
64 June 2003/Vol. 46, No. 6 COMMUNICATIONS OF THE ACM

The Web Services Debate

.NET vs. J2EE
by GERRY MILLER

A
ccording to nearly every industry pundit, including my esteemed
(though misinformed) colleague from Sun Microsystems, integration of
systems is critically important for most enterprises. The ability to quickly

assimilate and aggregate large amounts of information from disparate systems
can mean the difference between life and death for an organization. Ease of
access by customers and seamless supply chain management with business
partners are quickly becoming the only distinguishing factors in an increas-
ingly commoditized marketplace.

One of the problems with integrating computer systems is the incredible
complexity and associated cost of doing so. Many systems are old and scantily

documented; still others are proprietary with
no natural hooks into their data. And these
are just problems that exist within a compa-
ny’s firewall. Imagine how the complexity
increases as an enterprise begins integrating its
systems with those of its business partners and
customers, with the added security ramifica-
tions brought on by Internet communica-
tions.

The sheer number of interconnections is
another problem. Companies have many sys-
tems—the alphabet soup of ERP, HR, CRM,
SCM—each with many constituents. The
geometric complexity of all these interconnec-
tions begins to stagger the imagination. It is
no wonder so many integration efforts fail to

bring about promised savings or other business benefits.
Web services offer a tidy solution to this integration mess. Rather than hav-

ing to understand each system’s deep underlying data structures, or having to
write point-to-point application integration code, companies can simply add a
Web services layer around individual systems that exposes necessary information
and functionality in a standard way. Integration then becomes an effort to
orchestrate business processes by making Web services calls, rather than a mas-
sive retooling effort.

At its very root, a Web service is nothing other than a server that listens for
and replies with SOAP, generally via HTTP. In practice, a Web service will sup-
port WSDL to describe its interfaces, and should also be listed in a UDDI reg-
istry. Of course, at this point Web services are deceptively simple. So far the
technology industry has not coalesced around Web services standards for secu-
rity, transactions, state management, and workflow. However, nearly every mem-
ber of the technology community has a vested interest in developing these
standards, so they should come to fruition within a few years.

Figure 1. The
complexity of
integrating
systems.

Most Web services development is being accom-
plished today using either Microsoft .NET or Sun
Microsystems’ J2EE specification. This is interesting,
considering the undisputable fact that J2EE has no
support for Web services. The J2EE specification will
not contain any native support for Web services until
J2EE 1.4, which Sun delayed recently by six months,
so commercial imple-
mentations are unlikely
before 2004. Developing
Web services with J2EE
today means using either
extensions to J2EE that
are not part of the speci-
fication, or doing lots of
XML parsing in code.

Interestingly enough,
despite a common per-
ception to the contrary,
J2EE is in fact not an
open specification. While
Sun contends that J2EE
is beholden to the Java
Community Process, the
JCP really only defines a
process for community
members to suggest updates and changes to the spec-
ification. Final specifications can only be approved by
Sun. Sun has more than once publicly committed to
turn the technology over to a standards body, and
each time has reneged on this promise.

A core part of Microsoft .NET, on the other hand,
is comprised of the Common Language Interface
(CLI), of which Microsoft officially relinquished con-
trol to a true standards body, the European Computer
Manufacturing Association (ECMA).

Still, the business world is very large, and there is

certainly room for several Web services development
tools. In some cases it will be very clear whether
Microsoft .NET or J2EE (or some other technology)
is appropriate, for example, when a company has exist-
ing investments in a particular technology, is experi-
encing resource constraints, or has limitations based on
software it is already using. In most cases, however,

Microsoft .NET will
offer a considerable
advantage based on
time-to-market, per-
formance, and overall
cost of solution.

In Business,
the Faster the
Better
One of the main goals
of application devel-
opment is to get the
best solution possible
as quickly as you can.
To do this, the devel-
opment tools must

address the needs of enterprise architects, system
designers, application developers, and quality assur-
ance testers.

Microsoft Visual Studio .NET, the flagship suite of
tools for Microsoft .NET development, is hailed as
the best development suite on the market. The prod-
uct allows enterprises to define templates for consis-
tency across all development projects; it allows
architects to use graphical design tools to generate
program documentation; it provides developers with a
wide choice of languages and features; and it provides
testers a rich debugging environment to monitor end-
to-end program flow.

COMMUNICATIONS OF THE ACM June 2003/Vol. 46, No. 6 65

Figure 2. Microsoft Visual Studio
.NET design tools for architects.

Simply put, .NET applications will
see the light of day long before
their J2EE brethren.

As compelling as Visual Studio .NET is, Microsoft
.NET programs do not have to be built with that
tool; other vendors such as Borland offer great devel-

opment suites, and there are even shared source C#
compilers available.

Microsoft .NET programs run inside the Com-
mon Language Runtime (CLR), just as J2EE pro-
grams run inside the Java Virtual Machine (JVM).
The .NET Framework adds a rich library of func-
tionality to the CLR, considerably stronger than the
additional capabilities J2EE brings to the JVM. In
J2EE, even simple tasks become difficult. For exam-
ple, EJB performance problems cause most program-
mers to use bimodal data access, which requires them
to write twice as much code.

Because the .NET Framework is so rich, program-
mers will typically need to write significantly fewer
lines of code than they will with J2EE. For example,
one of J2EE’s most ardent supporters recently con-
cluded that the most optimized Java Pet Store possi-
ble requires 14,004 lines of code under J2EE, but
only 2,096 using the .NET Framework.

So, what does an 85% reduction in coding mean?
It means the application is finished that much
quicker. It also means a shorter QA cycle and a more
stable and secure product, since bug counts grow with
line counts.

Simply put, .NET applications will see the light of
day long before their J2EE brethren.

Performance
Much has been made about .NET vs. J2EE per-
formance, so I will briefly mention how much
faster .NET solutions will tend to run. Still, over-
all performance is rarely a critical factor in enter-
prise systems. More important are figures such as
how many users the system can support per
server because this translates directly into deploy-
ment and maintenance cost.

Despite Sun’s claims, The Middleware Com-
pany’s (TMC) recent Java Pet Shop study is
highly relevant to this discussion. TMC is a sig-
nificant player in the J2EE world, deriving nearly
all their revenue from Java and J2EE publishing
and consulting. They also run TheServerSide.com,
one of the most popular J2EE Web sites. Sun
apparently thinks highly of TMC, touting them

on the Web; java.sun.com/features/2001/09/server-
side.html.

The Java Pet Shop study concluded that Microsoft
.NET requires 1/5th the code as J2EE, supports 50-
600% more users (depending on the application
server), and offers nearly twice the transactions per
second on a significantly less expensive platform—all
with no errors, while both J2EE application servers
studied threw exceptions, and one could not even
complete the benchmark. This from a J2EE-biased
company that even Sun regards as a definitive source
of information!

Even Sun’s own data from the JavaOne 2002 con-
ference shows that 86% of J2EE users surveyed had
performance concerns. It is telling, too, that there are
no J2EE-based applications in the TPC-C bench-
marks. For example, IBM’s TPC-C submissions use
either Microsoft COM+ or IBM’s older, non-
Java/non-J2EE transaction processing monitor for-
merly known as Encina.

The J2EE community often counters the perfor-
mance argument by claiming that J2EE shops trade
speed for portability. This is a red herring, as there is
no real portability between J2EE application servers.
Indeed, even Oracle’s Web site admits, “Though in

66 June 2003/Vol. 46, No. 6 COMMUNICATIONS OF THE ACM

.NET solutions are simply less expensive
to build, less expensive to deploy, and
less expensive to maintain.

Figure 3. A sample of the .NET Framework

theory, any J2EE application can be deployed on any
J2EE-compliant application server, in practice, this is
not strictly true.” IBM’s Web site contains a white
paper over 200 pages in length explaining how to port
a J2EE application from BEA WebLogic to Web-
Sphere. The portability argument is truly nothing but
fear, uncertainty, and doubt (FUD) and misdirection.

Simply put, .NET applications are faster and sup-
port more users than comparable J2EE solutions.

Cost of Solution
The total cost of a solution consists of how much
money an enterprise spends to build and then deploy
the application. In both cases, Microsoft .NET offers
a significant advantage over J2EE.

When building a J2EE solution, programmers
have a severely limited range of language choice—
they can only use Java. On the other hand, the .NET
Framework supports almost 30 languages. In fact,
contrary to Sun’s claims, Visual Studio .NET supports
four languages out of the box (J#, a Java-syntax lan-
guage, C#, C++, and Visual Basic .NET), giving each
language identical support. While C# is a great lan-
guage for .NET development, the .NET Framework
is in no way optimized for C# only. In addition, other
vendors offer a wide array of additional languages for
.NET development, including JScript, Perl, COBOL,
Fortran, Smalltalk, even Eiffel and Mondrian. Clearly,
companies will generally not build solutions using,
say, 10 languages at once. However, the choice to use
whichever language makes sense for a particular pro-
ject can generate significant savings, because compa-
nies can use existing programmers without retraining
them for Java. In addition, Visual Basic programmers
tend to be more plentiful and less expensive than Java
programmers. And, we previously established that
once developers begin writing code they will need to
write much less code, translating again into significant
savings.

Once the application is ready it must be deployed.
In the .NET world, this means running it on an Intel-
based server with Windows 2000 Server or the
upcoming Windows Server 2003. According to
TMC, with software costs running approximately
$5,990, a fully configured server for the .NET solu-

tion will cost around $36,990. Contrast this with the
same server running a commercial J2EE application
server, which adds between $40,000 and $48,000 per
server! Even if an enterprise chooses Linux to elimi-
nate the $5,990 Windows license, it still must add the
application server—even today’s New Math can’t jus-
tify eliminating less than $6,000 for an additional
$48,000 cost.

Finally, because performance data indicates that
J2EE solutions support fewer users than .NET solu-
tions on comparable hardware, the J2EE solutions
will generally require more of these more expensive
servers.

.NET solutions are simply less expensive to build,
less expensive to deploy, and less expensive to maintain.

Conclusion
Web services are clearly critical for the next wave
of enterprise computing—integrating disparate
business systems for more effective use of informa-
tion. Companies like Microsoft and Sun Microsys-
tems should be commended for their clear
commitment to work together toward a common
industry standard for all our customers’ benefit.

There should always be more than one choice of
development environment for customers, because
there will never be one solution always appropriate for
everyone in every situation. The world is big enough
for both Microsoft .NET and J2EE. Still, for the
reasons outlined herein, Microsoft .NET will gener-
ally be a better choice for most companies in most
situations.

Gerry Miller (gerrym@microsoft.com) is young enough to have
attended a college rave, and old enough to enjoy Paul Anka. He is also
Chief Technology Officer for Microsoft’s U.S. Central Region.

The opinions expressed herein are the author’s own and may not reflect those of his
employer.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0600 $5.00

c

COMMUNICATIONS OF THE ACM June 2003/Vol. 46, No. 6 67

