instances of the
matrix completion problem, as well as on the MovieLens movie recommendation data set.

Keywords: Matrix Rank Minimization, Matrix Completion, Iterative Algorithms, Null-
space Property

1. Introduction

The Affine Rank Minimization Problem (ARMP), or the problem of finding the minimum
rank matrix in an affine set, arises in many engineering applications such as collaborative
filtering (e.g., Candes and Recht, 2009; Srebro et al., 2005), low-dimensional Euclidean
embedding (e.g., Fazel et al., 2003), low-order model fitting and system identification (e.g.,
Liu and Vandenberghe, 2008), and quantum tomography (e.g., Gross et al., 2010). The
problem is as follows,

minimize rank(X)
subject to A(X) = b,

(1)
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where X ∈ Rm×n is the optimization variable, A : Rm×n → Rq is a linear map, and b ∈ Rq

denotes the measurements. When X is restricted to be a diagonal matrix, ARMP reduces
to the cardinality minimization or sparse vector recovery problem,

minimize card(x)
subject to Ax = b,

where x ∈ Rn, A ∈ Rm×n and card(x) denotes the number of non-zeros entries of x. A
commonly used convex heuristic for this problem is `1 minimization. The field of compressed
sensing has shown that under certain conditions on the matrix A, this heuristic solves the
original cardinality minimization problem (Candes and Tao, 2004). There are also geometric
arguments in favor of `1 norm as a good convex relaxation, see (Chandrasekaran et al.,
2010b) for a unifying analysis for general linear inverse problems. However, it has been
observed empirically (e.g. Candes et al., 2008; Lobo et al., 2006) that by appropriately
weighting the `1 norm and iteratively updating the weights, the recovery performance of
the `1 algorithm is enhanced. It is also shown theoretically that for sparse recovery from
noisy measurements, this algorithm has a better recovery error than `1 minimization under
suitable assumptions on the matrix A (Needell, 2009; Zhang, 2010). The Reweighted `1

algorithm has also been generalized to the recovery of low-rank matrices (Fazel et al.,
2003; Mohan and Fazel, 2010a).

Another simple and computationally efficient reweighted algorithm for sparse recovery,
proposed in Daubechies et al. (Daubechies et al., 2010), is the Iterative Reweighted Least
Squares algorithm (IRLS-p, for any 0 < p ≤ 1). Its kth iteration is given by

xk+1 = argmin
x

{∑
i

wk
i x2

i : Ax = b,

}
,

where wk ∈ Rn is a weight vector with wk
i = (|xk

i |2 + γ)p/2−1 (γ > 0 being a regularization
parameter added to ensure that wk is well defined). See (Daubechies et al., 2010, section
1) for a history of earlier algorithms with a similar idea. For p = 1, (Daubechies et al.,
2010) gave a theoretical guarantee for sparse recovery similar to `1 minimization. The
starting point x0 is set to zero, so the first iteration gives the least norm solution to Ax = b.
It was empirically observed in (Chartrand and Staneva, 2008; Chartrand and Yin, 2008)
that IRLS-p shows a better recovery performance than `1 minimization for p < 1 and has a
similar performance as the reweighted `1 algorithm when p is set to zero. The computational
benefits of IRLS-1, as well as the above mentioned theoretical and empirical improvements
of IRLS-p, p < 1, over `1 minimization, motivate us to ask: Would an iterative reweighted
algorithm bring similar benefits for recovery of low rank matrices, and would an improved
performance be at the price of additional computational cost relative to the standard nuclear
norm minimization?
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1.1 Iterative Reweighted Least Squares for ARMP

Towards answering this question, we propose the iterative reweighted least squares algorithm
for rank minimization, outlined below.

Data: A, b

Set k = 1. Initialize W 0
p = I, γ1 > 0 ;

while not converged do
Xk = argmin

X
{Tr(W k−1

p XT X) : A(X) = b} ;

W k
p = (XkT

Xk + γkI)
p
2
−1 ;

Choose 0 < γk+1 ≤ γk ;
k = k + 1 ;

end

Algorithm 1: IRLS-p Algorithm for Matrix Rank Minimization with 0 ≤ p ≤ 1

Each iteration of Algorithm 1 minimizes a weighted Frobenius norm of the matrix X,
since Tr(W k−1

p XT X) = ‖(W k−1
p )1/2X‖2

F . While minimizing the Frobenius norm subject to
affine constraints doesn’t lead to low-rank solutions in general, through a careful reweighting
of this norm we show that Algorithm 1 does indeed produce low-rank solutions under
suitable assumptions. Usually a reweighted algorithm trades off computational time for
improved recovery performance when compared to the unweighted convex heuristic. As
an example, the reweighted `1 algorithm for sparse recovery (Candes et al., 2008) and the
reweighted nuclear norm algorithm (Mohan and Fazel, 2010a) for matrix rank minimization
solve the corresponding standard convex relaxations (`1 and nuclear norm minimization
respectively) in their first iteration. Thus these algorithms take at least as much time as the
corresponding convex algorithms. However, the iterates of the IRLS-p family of algorithms
simply minimize a weighted Frobenius norm, and have run-times comparable with the
nuclear norm heuristic, while (for p < 1) also enjoying improved recovery performance. In
the p = 1 case, we show that the algorithm minimizes a certain smooth approximation to
the nuclear norm, allowing for efficient implementations while having theoretical guarantees
similar to nuclear norm minimization.

1.2 Contributions

Contributions of this paper are as follows.

• We give a convergence analysis for IRLS-p for all 0 ≤ p ≤ 1. We also propose
a related algorithm, sIRLS-p (or short IRLS), which can be seen as a first-order
method for locally minimizing a smooth approximation to the rank function, and give
convergence results for this algorithm as well. The results exploit the fact that these
algorithms can be derived from the KKT conditions for minimization problems whose
objectives are suitable smooth approximations to the rank function.
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• We prove that the IRLS-1 algorithm is guaranteed to recover a low-rank matrix if the
linear map A satisfies the following Null space property (NSP). We show this property
is both necessary and sufficient for low-rank recovery. The specific NSP that we use
first appeared in (Oymak and Hassibi, 2010; Oymak et al., 2011), and is expressed
only in terms of the singular values of the matrices in the null space of A.

Definition 1.1 Given τ > 0, the linear map A : Rn×n → Rp satisfies the τ -Null
space Property (τ -NSP) of order r if for every Z ∈ N (A)\{0}, we have

r∑
i=1

σi(Z) < τ
n∑

i=r+1

σi(Z) (2)

where N (A) denotes the null space of A and σi(Z) denotes the ith largest singular
value of Z. It is shown in (Oymak and Hassibi, 2010) that certain random Gaussian
maps A satisfy this property with high probability.

• We give a gradient projection algorithm to implement IRLS-p. We extensively com-
pare these algorithms with other state of the art algorithms on both ‘easy’ and ‘hard’
randomly picked instances of the matrix completion problem (these notions are made
precise in the numerical section). We also present comparisons on the MovieLens
movie recommendation dataset. Numerical experiments demonstrate that IRLS-0
and sIRLS-0 applied to the matrix completion problem have a better recovery perfor-
mance than the Singular Value Thresholding algorithm, an implementation of Nuclear
Norm Minimization (Cai et al., 2008), on both easy and hard instances. Importantly,
in the case where there is no apriori information on the rank of the low rank solution
(which is common in practice), our algorithm has a significantly better recovery per-
formance on hard problem instances as compared to other state of the art algorithms
for matrix completion including IHT, FPCA (Goldfarb and Ma, 2011), and Optspace
(Keshavan and Oh, 2009).

1.3 Related Work

We review related algorithms for recovering sparse vectors and low rank matrices. Many
approaches have been proposed for recovery of sparse vectors from linear measurements
including `1 minimization, greedy algorithms (e.g. CoSaMP (Needell and Tropp, 2008),
IHT (Goldfarb and Ma, 2011), and GraDes (Garg and Khandekar, 2009)). As mentioned
earlier, reweighted algorithms including Iterative reweighted `1 (Candes et al., 2008) and
Iterative Reweighted Least Squares (Rao and Kreutz-Delgado, 1999; Wipf and Nagarajan,
2010; Daubechies et al., 2010) with 0 < p ≤ 1 have been proposed to improve on the
recovery performance of `1 minimization.

For the ARMP, analogous algorithms have been proposed including nuclear norm min-
imization (Fazel et al., 2001), reweighted nuclear norm minimization (Mohan and Fazel,
2010a; Fazel et al., 2003), as well as greedy algorithms such as AdMiRA (Lee and Bresler,
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2010) which generalizes CoSaMP, SVP (Meka et al., 2010), a hard-thresholding algorithm
that we also refer to as IHT, and Optspace (Keshavan and Oh, 2009).

Developing efficient implementations for nuclear norm minimization is an important
research area since standard semidefinite programming solvers cannot handle large problem
sizes. Towards this end, algorithms including SVT (Cai et al., 2008), NNLS (Toh and
Yun, 2010), FPCA (Goldfarb and Ma, 2011) have been proposed. A spectral regularization
algorithm (Mazumder et al., 2010) has also been proposed for the specific problem of matrix
completion.

In a preliminary conference version of this paper (Mohan and Fazel, 2010b), we proposed
the IRLS-p family of algorithms for ARMP, analogous to IRLS for sparse vector recovery
(Daubechies et al., 2010). The present paper gives a new and improved theoretical analysis
for IRLS-1 via a simpler NSP condition, obtains complete convergence results for all 0 ≤
p ≤ 1, and gives more extensive numerical experiments.

Independent of us and at around the same time as the publication of our conference
paper, Fornasier et al. (Fornasier et al., 2010) proposed the IRLSM algorithm, which is
similar to our IRLS-1 algorithm but with a different weight update (a thresholding operation
is used to ensure the weight matrix is invertible). The authors employ the Woodbury
matrix inversion lemma to speed up the implementation of IRLSM and compare it to two
other algorithms, Optspace and FPCA, showing that IRLSM has a lower relative error
and comparable computational times. However, their analysis of low-rank recovery uses a
Strong Null Space Property (SRNSP) which is equivalent to the condition in (Mohan and
Fazel, 2010b) and is less general than the condition we consider in this paper, as discussed
in Section 3. Also, the authors have only considered recovery of matrices of size 500× 500
in their experiments. We present extensive comparisons of our algorithms with algorithms
including Optspace, FPCA, and IHT for recovery of matrices of different sizes. We observe
that our IRLS and sIRLS implementations run faster than IRLSM in practice. IRLSM
solves a quadratic program in each iteration using a sequence of inversions, which can be
expensive for large problems, even after exploiting the matrix inversion lemma. Finally,
(Fornasier et al., 2010) only considers the p = 1 case.

The rest of the paper is organized as follows. We introduce the IRLS-p algorithm
for ARMP in Section 2 and give convergence and performance guarantees in Section 3.
In Section 4, we discuss an implementation for IRLS-p, tailored for the matrix completion
problem, and in Section 5 we present the related algorithm sIRLS-p. Numerical experiments
for IRLS-0 and sIRLS-0 for the matrix completion problem, as well as comparisons with
SVT, IHT, IRLSM, Optspace and FPCA are given in Section 6. The last section summarizes
the paper along with future research directions.

Notation. Let N (A) denote the null space of the operator A and Ran(A∗) denote the
range space of the adjoint of A. Let σ(X) denote the vector of decreasingly ordered singular
values of X so that σi(X) denotes the ith largest singular value of X. Also let ‖X‖ denote
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the spectral norm of X while its nuclear norm is defined as ‖X‖∗ =
∑

i σi(X). Ik denotes
the identity matrix of size k × k.

2. Iterative Reweighted Least Squares (IRLS-p)

In this section, we describe the IRLS-p family of algorithms (Algorithm 1). Recall that
replacing the rank function in (1) by ‖X‖∗ yields the nuclear norm heuristic,

minimize ‖X‖∗
subject to A(X) = b.

We consider other (convex and non-convex) smooth approximations to the rank function.
Define the smooth Schatten-p function as

fp(X) = Tr(XT X + γI)p/2

=
∑n

i=1(σ
2
i (X) + γ)

p
2 .

Note that fp(X) is differentiable for p > 0 and convex for p ≥ 1. With γ = 0, f1(X) = ‖X‖∗,
which is also known as the Schatten-1 norm. With γ = 0 and p → 0, fp(X) → rank(X).
Thus, it is of interest to consider the problem

minimize fp(X)
subject to A(X) = b,

(3)

the optimality conditions of which motivate the IRLS-p algorithms for 0 ≤ p ≤ 1. We show
that IRLS-1 solves the smooth Schatten-1 norm or nuclear norm minimization problem,
i.e., finds a globally optimal solution to (3) with p = 1. For p < 1, we show that IRLS-p
finds a stationary point of (3).

We now give an intuitive way to derive the IRLS-p algorithm from the KKT conditions
of (3). The Lagrangian corresponding to (3) is

L(X, λ) = fp(X) + 〈λ̂, A(X)− b〉,

and the KKT conditions are ∇XL(X, λ̂) = 0, A(X) = b. Note that ∇fp(X) = pX(XT X +
γI)p/2−1 (see e.g. Lewis, 1996). Letting λ = λ̂

p , we have that the KKT conditions for (3)
are given by

2X(XT X + γI)p/2−1 +A∗(λ) = 0
A(X) = b.

(4)

Let W k
p = (XkT

Xk+γI)p/2−1. The first condition in (4) can be written as X = −1
2A

∗(λ)(XT X+
γI)1−p/2. This is a fixed point equation, and a solution can be obtained by iteratively solving
for X as Xk+1 = 1

2A
∗(λ)(W k

p )−1, along with the condition A(Xk+1) = b. Note that Xk+1

and the dual variable λ satisfy the KKT conditions for the convex optimization problem,

minimize TrW k
p XT X

subject to A(X) = b.
(5)
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This idea leads to the IRLS-p algorithm described in Algorithm 1. Note that we also let
p = 0 in Algorithm 1; to derive IRLS-0, we define another non-convex surrogate function by
taking limits over fp(X). For any positive scalar x, it holds that limp→0

1
p(xp − 1) = log x.

Therefore,

lim
p→0

fp(X)− n

p
= 1

2 log det(XT X + γI)

=
∑

i
1
2 log(σ2

i (X) + γ).

Thus IRLS-0 can be seen as iteratively solving (as outlined previously) the KKT conditions
for the non-convex problem,

minimize log det(XT X + γI)
subject to A(X) = b.

(6)

Another way to derive the IRLS-p algorithm uses an alternative characterization of the
Smooth Schatten-p function; see appendix A.

3. IRLS-p: Theoretical results

In this section, convergence properties for the IRLS-p family of algorithms are studied. We
also give a matrix recovery guarantee for IRLS-1, under suitable assumptions on the null
space of the linear operator A.

3.1 Convergence of IRLS-p

We show that the difference between successive iterates of the IRLS-p (0 ≤ p ≤ 1) algorithm
converges to zero and that every cluster point of the iterates is a stationary point of (3).
These results generalize the convergence results given for IRLS-1 in (Mohan and Fazel,
2010b; Fornasier et al., 2010) to IRLS-p with 0 < p ≤ 1. In this section, we drop the
subscript on W k

p for ease of notation. Our convergence analysis relies on useful auxiliary
functions defined as

J p(X, W, γ) :=

{
p
2(Tr(W (XT X + γI)) + 2−p

p Tr((W )
p

p−2 )) if 0 < p ≤ 1
Tr(W (XT X + γI))− log det W − n if p = 0.

These functions can be obtained from the alternative characterization of Smooth Schatten-p
function with details in Appendix A. We can express the iterates of IRLP-p as

Xk+1 = argmin
X:A(X)=b

J p(X, W k, γk)

W k+1 = argmin
W�0

J p(Xk+1,W, γk+1),

and it follows that

J p(Xk+1,W k+1, γk+1) ≤ J p(Xk+1,W k, γk+1)
≤ J p(Xk+1,W k, γk)
≤ J p(Xk,W k, γk).

(7)
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The following theorem shows that the difference between successive iterates converges to
zero. The proof is given in Appendix B.

Theorem 3.1 Given any b ∈ Rq, the iterates {Xk} of IRLS-p (0 < p ≤ 1) satisfy

∞∑
k=1

‖Xk+1 −Xk‖2
F ≤ 2D

2
p ,

where D := J p(X1,W 0, γ0). In particular, we have that lim
k→∞

(
Xk −Xk+1

)
= 0.

Theorem 3.2 Let γmin := lim
k→∞

γk > 0. Then the sequence of iterates {Xk} of IRLS-p

(0 ≤ p ≤ 1) is bounded, and every cluster point of the sequence is a stationary point of (3)
(when 0 < p ≤ 1), or a stationary point of (6) (when p = 0).

Proof Let

g(X, γ) =

{
Tr(XT X + γI)

p
2 if 0 < p ≤ 1

log det(XT X + γI) if p = 0

Then g(Xk, γk) = J p(Xk,W k, γk) and it follows from (7) that g(Xk+1, γk+1) ≤ g(Xk, γk)
for all k ≥ 1. Hence the sequence {g(Xk, γk)} converges. This fact together with γmin > 0
implies that the sequence {Xk} is bounded.

We now show that every cluster point of {Xk} is a stationary point of (3). Suppose
to the contrary and let X̃ be a cluster point of {Xk} that is not a stationary point. By
the definition of cluster point, there exists a subsequence {Xni} of {Xk} converging to
X̃. By passing to a further subsequence if necessary, we can assume that {Xni+1} is also
convergent and we denote its limit by X̂. By definition, Xni+1 is the minimizer of

minimize TrWniXT X

subject to A(X) = b.
(8)

Thus, Xni+1 satisfies the KKT conditions of (8), i.e.,

Xni+1Wni ∈ Ran(A∗) and A(Xni+1) = b,

where Ran(A∗) denotes the range space of A∗. Passing to limits, we see that

X̂W̃ ∈ Ran(A∗) and A(X̂) = b, (9)

where W̃ = (X̃T X̃ +γminI)−1. From (9), we conclude that X̂ is a minimizer of the following
convex optimization problem,

minimize Tr W̃XT X

subject to A(X) = b.
(10)
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Next, by assumption, X̃ is not a stationary point of (3) (for 0 < p ≤ 1) nor (6) (for p = 0).
This implies that X̃ is not a minimizer of (10) and thus Tr W̃ X̂T X̂ < Tr W̃ X̃T X̃. This is
equivalent to J p(X̂, W̃ , γmin) < J p(X̃, W̃ , γmin). From this last relation and (7) it follows
that,

J p(X̂, Ŵ , γmin) < J p(X̃, W̃ , γmin),
g(X̂, γmin) < g(X̃, γmin).

(11)

On the other hand, since the sequence {g(Xk, γk)} converges, we have that

lim g(Xi, γi) = lim g(Xni , γni) = g(X̃, γmin) = lim g(Xni+1 , γni+1) = g(X̂, γmin)

which contradicts (11). Hence, every cluster point of {Xk} is a stationary point of (3)
(when 0 < p ≤ 1) and a stationary point of (6) (when p = 0).

3.2 Performance guarantee for IRLS-1

In this section, we discuss necessary and sufficient conditions for low-rank recovery using
IRLS-1. We show that any low-rank matrix satisfying A(X) = b can be recovered via IRLS-
1, if the null space of A satisfies a certain property. If the desired matrix is not low-rank,
we show IRLS-1 recovers it to within an error that is a constant times the best rank-r
approximation error, for any r. We first give a few definitions and lemmas.

Definition 3.3 Given x ∈ Rn, let x[i] denote the ith largest element of x so that x[1] ≥
x[2] ≥ . . . x[n−1] ≥ x[n]. A vector x ∈ Rn is said to be majorized by y ∈ Rn (denoted
as x ≺ y) if

∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k = 1, 2, . . . , n − 1 and

∑n
i=1 x[i] =

∑n
i=1 y[i]. A

vector x ∈ Rn is said to be weakly sub-majorized by y ∈ Rn (denoted as x ≺w y ) if∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k = 1, 2, . . . , n.

Lemma 3.4 ((Horn and Johnson, 1990)) For any two matrices, A,B ∈ Rm×n it holds
that |σ(A)− σ(B)| ≺w σ(A−B).

Lemma 3.5 ((Horn and Johnson, 1991; Marshall and Olkin, 1979)) Let g : D →
R be a convex and increasing function where D ⊂ R. Let x, y ∈ Dn. Then if x ≺w y, we
have (g(x1), g(x2), . . . , g(xn)) ≺w (g(y1), g(y2), . . . , g(yn)).

Since g(x) = (x2 + γ)
1
2 is a convex and increasing function on R+, applying Lemma 3.5

to the majorizaiton inequality in Lemma 3.4 we have

n∑
i=1

(|σi(A)− σi(B)|2 + γ)
1
2 ≤

n∑
i=1

(σ2
i (A−B) + γ)

1
2 . (12)

Let X0 be a matrix (that is not necessarily low-rank) and let the measurements be given
by b = A(X0). In this section, we give necessary and sufficient conditions for recovering X0
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using IRLS-1. Let Xγ
0 := (XT

0 X0 + γI)
1
2 be the γ-approximation of X0, and let X0,r, Xγ

0,r

be the best rank-r approximations of X0, Xγ
0 respectively.

Recall the Null space Property τ -NSP defined earlier in (2). As a rough intuition, in the
context of recovering matrices of rank r this condition requires that every nonzero matrix
in the null space of A has a rank larger than 2r.

Theorem 3.6 Assume that A satisfies τ -NSP of order r for some 0 < τ < 1. For every
X0 satisfying A(X0) = b it holds that

f1(X0 + Z) > f1(X0), for all Z ∈ N (A)\{0} satisfying ‖Z‖∗ ≥ C‖Xγ
0 −Xγ

0,r‖∗. (13)

Furthermore, we have the following bounds,

‖X̄ −X0‖∗ ≤ C‖Xγ
0 −Xγ

0,r‖∗
‖X̄r −X0‖∗ ≤ (2C + 1)‖Xγ

0 −Xγ
0,r‖∗,

where C = 2 (1+τ)
1−τ , and X̄ is the output of IRLS-1. Conversely, if (13) holds, then A

satisfies δ-NSP of order r, where δ > τ .

Proof Let Z ∈ N (A)\{0} and ‖Z‖∗ ≥ C‖Xγ
0 −Xγ

0,r‖∗. We see that

f1(X0 + Z) = Tr((X0 + Z)T (X0 + Z) + γI)
1
2 =

n∑
i=1

(σ2
i (X0 + Z) + γ)

1
2

≥
r∑

i=1

((σi(X0)− σi(Z))2 + γ)
1
2 +

n∑
i=r+1

((σi(Z)− σi(X0))2 + γ)
1
2

=
r∑

i=1

((σ2
i (X0) + γ) + σ2

i (Z)− 2σi(X0)σi(Z))
1
2

+
n∑

i=r+1

((σ2
i (Z) + γ) + σ2

i (X0)− 2σi(Z)σi(X0))
1
2

≥
r∑

i=1

|(σ2
i (X0) + γ)

1
2 − σi(Z)|+

n∑
i=r+1

|(σ2
i (Z) + γ)

1
2 − σi(X0)|

≥
r∑

i=1

(σ2
i (X0) + γ)

1
2 −

r∑
i=1

σi(Z) +
n∑

i=r+1

(σ2
i (Z) + γ)

1
2 −

n∑
i=r+1

σi(X0)

≥ f1(X0)−
n∑

i=r+1

(σ2
i (X0) + γ)

1
2 −

r∑
i=1

σi(Z) +
n∑

i=r+1

σi(Z)−
n∑

i=r+1

σi(X0),
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where the first inequality follows from (12). Since τ -NSP holds, we further have that

r∑
i=1

σi(Z) < τ
n∑

i=r+1

σi(Z) =
n∑

i=r+1

σi(Z)− (1− τ)
n∑

i=r+1

σi(Z)

≤
n∑

i=r+1

σi(Z)− C
1− τ

1 + τ
‖Xγ

0 −Xγ
0,r‖∗

=
n∑

i=r+1

σi(Z)− 2‖Xγ
0 −Xγ

0,r‖∗ (14)

where the second inequality uses ‖Z‖∗ ≥ C‖Xγ
0 −Xγ

0,r‖∗ and τ -NSP. Combining (14) and
(14), we obtain

f1(X0 + Z) ≥ f1(X0) +
n∑

i=r+1

σi(Z)−
r∑

i=1

σi(Z)− 2‖Xγ
0 −Xγ

0,r‖∗ > f1(X0). (15)

This proves (13).
Next, if X̂ is an optimal solution of (3) with p = 1, then Z = X̂ −X0 ∈ N (A) and it

follows immediately from (15) that

‖X̂ −X0‖∗ = ‖Z‖∗ ≤ C‖Xγ
0 −Xγ

0,r‖∗.

Note that problem (3) is convex when p = 1, and every stationary point of (3) is a global
minimum. Hence, by Theorem 3.2, IRLS-1 converges to a global minimum of the problem
(3). It follows that X̄ = X̂ and

‖X̄ −X0‖∗ ≤ C‖Xγ
0 −Xγ

0,r‖∗. (16)

Finally, since |σ(X̄)− σ(X0)| ≺w σ(X̄ −X0), we have that

n∑
i=r+1

σi(X̄)−
n∑

i=r+1

σi(X0) ≤
n∑

i=1

|σi(X̄)− σi(X0)| ≤ ‖X̄ −X0‖∗. (17)

Thus,

‖X̄r −X0‖∗ ≤ ‖X̄ − X̄r‖∗ + ‖X̄ −X0‖∗
≤ ‖X0 −X0r‖∗ + ‖X̄ −X0‖∗ + ‖X̄ −X0‖∗
≤ (2C + 1)‖Xγ

0 −Xγ
0,r‖∗

where the second inequality follows from (17) and the third inequality from (16).
Conversely, suppose that (13) holds, i.e., f1(X0 + Z) > f1(X0) for all ‖Z‖∗ ≥ C‖Xγ

0 −
Xγ

0,r‖∗, Z ∈ N (A)\{0}. We would like to show that A satisfies δ-NSP of order r. Assume
to the contrary that there exists Z ∈ N (A) such that

r∑
i=1

σi(Z) ≥ δ

n∑
i=r+1

σi(Z). (18)

11
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Let α = 1−τδ
2(1+τ) and set X0 = −Zr − α(Z − Zr). Note that α < (1 + δ)/C. Assume that Z

satisfies (
1 + δ

C
− α

) n∑
i=r+1

σi(Z) ≥ (n− r)
√

γ. (19)

If not, Z can be multiplied by a large enough positive constant so that it satisfies both (19)
and (18).

‖Z‖∗ ≥ (1 + δ)
n∑

i=r+1

σi(Z) (20)

Combining (19) and (20), we obtain that

‖Xγ
0 −Xγ

0,r‖∗ =
n∑

i=r+1

(α2σ2
i (Z) + γ)

1
2 ≤

n∑
i=r+1

(n− r)
√

γ + α
n∑

i=r+1

σi(Z)

≤ ‖Z‖∗
C

(21)

Moreover, it follows from (18) and the definition of X0 that

f1(X0) =
∑n

i=1(σ
2
i + γ)

1
2

≥
∑r

i=1 σi(X0) +
∑n

i=r+1 σi(X0)
=

∑r
i=1 σi(Z) + α

∑n
i=r+1 σi(Z)

≥ (α + δ)
∑n

i=r+1 σi(Z).

(22)

On the other hand, notice also by the definition of α that α > 1−δ
2 . Also assume Z satisfies

(2α + δ − 1)
n∑

i=r+1

σi(Z) ≥ n
√

r. (23)

If not, Z can be multiplied by a large enough positive constant to satisfy (23) and also (18).
Combining (23) and (22), we obtain further that

f1(X0 + Z) =
n∑

i=1

(σ2
i (X0 + Z) + γ)

1
2 = r

√
γ +

n∑
i=r+1

((1− α)2σ2
i (Z) + γ)

1
2

≤ n
√

γ + (1− α)
n∑

i=r+1

σi(Z) ≤ f1(X0). (24)

Now it is easy to see that (21) and (24) together contradicts (13), which completes the
proof.

Thus when the sufficient condition (τ -NSP of order r) holds, we have shown that the
best rank-r approximation of the IRLS-1 solution is not far away from X̃, the solution we
wish to recover, and the distance between the two is bounded by a (γ-approximate) rank-r

12
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approximation error of X0. It has been shown in (Oymak and Hassibi, 2010) that 1-NSP
of order r holds for a random Gaussian map A with high probability when the number
of measurements is large enough. The necessity statement can be rephrased as δ-NSP
with δ > τ being a necessary condition for the following to hold: whenever there is an X

such that f1(X) ≤ f1(X0), we have that ‖X − X0‖∗ ≤ C‖Xγ
0 − Xγ

0,r‖∗. Note that the
necessary and sufficient conditions for recovery of approximately low-rank matrices using
IRLS-1 mirror the conditions for recovery of approximately low-rank matrices using nuclear
norm minimization which is that A satisfy 1-NSP.

Note that the null space property SRNSP of order r, considered in (Fornasier et al.,
2010) and shown to be sufficient for low-rank recovery using IRLSM, is equivalent to 1-NSP
of order 2r. In this paper, we show that τ -NSP of order r (as contrasted with the order
2r NSP) is both necessary and sufficient for recovery of approximately low-rank matrices
using IRLS-1. Thus, our condition for the recovery of approximately low-rank matrices
using IRLS-1 generalizes those stated in (Mohan and Fazel, 2010b; Fornasier et al., 2010),
since it places a weaker requirement on the linear map A.

4. A Gradient projection based implementation of IRLS

In this section, we describe IRLS-GP, a gradient projection based implementation of IRLS-p
for the Matrix Completion Problem.

4.1 The Matrix Completion problem

The matrix completion problem is a special case of the affine rank minimization problem
with constraints that restrict some of the entries of the matrix variable X to equal given
values. The problem can be written as

minimize rank(X)
subject to Xij = (X0)ij , (i, j) ∈ Ω

where X0 is the matrix we would like to recover and Ω denotes the set of entries which are
revealed. We define the operator PΩ : Rn×n → Rn×n as

(PΩ(X))ij =

{
Xij if (i, j) ∈ Ω

0 otherwise.
(25)

Also, Ωc denotes the complement of Ω, i.e., all index pairs (i, j) except those in Ω.

4.2 IRLS-GP

To apply Algorithm 1 to the matrix completion problem (25), we replace the constraint
A(X) = b by PΩ(X) = PΩ(X0). Each iteration of IRLS solves a quadratic program (QP).
We note that calculating PΩ(X) is computationally cheap, so the gradient projection algo-
rithm could be used to solve the quadratic program (QP) in each iteration of IRLS. We call
this implementation IRLS-GP (Algorithm 2).

13
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Data: Ω, PΩ(X0)
Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = 0, γ0 > 0, s0 = (γ0)(1−
p
2
) ;

while IRLS iterates not converged do
W k = (XkT

Xk + γkI)
p
2
−1. Set Xtemp = Xk ;

while Gradient projection iterates not converged do
Xtemp = PΩc(Xtemp − skXtempW k) + PΩ(X0);

end
Set Xk+1 = Xtemp ;

Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−
p
2
) ;

k = k + 1;
end

Algorithm 2: IRLS-GP for Matrix Completion

The step size used in the gradient descent step is sk = 1/Lk, where Lk = 2‖W k‖2 is
the Lipschitz constant of the gradient of the quadratic objective, Tr(W kXT X) at the kth

iteration of IRLS. We also warm-start the gradient projection algorithm to solve for the
(k + 1)th iterate of IRLS with the solution of the kth iterate of IRLS and find that this
speeds up the convergence of the gradient projection algorithm in subsequent iterations.
At each iteration of IRLS, computing the weighting matrix involves an inversion operation
which can be expensive for large n. To work around this, we observe that the singular
values of subsequent iterates of IRLS cluster into two distinct groups, so that a low rank
approximation of the iterates (obtained by setting the smaller set of singular values to zero)
can be used to compute the weighting matrix efficiently. Computing the singular value de-
composition (SVD) can be expensive. Randomized algorithms (e.g., Halko et al., 2011) can
be used to compute the top r singular vectors and singular values of a matrix X efficiently,
with small approximation errors, if σr+1(X) is small. We describe our computations of the
weighting matrix below.

Computing the Weighting matrix efficiently
Let UΣV T be the truncated SVD of Xk (keeping top r terms in the SVD with r being
determined at each iteration), so that U ∈ Rm×r,Σ ∈ Rr×r, V ∈ Rn×r. Then for p = 0,
W k−1 = 1

γk (UΣV T )T (UΣV T ) + γkIn. It is easy to check that W k = V (γk(Σ2 + γkI)−1 −
Ir)V T + In. Thus the cost of computing the weighting matrix given the truncated SVD
is O(nr2), saving significant computational costs. At each iteration, we choose r to be
min{rmax, r̂} where r̂ is the largest integer such that σr̂(Xk) > 10−2 × σ1(Xk) (this is
justified in our experiments, since X0 is generated randomly and has a reasonable condition
number). Also, since the singular values of Xk tend to separate into two clusters, we
observe that this choice eliminates the cluster with smaller singular values and gives a good
estimate of the rank r to which Xk can be well approximated. We find that combining warm-
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starts for the gradient projection algorithm along with the use of randomized algorithms
for SVD computations speeds up the overall computational time of the gradient projection
implementation considerably.

5. sIRLS-p: A first-order algorithm for minimizing the smooth

Schatten-p function

In this section, we present the sIRLS-p family of algorithms that are related to the IRLS-GP
implementation discussed in the previous section. We first describe the algorithm before
discussing its connection to the IRLS-p family.

Data: PΩ, b

Result: X̂ : PΩ(X̂) = b

Set k = 0. Initialize X0 = PΩ(X0), γ0 > 0, s0 = (γ0)(1−
p
2
) ;

while not converged do

W k
p = (XkT

Xk + γkI)
p
2
−1

;
Xk+1 = PΩc(Xk − skXkW k

p ) + PΩ(X0) ;
Choose 0 < γk+1 ≤ γk, sk+1 = (γk+1)(1−

p
2
) ;

k = k + 1
end

Algorithm 3: sIRLS-p for Matrix Completion Problem

We note that sIRLS-p (Algorithm 3) is a gradient projection algorithm applied to

minimize fp(X) = Tr(XT X + γI)
p
2

subject to PΩ(X) = PΩ(X0),
(26)

while sIRLS-0 is a gradient projection algorithm applied to

minimize log det(XT X + γI)
subject to PΩ(X) = PΩ(X0).

(27)

Indeed ∇fp(Xk) = XkW k
p and the gradient projection iterates,

Xk+1 = P{X:PΩ(X)=PΩ(X0)}(Xk − sk∇fp(Xk))
= PΩc(Xk − sk∇fp(Xk)) + PΩ(X0)

are exactly the same as the sIRLS-p (Algorithm 3) iterates when γk is a constant. In other
words, for large enough k (i.e., k such that γk = γmin), the iterates of sIRLS-p and sIRLS-0
are nothing but gradient projection applied to (26) and (27), with γ = γmin. We have the
following convergence results for sIRLS.

Theorem 5.1 Every cluster point of sIRLS-p (0 < p ≤ 1) is a stationary point of (26)
with γ = γmin.

15



Karthik Mohan and Maryam Fazel

Theorem 5.2 Every cluster point of sIRLS-0 is a stationary point of (27) with γ = γmin.

The proof of Theorem 5.1 can be found in appendix C, and Theorem 5.2 can be proved
in a similar way. With p = 1, Theorem 5.1 implies that sIRLS-1 has the same performance
guarantee as IRLS-1 given in Theorem 3.6. Note that despite sIRLS-p with p < 1 being
a gradient projection algorithm applied to non-convex problems (26) and (27), a simple
step-size suffices for convergence, and we do not consider a potentially expensive line search
at each iteration of the algorithm.

We now relate the sIRLS-p family to the IRLS-p family of algorithms. Each iteration
of the IRLS-p algorithm is a quadratic program, and IRLS-GP uses iterative gradient pro-
jection to solve this quadratic program. We note that sIRLS-p is nothing but IRLS-GP,
with each quadratic program solved approximately by terminating at the first iteration
in the gradient projection inner loop. Barring this connection, the IRLS-p and sIRLS-p
algorithms can be seen as two different approaches to solving the smooth Schatten-p mini-
mization problem (26). We examine the trade off between these two algorithms along with
comparisons to other state of the art algorithms for matrix completion in the next section.

6. Numerical results

In this section, we give numerical comparisons of sIRLS-0, 1 and IRLS-0, 1 with other algo-
rithms. We begin by examining the behavior of IRLS-0 (through the IRLS-GP implemen-
tation) and its sensitivity to γk (regularization parameter in the weighting matrix, W k).

6.1 Choice of regularization γ

We find that IRLS-0 converges faster when the regularization parameter in the weighting
matrix, γk, is chosen appropriately. We consider an exponentially decreasing model γk =
γ0/(η)k, where γ0 is the initial value and η is a scaling parameter. We run sensitivity
experiments to determine good choices of γ0 and η for the matrix completion problem.
For this and subsequent experiments, the indices corresponding to the known entries Ω are
generated using i.i.d Bernoulli {0, 1} random variables with a mean support size |Ω| = q,
where q/n2 is the probability for an index (i, j) to belong to the support set. The completed
and unknown matrix X0 of rank r is generated as Y Y T , where Y ∈ Rn×r is generated using
i.i.d gaussian entries. All experiments are conducted in Matlab on a Intel 3 Ghz core 2 duo
processor with 3.25 GB RAM.

As will be seen from the results, the regularization parameter γk plays an important role
in the recovery. We let γ0 = γc‖X0‖2

2 where γc is a proportional parameter that needs to
be estimated. For the sensitivity analysis of IRLS-0 (with respect to γ0 and η), we consider
matrices of size 500× 500.
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Figure 1: n = 500, r = 5,η = 1.15. γ0 = γc ∗ ‖X0‖2
2. From left to right : Recovery error

using IRLS-0 for ‖X0‖2 = 1, ‖X0‖2 = 1000.

6.1.1 Choice of γc

As can be seen from Figures 1 a) and b), choosing γc appropriately leads to a better
convergence rate of IRLS-0. Small values of γc (< 10−3) don’t give good recovery results
(premature convergence to a larger relative error). However larger values of γc (> 1) might
lead to a delayed convergence. As a heuristic, we observe that γc = 10−2 works well. We
also note that this choice of γc works well even if the spectral norm of X0 varies from 1 to
1000. Thus for future experiments, we normalize X0 to have a spectral norm of 1.

6.1.2 Choice of η

Figures 2 a),b),c), and d) look at the sensitivity of the IRLS-0 algorithm to the scaling
parameter, η. We observe that for a good choice of γ0 (described earlier), η depends on the
rank of X0 to be recovered. More specifically, η seems to have an inverse relationship with
the rank of X0. From Figures 2 a) and d), it is clear that η = 1.3 works well if rank of X0

equals 2 and η = 1.05 works well when rank of X0 equals 15. More generally, the choice of
η seems to depend on the hardness of the problem instance being considered. We formalize
this notion in the next section.

6.2 Numerical experiments

We classify our numerical experiments into two categories based on the degrees of freedom
ratio, given by FR = r(2n− r)/q. Note that for a n× n matrix of rank r, r(2n− r) is the
number of degrees of freedom in the matrix. Thus if FR is large (close to 1), recovering X0

becomes harder (as the number of measurements is close to the degrees of freedom) and
conversely if FR is close to zero, recovering X0 becomes easier.

We conduct subsequent numerical experiments over what we refer to in this paper as
Easy problems (FR < 0.4) and Hard problems(FR > 0.4). We define the recovery to be
successful when the relative error, ‖X −X0‖F /‖X0‖F ≤ 10−3 (with X being the output of
the algorithm considered) and unsuccessful recovery otherwise. For each problem (easy or
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Figure 2: n = 500 γc = 1e − 2. Clockwise from top left : Recovery error using IRLS-0 for
ranks 2, 5, 10, 15 respectively.

hard), the results are reported over 10 random generations of the support set, Ω and X0. We
use NS to denote the number of successful recoveries for a given problem. Also, computation
times are reported in seconds. For sIRLS and IRLS-GP (implementation of IRLS), we fix
η = 1.1 if FR < 0.4 and η = 1.03 if FR > 0.4 based on our earlier observations. In the next
few sections, we compare the IRLS implementations with other state of the art algorithms
on both exact and noisy matrix completion problems.

6.3 Comparison of (s)IRLS and Nuclear Norm Minimization

In this section, we compare the gradient projection implementation IRLS-GP, of IRLS-0,1
and the algorithm sIRLS-0,1 with the Singular Value Thresholding (SVT) algorithm (an
implementation for nuclear norm minimization (Cai et al., 2008)) on both easy and hard
problem sets. Note that SVT is not the only implementation of nuclear norm minimization.
Other implementations include NNLS (Toh and Yun, 2010) and Spectral Regularization
(Mazumder et al., 2010).

When we refer to IRLS-0,1 in the tables and in subsequent paragraphs, we mean their
gradient projection implementation, IRLS-GP. We compare (s)IRLS-0,1 and SVT in Tables
1 and 3. A few aspects of these comparisons are highlighted below.
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Problem IRLS-1 sIRLS-1 IRLS-0
n r q

n2 FR # iter Time # iter Time # iter Time
100 10 0.57 0.34 133 4.49 132 1.63 54 0.79
200 10 0.39 0.25 140 4.49 140 2.41 60 1.34
500 10 0.2 0.2 160 24.46 163 8 77 9.63
500 10 0.12 0.33 271 37.47 336 13.86 220 22.74
1000 10 0.12 0.17 180 113.72 195 32.21 109 55.42
1000 50 0.39 0.25 140 134.30 140 102.64 51 59.74
1000 20 0.12 0.33 241 156.09 284 57.85 188 96.20
2000 20 0.12 0.17 180 485.24 190 166.28 100 235.94
2000 40 0.12 0.33 236 810.13 270 322.96 170 432.34

Table 1: Comparison of IRLS-0,1 and sIRLS-1. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 sIRLS-0 SVT
n r q

n2 FR # iter Time # iter Time # iter Time
100 10 0.57 0.34 132 1.63 59 0.84 170 5.69
200 10 0.39 0.25 140 2.41 63 1.31 109 3.74
500 10 0.2 0.2 163 8 98 4.97 95 5.9
500 10 0.12 0.33 336 13.86 280 11.03 - -
1000 10 0.12 0.17 195 32.21 140 20.80 85 10.71
1000 50 0.39 0.25 140 102.64 60 61.32 81 49.17
1000 20 0.12 0.33 284 57.85 241 43.11 - -
2000 20 0.12 0.17 190 166.28 130 98.55 73 42.31
2000 40 0.12 0.33 270 322.96 220 227.07 - -

Table 2: Comparison of sIRLS-0,1 with SVT. Performance on Easy Problems FR < 0.4.

Problem sIRLS-1 IRLS-0 sIRLS-0
n r q

n2 FR # iter NS Time # iter NS Time # iter NS Time
40 9 0.5 0.8 4705 4 163.2 1385 10 17.36 2364 9 30.22
100 14 0.3 0.87 10000 0 545.91 4811 10 89.51 5039 7 114.54
500 20 0.1 0.78 10000 0 723.58 4646 8 389.66 5140 10 315.57
1000 20 0.1 0.4 645 10 142.84 340 10 182.78 406 10 97.15
1000 20 0.06 0.66 10000 0 1830.98 2679 10 921.15 2925 10 484.84
1000 30 0.1 0.59 1152 10 295.56 781 10 401.98 915 10 244.23
1000 50 0.2 0.49 550 10 342 191 10 239.77 270 10 234.25

Table 3: Comparison of sIRLS-1,IRLS-0 and sIRLS-0. Performance on Hard Problems
FR ≥ 0.4

19



Karthik Mohan and Maryam Fazel

6.3.1 IRLS-0 vs IRLS-1

Between IRLS-0 and IRLS-1, IRLS-0 takes fewer iterations to converge successfully and has
a lower computational time (Table 1). The same holds true between sIRLS-0 and sIRLS-1.
sIRLS-0 is also successful on more hard problem instances than sIRLS-1 (Table 3). This
indicates that (s)IRLS-p with p = 0 has a better recovery performance and computational
time as compared to p = 1.

6.3.2 IRLS vs sIRLS

Between sIRLS and IRLS, sIRLS-1 takes more iterations to converge as compared to IRLS-
1. However because it has a lower per iteration cost, sIRLS-1 takes significantly lower
computational time than IRLS-1 (Table 1). The same holds true for sIRLS-0. Thus sIRLS-
0,1 are not only simpler algorithms, they also have a lower overall run time as compared to
IRLS-0,1.

6.3.3 Comparison on easy problems

Table 2 shows that sIRLS-0 and sIRLS-1 have competitive computational times as compared
to SVT (implementation available at Candes and Becker, 2010). There are also certain
instances where SVT fails to have successful recovery while sIRLS-1 succeeds. Thus sIRLS-
1 is competitive and in some instances better than SVT.

6.3.4 Comparison on hard problems

For hard problems, Table 3 shows that sIRLS-0 and IRLS-0 are successful in almost all
problems considered, while sIRLS-1 is not successful in 4 problems. We also found that
SVT was not successful in recovery for any of the hard problems. (s)IRLS-0 also compares
favorably with FPCA (Goldfarb and Ma, 2011) and Optspace (Keshavan and Oh, 2009) in
terms of recovery and computational time on the easy and hard problem sets. These results
are given subsequently.

In summary, (s)IRLS-1,(s)IRLS-0 have a better recovery performance than a nuclear
norm minimization implementation (SVT) as evidenced by successful recovery over both
easy and hard problem sets. We note that (s)IRLS-1 converges to the Nuclear Norm Mini-
mizer (when the regularization, γ → 0) and empirically has a better recovery performance
than SVT. We also note that among the family of (s)IRLS-p algorithms tested, sIRLS-0
and IRLS-0 are better in both recovery performance and computational times.

6.4 Comparison of algorithms for Exact Matrix Completion

As observed in the previous section, sIRLS has a lower total run time compared to IRLS-GP.
Thus in subsequent experiments we compare other algorithms only with sIRLS.

20



Iterative Reweighted Algorithms for Matrix Rank Minimization

Problem sIRLS IRLSM IHT Optspace
n r q

n2 FR # iter Time #iter Time #iter Time #iter Time
100 10 0.57 0.34 56 0.8 25 1.16 44 0.51 27 0.6
200 10 0.39 0.25 61 0.96 33 4.62 53 0.95 19 1.28
500 10 0.2 0.2 99 4.5 61 66.57 105 3.63 18 8.08
500 10 0.12 0.33 285 13.24 124 162.15 344 12.50 29 12.45
1000 10 0.12 0.17 143 21.17 93 496.18 192 19.30 16 28.93
1000 10 0.39 0.25 60 27.39 27 777.04 46 19.58 17 1755.44
1000 20 0.12 0.33 244 45.33 160 789.33 289 40.39 38 241.94
2000 20 0.12 0.17 130 82.47 84 4320.20 179 80.76 14 428.37
2000 40 0.12 0.33 230 229.53 140 9859 270 225.46 28 4513

Table 4: Comparison of sIRLS-0,IRLSM, IHT and Optspace on Easy Problems with rank
of the matrix to be recovered known apriori.

6.4.1 Design of Experiments

In this section, we report results from two sets of experiments. In the first set, we compare
sIRLS-0 (henceforth referred to as sIRLS), Iterative Hard Thresholding algorithm (IHT)
(Goldfarb and Ma, 2011; Meka et al., 2010), Optspace and IRLSM (Fornasier et al., 2010)
over easy and hard problems with the assumption that the rank of the matrix to be recovered
(X0) is known. We implement IRLSM as described in (Fornasier et al., 2010) while we use
the implementation of Optspace available on the authors webpage (Keshavan et al., 2009a).
When the rank of X0 (denoted as r) is known, the weighting matrix W k for sIRLS is
computed using a rank r approximation of Xk (also see section 3.1). The second set of
experiments correspond to the case where the rank of X0 is unknown, which is a more
practical assumption.

6.4.2 Rank of X0 known apriori

All the algorithms are fully successful (NS = 10) on the easy problem sets. As seen in
Table 4, IRLSM and Optspace take fewer iterations to converge as compared to sIRLS and
IHT. On the other hand, sIRLS and IHT are significantly faster than Optspace and much
faster than IRLSM (Fornasier et al., 2010). Since IRLSM takes a significantly larger amount
of time to converge, we do not test it on the hard problems. On hard problems, sIRLS,
Optspace and IHT are fully successful on most of the problems (see Table 5). However,
Optspace takes considerably higher time as compared to IHT and sIRLS. Thus, when the
rank of X0 is known, sIRLS is competitive with IHT in performance and computational
time and much faster than Optspace and IRLSM.
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Problem sIRLS-0 IHT Optspace
n r q

n2 FR # iter NS Time # iter NS Time # iter NS Time
40 9 0.5 0.8 1718 10 12.67 1635 10 12.16 1543 7 6.82
100 14 0.3 0.87 4298 8 60.18 4868 10 68.56 4011 5 131.62
1000 20 0.1 0.40 417 10 78.26 466 10 65.84 69 10 409.66
1000 20 0.08 0.50 814 10 151.86 947 10 134.30 103 10 580.09
1000 20 0.07 0.57 1368 10 251.46 1564 10 225.13 147 10 806.32
1000 30 0.1 0.59 949 10 226.12 1006 10 189.33 134 10 1904.47
1000 50 0.2 0.49 270 10 123.84 254 10 105.88 46 10 2968

Table 5: Comparison of sIRLS-0, IHT and Optspace on Hard Problems with rank of the
matrix to be recovered known apriori.

6.4.3 Rank of X0 unknown

A possible disadvantage of IHT and Optspace could be their sensitivity to the knowledge
of the rank of X0. Thus, our second set of experiments compare sIRLS, IHT, Optspace
and FPCA (Goldfarb and Ma, 2011) over easy and hard problems when the rank of X0 is
unknown. We use a heuristic for determining the approximate rank of Xk at each iteration
for sIRLS, IHT and FPCA. Computing the approximate rank is important for speeding up
the SVD computations in all of these algorithms.

Choice of rank
We choose r (the rank at which the SVD of Xk is truncated) to be min{rmax, r̂} where r̂ is
the largest integer such that σr̂(Xk) > α× σ1(Xk). For IHT we find that α = 5e− 2 works
well while for sIRLS and FPCA, α = 1e− 2 works well. The justification for this heuristic
was mentioned in Section 4.2. The SVD computations in IHT, sIRLS, Optspace and SVT
are based on a randomized algorithm (Halko et al., 2011). We note that Linear-Time SVD
(Drineas et al., 2006) is used to compute the SVD in the FPCA implementation (Goldfarb
and Ma, 2009), and although faster than randomized SVD algorithm we use, it can be
significantly less accurate.

Comparison of algorithms
All the algorithms compared are successful on the easy problems. However, Optspace takes
much more time to converge on recovering matrices with high rank as can be seen from
from Table 6. sIRLS, FPCA and IHT have competitive times on all the problems. For
hard problems, however, sIRLS has a clear advantage over IHT, Optspace and FPCA in
successful recovery (Table 7). sIRLS is fully successful on all problems except the second
and third on which it has a success rate of 5 and 9 respectively. On the other hand IHT,
Optspace and FPCA have partial or unsuccessful recovery in many problems. sIRLS is
competitive with IHT and FPCA on computational times while Optspace is much slower
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Problem sIRLS IHT FPCA Optspace
n r q

n2 FR # iter Time # iter Time Time # iter Time
100 10 0.57 0.34 59 1.61 38 1.15 0.13 25 0.62
200 10 0.39 0.25 62 2.55 44 1.96 0.37 17 1.4
500 10 0.2 0.2 98 9.39 71 8.65 2.52 17 8.46
500 10 0.12 0.33 283 16.07 225 23.23 71.26 30 11.63
1000 10 0.12 0.17 140 38.44 104 31.47 11.24 14 26.31
1000 50 0.39 0.25 60 217.79 35 132.36 15.10 17 1774.08
1000 20 0.12 0.33 241 77.52 177 70.13 18.51 30 199.98
2000 20 0.12 0.17 130 236.19 98 152.36 42.06 12 374.15
2000 40 0.12 0.33 220 234.44 167 323.67 76.26 26 3466

Table 6: Comparison of sIRLS-0, IHT, FPCA and Optspace on Easy Problems when no
prior information is available on the rank of the matrix to be recovered.

Problem sIRLS IHT FPCA Optspace
n FR # iter NS Time # iter NS Time NS Time # iter NS Time
40 0.8 1498 10 12.91 - 0 - 5 1.69 - 0 -
100 0.87 4934 5 72.36 - 0 - 0 - - 0 -
500 0.78 4859 9 326.06 - 0 - 0 - - 0 -
1000 0.40 406 10 115.73 280 10 72.67 10 26.54 40 10 256.92
1000 0.57 1368 10 237.22 1059 10 244.49 0 - 133 5 769.29
1000 0.66 2961 10 554.25 - 0 - 0 - - 0 -
1000 0.59 897 10 276.08 660 10 213.95 10 62.43 89 5 1420.81
1000 0.49 270 10 263.45 203 10 186.15 10 25.21 45 10 2924.68

Table 7: Comparison of sIRLS-0, IHT, FPCA and Optspace on Hard Problems when no
prior information is available on the rank of the matrix to be recovered.
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Problem sIRLS IHT Optspace
n r q

n2 FR # iter NS Time #iter NS Time #iter NS Time
100 10 0.57 0.34 51 10 0.55 41 10 0.44 28 10 0.29
200 10 0.39 0.25 56 10 0.78 48 10 0.60 19 10 0.56
500 10 0.2 0.2 96 10 4.11 88 10 2.76 18 10 6.82
500 10 0.12 0.33 298 10 12.60 298 10 9.56 29 10 12.45
1000 10 0.12 0.17 141 10 19.66 132 10 12.28 15 10 37.17
1000 10 0.39 0.25 50 10 20.94 40 10 15.53 18 10 1197.48
1000 20 0.12 0.33 254 10 44.35 247 10 32.03 25 10 220.60
2000 20 0.12 0.17 130 10 77.30 121 10 84.23 12 10 469.67
2000 40 0.12 0.33 236 10 221.31 227 10 170.88 28 10 4515.06

Table 8: Comparison of sIRLS, IHT and Optspace on the Noisy Matrix Completion prob-
lem.

than all the other algorithms. Thus, when the rank of X0 is not known apriori, sIRLS has
a distinct advantage over IHT, Optspace and FPCA in successfully recovering X0 for hard
problems.

6.5 Comparison of algorithms for Noisy Matrix Completion

In this subsection, we compare IHT, FPCA and sIRLS on randomly generated noisy matrix
completion problems. We consider the following noisy matrix completion problem,

minimize rank(X)
subject to PΩ(X) = PΩ(B),

where PΩ(B) = PΩ(X0)+PΩ(Z), X0 is a low rank matrix of rank r that we wish to recover
and PΩ(Z) is the measurement noise. Note that this noise model has been used before for
matrix completion (see Cai et al., 2008). Let Zij be i.i.d Gaussian random variables with
distribution N (0, σ2). We would like the noise to be such that ‖PΩ(Z)‖F ≤ ε‖PΩ(X0)‖F

for a noise parameter ε. This would be true if σ ∼ ε
√

r (Cai et al., 2008).
We adapt sIRLS for noisy matrix completion by replacing PΩ(X0) by PΩ(B) in Algo-

rithm 3. For all the algorithms tested in Table 8, we declare the recovery to be successful
if ‖X −X0‖F /‖X0‖F ≤ ε = 10−3, where X is the output of the algorithms. Table 8 shows
that sIRLS has successful recovery for easy noisy matrix completion problems with apri-
ori knowledge of rank. The same holds true for hard problems with the true rank known
apriori. Thus sIRLS has a competitive performance even for noisy recovery.

6.6 Application to Movie Lens Data Set

In this section, we consider the movie lens data sets with 100,000 ratings taken from (Mov).
In particular, we consider four different splits of the 100k ratings into (training set, test set):
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sIRLS IHT Optspace
split 1 0.1919 0.1925 0.1887
split 2 0.1878 0.1883 0.1878
split 3 0.1870 0.1872 0.1881
split 4 0.1899 0.1896 0.1882

Table 9: NMAE for sIRLS-0 for different splits of the 100k movie-lens data set.

(u1.base,u1.test), (u2.base,u2.test), (u3.base,u3.test), (u4.base,u4.test) for our
numerical experiments. Any given set of ratings (e.g. from a data split) can be represented
as a matrix. This matrix has rows representing the users and columns representing the
movies and an entry (i,j) of the matrix is non-zero if we know the rating of user i for movie
j. Thus estimating the remaining ratings in the matrix corresponds to a matrix completion
problem. For each data split, we train sIRLS, IHT, and Optspace on the training set and
compare their performance on the corresponding test set. The performance metric here
is Normalized Mean Absolute Error or NMAE given as follows. Let M be the matrix
representation corresponding to the actual test ratings and X be the ratings matrix output
by an algorithm when input the training set. Then

NMAE =

 ∑
i,j∈supp(M)

|Mij −Xij |
|supp(M)|

 /(rtmax − rtmin),

where rtmin and rtmax are the minimum and maximum movie ratings possible. The choice of
γ0, η for sIRLS is the same as for the random experiments (described in previous sections).
sIRLS is terminated if the maximum number of iterations exceeds 700 or if the relative
error between the successive iterates is less than 10−3. We set the rank of the unknown
ratings matrix to be equal to 5 while running all the three algorithms. Table 9 shows that
the NMAE for sIRLS, IHT, and Optspace are almost the same across different splits of the
data. We note that in (Keshavan et al., 2009b), the NMAE of Optspace (Keshavan and Oh,
2009), FPCA (Goldfarb and Ma, 2011), and AdMiRA (Lee and Bresler, 2010) for data split
1 were obtained to be 0.186,0.19 and 0.242 respectively. Thus sIRLS has a NMAE that is
as good as Optspace, FPCA, IHT and has a better NMAE than AdMiRA.

7. Conclusions and future directions

We proposed a family of Iterative Reweighted Least Squares algorithms (IRLS-p) for the
affine rank minimization problem. We showed that IRLS-1 converges to the global minimum
of the smoothed nuclear norm, and that IRLS-p with p < 1 converges to a stationary point
of the corresponding non-convex yet smooth approximation to the rank function. We gave
a matrix recovery guarantee for IRLS-1, showing that it converges to the true low-rank
solution if the operator defining the constraints satisfies a certain a null space property. This
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null space condition is both necessary and sufficient for low-rank recovery, thus improving
on and simplifying the previous analysis for IRLS-1 (Mohan and Fazel, 2010b).

We then focused on the matrix completion problem, a special case of affine rank mini-
mization arising in collaborative filtering among other applications, and presented efficient
implementations specialized to this problem. We gave an implementation for IRLP-p for
this problem using gradient projections. We also presented a related first-order algorithm,
sIRLS-p, for minimizing the smooth Schatten-p function, which serves as a smooth approxi-
mation of the rank. Our first set of numerical experiments show that (s)IRLS-0 has a better
recovery performance than nuclear norm minimization via SVT. We show that sIRLS-0 has
a good recovery performance even when noise is present. Our second set of experiments
demonstrate that sIRLS-0 compares favorably in terms of performance and runtime with
IHT, Optspace, and IRLSM when the rank of the low rank matrix to be recovered is known.
When the rank information is absent, sIRLS-0 shows a distinct advantage in performance
over IHT, Optspace and FPCA.

7.1 Future directions

Low-rank recovery problems have recently been pursued in machine learning motivated by
applications including collaborative filtering. Iterative reweighted algorithms for low-rank
matrix recovery have empirically exhibited improved performance compared to unweighted
convex relaxations. However, there has been a relative lack of theoretical results, as well as
efficient implementations for these algorithms. This paper takes a step in addressing both
of these issues, and opens up several directions for further research.

Low-rank plus sparse decomposition. The problem of decomposing a matrix into a
low-rank component and a sparse component has received much attention(Chandrasekaran
et al., 2011; Tan et al., 2011), and arises in graphical model identification (Chandrasekaran
et al., 2010a) as well as a version of robust PCA (Candes et al., 2011), where problem sizes
of practical interest are often very large. The convex relaxation proposed for this problem
minimizes a combination of nuclear norm and `1 norm. An interesting direction for future
work is to extend the IRLS algorithms family to this problem, by combining the vector and
the matrix weighted updates. A potential feature of such an algorithm can be that the p

for the vector part and the matrix part (and hence the weights) can be chosen separately,
allowing control over how aggressively to promote the sparsity and the low-rank features.

Distributed IRLS. In the IRLS family, the least squares problem that is solved in every
iteration is in fact separable in the columns of the matrix X (as also pointed out in (Fornasier
et al., 2010)), so it can be solved completely in parallel. This opens the door not just to a
fast parallel implementation, but also to the possibility of a partially distributed algorithm.
Noting that the weight update step does not appear easy to decompose, an interesting
question is whether we can use approximate but decomposable weights, so that the updates
would require only local information.
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Other applications for the NSP. The simple Null space Property used here, being
based on only the singular values of elements in the null space, makes the connection
between associated vector and matrix recovery proofs clear and transparent, and may be of
independent interest (see Oymak et al., 2011).
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Appendix A. IRLS-p from characterization of Smooth Schatten-p

function

We can also derive the IRLS-p algorithm for 0 < p ≤ 1 by defining the following function,

Fp(X, W, γ) = TrW
p−2

p (XT X + γI)

Lemma A.1 ((Argyriou et al., 2007),(Argyriou, 2010)) Let γ > 0 and

W ∗ =
(XT X + γI)

p
2

Tr(XT X + γI)
p
2

.

Then

W ∗ = argmin
W

{Fp(X, W, γ) : W � 0,Tr(W ) ≤ 1} .

Thus, Fp(X, W ∗, γ) = (fp(X))
2
p . Hence the problem of minimizing the Smooth Schatten-

p function, fp(X) (3) is equivalent to the following problem:

minimize Fp(X, W, γ)
subject to A(X) = b, W � 0,TrW ≤ 1,

(28)

where the variables are X and W . As a relaxation to minimizing (28) jointly in X, W , one
can consider minimizing (28) alternately with respect to X and W as in Algorithm (4).
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Data: A, b

Result: X̂ : A(X̂) = b

Set k = 0. Initialize W 0
p = I, γ1 > 0 ;

while not converged do
Xk+1 = argmin

X
Fp(X, W k)

s.t. A(X) = b
;

W k+1 = argmin
W

Fp(Xk+1,W )

s.t. W � 0,Tr(W ) ≤ 1
;

Choose 0 < γk+2 ≤ γk+1 ;
k = k + 1 ;

end

Algorithm 4: Alternative representation of the IRLS-p algorithm. The IRLS-p al-
gorithm can be seen as alternatively minimizing an equivalent Smooth Schatten-p
problem

Algorithm 4 is nothing but the IRLS-p algorithm. This gives an interpretation to the
IRLS-p algorithm as alternatively minimizing an equivalent Smooth Schatten-p problem
(28). Consider minimization with respect to W of Fp(X, W, γ) with X fixed. This problem
can be re-formulated as,

minimize Tr Ŵ (XT X + γI)
subject to Tr Ŵ

p
p−2 ≤ 1

Ŵ � 0
(29)

where Ŵ = W
p−2

p . The following lemma relates Fp(X, W, γ) with J p(X, W, γ) (defined in
7).

Lemma A.2 Let

Ŵ∗ =
(XT X + γI)

p
2
−1

(Tr(XT X + γI)
p
2 )

p−2
p

.

Then Ŵ∗ is the optimal solution to (29) as well as the following problem:

minimize Tr Ŵ (XT X + γI) + λ(Tr Ŵ
p

p−2 − 1),
subject to Ŵ � 0,

where λ = 2−p
p (Tr(XT X + γI)

p
2 )

2
p . Furthermore, let

W̃ = argmin
W�0

J p(X, W, γ).

Then J p(X, W̃ , γ) = fp(X) and

argmin
X

{
Fp(X, (Ŵ∗)

p
p−2 , γ) : A(X) = b

}
= argmin

Z

{
J p(Z, W̃ , γ) : A(Z) = b

}
.
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Thus Lemma (A.2) shows that alternatively minimizing Fp(X, W, γ) with respect to W

followed by X (with constraints on W as in (29) and affine constraints on X) is equivalent
to alternatively minimizing J p(X, W, γ) with respect to W followed by X (with affine
constraints on X and {W : W � 0}).
Proof [Proof of Lemma A.2] The Lagrangian for (29) is given by

L(Ŵ , λ) = Tr Ŵ (XT X + γI) + λ(Tr Ŵ
p

p−2 − 1)

Note that λ∗ = 2−p
p (Tr(XT X+γI)

p
2 )

2
p , Ŵ∗ = (XT X+γI)

p
2−1

(Tr(XT X+γI)
p
2 )

p−2
p

satisfy the KKT conditions

to (29). This is so because, Tr (Ŵ∗)
p

p−2 = 1, Ŵ∗ � 0 and λ∗ > 0. The complementary
slackness is also true since the primal inequality constraint is tight. Since (29) is a convex
problem and Ŵ∗ satisfies the KKT conditions, we have that Ŵ∗ is the optimal solution to
(29). It is also easy to see that W̃ = argmin

W�0
J p(X, W, γ) where W̃ = (XT X +γI)

p
2
−1. Also

note that J p(X, W̃ , γ) = fp(X). Now,

argmin
Z:A(Z)=b

J p(Z, W̃ , γ) = argmin
Z:A(Z)=b

Tr W̃ (ZT Z + γI)

= argmin
Z:A(Z)=b

Tr(XT X + γI)
p
2
−1(ZT Z + γI)

= argmin
Z:A(Z)=b

Tr Ŵ∗(ZT Z + γI)

= argmin
Z:A(Z)=b

Fp(Z, (Ŵ∗)
p

p−2 , γ).

Appendix B. Proof of Theorem 3.1

We present two useful lemmas before we get to the proof

Lemma B.1 For each k ≥ 1, we have

Tr(XkT
Xk)

p
2 ≤ J p(X1,W 0, γ0) := D (30)

where W 0 = I, γ0 = 1. Also, λj(W k) ≥ D
(1− 2

p
)
, j = 1, 2, . . . ,min{m,n}

Proof First, notice that

Tr(XkT
Xk)

p
2 ≤ Tr(XkT

Xk + γI)p/2 = J p(Xk,W k, γk)

≤ J p(X1,W 1, γ1) ≤ J p(X1,W 0, γ0) = D,
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where the second and third inequalities follow from (7). This proves (30).
Furthermore, from the above chain of inequalities, we see that

(‖XkT
Xk‖2 + γ)

p
2 = ‖(XkT

Xk + γI)
p
2 ‖2 ≤ D.

Using this and the definition of W k, we obtain that

‖(W k)−1‖2 = ‖(XkT
Xk + γI)1−

p
2 ‖2 = (‖XkT

Xk‖2 + γ)1−
p
2 ≤ D

( 2
p
−1)

.

This last relation shows that λj(W k) = σj(W k) ≥ 1/‖(W k)−1‖2 ≥ D
(1− 2

p
) for all j.

Lemma B.2 A matrix X∗ is a minimizer of

minimize TrWXT X

subject to A(X) = b

if and only if Tr(WX∗T Z) = 0 for all Z ∈ N (A).

Proof [Proof of Theorem (3.1)] For each k ≥ 1, we have that

2[J p(Xk,W k, γk)− J p(Xk+1,W k+1, γk+1)] ≥ 2[J 1(Xk,W k, γk)− J 1(Xk+1,W k, γk)]
= 〈Xk, Xk〉W k − 〈Xk+1, Xk+1〉W k

= 〈Xk + Xk+1, Xk −Xk+1〉W k

= 〈Xk −Xk+1, Xk −Xk+1〉W k

= TrW k(Xk −Xk+1)T (Xk −Xk+1)

≥ D
(1− 2

p
)‖Xk −Xk+1‖2

F

where the above expressions use Lemma B.2 and Lemma B.1. Summing the above inequal-
ities over all k ≥ 1, we have that lim

n→∞

(
Xn −Xn+1

)
= 0.

Appendix C. Proof of Theorem 5.1

For any two matrices X, Y we denote 〈X, Y 〉W = Tr WXT Y . We first note that the iterates
of sIRLS-p satisfy

J p(Xk+1,W k+1, γk+1) ≤ J p(Xk+1,W k, γk+1)
≤ J p(Xk+1,W k, γk)
≤ J p(Xk,W k, γk).

The last inequality follows from the Lipschitz continuity (with Lk = 2γk
p
2
−1) of the gradient

of Tr(W kXT X), i.e.

TrW kXT X ≤ TrW kXkT
Xk + 〈2XkW k, X −Xk〉+

Lk

2
‖X −Xk‖2

F ∀X, Xk
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and the fact that

Xk+1 = arg min
X

‖X − (Xk −XkW k)‖2
F

s.t. PΩ(X) = PΩ(X0).

The convergence of {J p(Xk,W k, γk)} follows from Monotone convergence theorem. This
also implies that the sequence {Xk} is bounded. Hence there exists a convergent subse-
quence, {Xni} → X∗. Also let {Xni+1} → X̂. If X∗ is a stationary point, we are done.
Conversely, if X∗ is not a stationary point to (26) then it follows that, X̂ 6= X∗. But
X̂ 6= X∗ implies (using strict convexity) that Tr(W ∗X̂T X̂) < Tr(W ∗X∗T X∗) which also
implies that J p(X̂, Ŵ , γmin) < J p(X∗,W ∗, γmin). However since

limJ p(Xi,W i, γi) = limJ p(Xni ,Wni , γni)
= limJ p(Xni+1 ,Wni+1 , γni+1),

we have a contradiction. Therefore, X∗ is a stationary point to (26) and the theorem follows.

References

“Movie Lens data”. http://www.grouplens.org/node/73.

A. Argyriou. A study of convex regularizers for sparse recovery and feature selection.
2010. Technical Report. Available at http://ttic.uchicago.edu/~argyriou/papers/
sparse_report.pdf.

A. Argyriou, C.A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework
for multi-task structure learning. In Proc. of Neural Information Processing Systems
(NIPS), 2007.

J.F. Cai, E.J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM J. on Optimization, 20(4):1956 – 1982, 2008.

E. J. Candes and S. Becker. Software for singular value thresholding algorithm for matrix
completion. 2010. Available at http://svt.caltech.edu/code.html.

E. J. Candes and B. Recht. Exact matrix completion via convex optimziation. Foundations
of Computational Mathematics, 9:717–772, 2009.

E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans Info. Theory,
2004.

E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal
of the ACM, 58(3), 2011.

E.J. Candes, M.B. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1 minimization.
Journal of Fourier Analysis and Applications, 14:877–905, 2008.

31



Karthik Mohan and Maryam Fazel

V. Chandrasekaran, P.A. Parrilo, and A.S. Willsky. Latent variable graphical model selec-
tion via convex optimization. 2010a. Available at http://arxiv.org/abs/1008.1290.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of
linear inverse problems. 2010b. Available at http://arxiv.org/abs/1012.0621.

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence
for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive
sensing. Inverse Problems, 24(035020):1–14, 2008.

R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing. In
33rd International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2008.

I. Daubechies, R. DeVore, M. Fornasier, and C.S. Gunturk. Iteratively re-weighted least
squares minimization for sparse recovery. Commun. Pure Appl. Math, 63(1):1 – 38, 2010.

P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices ii:
Computing a low rank approximation to a matrix. SIAM Journal on Computing, 36:158
– 183, 2006.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum
order system approximation. In Proc. American Control Conference, Arlington, VA, 2001.

M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with appli-
cations to hankel and euclidean distance matrices. In Proc. American Control Conference,
pages 2156–2162, Denver, CO, 2003.

M. Fornasier, H. Rauhut, and R. Ward. Low-rank matrix recovery via iteratively reweighted
least squares minimization, 2010. Submitted to SIAM Journal of Optimization. Preprint
available at http://arxiv.org/PS_cache/arxiv/pdf/1010/1010.2471v2.pdf.

R. Garg and R. Khandekar. Gradient descent with sparsification: An iterative algorithm
for sparse recovery with restricted isometry property. In Proc. of 26th Intl. Conf. on
Machine Learning (ICML), 2009.

D. Goldfarb and S. Ma. Convergence of fixed point continuation algorithms for matrix rank
minimization. Foundations of Computational Mathematics, 11(2), 2011.

D. Goldfarb and S. Ma. FPCA code. 2009. Available at
http://www.columbia.edu/ sm2756/FPCA.htm.

D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical Review Letters, 105, 2010.

32



Iterative Reweighted Algorithms for Matrix Rank Minimization

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Stochastic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):
217–288, 2011.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
1991.

R. H. Keshavan and S. Oh. A gradient descent algorithm on the grassman manifold for
matrix completion. 2009.

R. H. Keshavan, A. Montanari, and S. Oh. OPTSPACE algorithm. 2009a. http://www.

stanford.edu/~raghuram/optspace/index.html.

R. H. Keshavan, A. Montanari, and S. Oh. Low-rank matrix completion with noisy ob-
servations: a quantitative comparison. In Proc. 47th Annual Allerton Conference on
Communication, Control, and Computing, 2009b.

K. Lee and Y. Bresler. Admira: Atomic decomposition for minimum rank approximation.
IEEE Tran. Info. Theory, 56(9), 2010.

A.S. Lewis. Derivatives of spectral functions. Mathematics of Operations Research, 21(3):
576 – 588, 1996.

Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with
application to system identification. SIAM J. Matrix Analysis and Appl., 31(3), 2008.

M. S. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction
costs. Annals of Operations Research, 152:341–365, 2006.

A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications.
1979.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning
large incomplete matrices. Journal of Machine Learning Research, 11:2287 – 2322, 2010.

R. Meka, P. Jain, and I. S. Dhillon. Guaranteed rank minimization via singular value
projection. In Proc. of Neural Information Processing Systems (NIPS), 2010.

K. Mohan and M. Fazel. Reweighted nuclear norm minimization with application to system
identification. In Proc. American Control Conference, Baltimore, MA, 2010a.

K. Mohan and M. Fazel. Iterative reweighted least squares for matrix rank minimization.
In Proc. 48th Allerton conference on Controls and communications, Allerton, IL, 2010b.

D. Needell. Noisy signal recovery via iterative reweighted l1-minimization. In Proc. Asilomar
conference on Signals, Systems and Computers, 2009.

33



Karthik Mohan and Maryam Fazel

D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inac-
curate samples. Applied and Computational Harmonic Analysis, 26(3):301 – 321, 2008.

S. Oymak and B. Hassibi. New null space results and recovery thresholds for matrix rank
minimization. 2010. Available at http://arxiv.org/abs/1011.6326.

S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach to recovery conditions
for low rank matrices. In Proc. International Symposium on Information Theory, 2011.

B. D. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis selection.
IEEE Transactions on Signal Processing, 47:187 – 200, 1999.

N. Srebro, J.D.M. Rennie, and T.S. Jakkola. Maximum-Margin Matrix Factorization. In
Advances in Neural Information Processing Systems, 2005b.

W. Tan, G. Cheung, and Y. Ma. Face recovery in conference video streaming using robust
principal component analysis. In In Proc. IEEE Intl. Conf. on Image Processing, 2011.

K. C. Toh and S. W. Yun. An accelerated proximal gradient algorithm for nuclear norm
regularized least squares problem. Pacific Journal of Optimization, 6:615–640, 2010.

D. P. Wipf and S. Nagarajan. Iterative reweighted `1 and `2 methods for finding sparse
solutions. Journal of Selected Topics in Signal Proessing (Special Issue on Compressive
Sensing), 4(2), 2010.

T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of
Machine Learning Research, 11:1081–1107, 2010.

34


