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Introduction
Fusion is the terminal step of most membrane traf!cking pro-
cesses in the secretory and endocytic systems. It requires that 
two bilayers be brought into close proximity and disrupted in a 
controlled manner, facilitating the local rearrangement of 
lipids into a single topologically continuous bilayer. SNARE 
proteins are thought to catalyze fusion by assembling into tight 
membrane-bridging (trans-) complexes (Hanson et al., 1997a; 
Jahn and Scheller, 2006; Rizo and Rosenmund, 2008). Analy-
ses of membrane-free SNARE core complexes revealed that 
four SNARE domains pack into a parallel coiled-coil bundle 
with the integral membrane anchors held together at the bun-
dle’s C-terminal end (Hanson et al., 1997b; Sutton et al., 1998; 
Xiao et al., 2001; Antonin et al., 2002). These observations 
suggested that complete folding of a trans-SNARE complex 
should be possible only when the docked membranes are in 
extremely close proximity and prompted the suggestion that 
“zippering” of trans-SNARE complexes catalyzes fusion (Hanson 
et al., 1997a,b; Weber et al., 1998). In this model, trans-SNARE 
complexes nucleate at the membrane-distal SNARE N termini 
and zipper toward the membrane-embedded C termini. Energy 
liberated by a concerted oligomerization and folding reaction 

is thereby coupled to the mechanical work of pulling the mem-
branes into tight apposition.

The zippering hypothesis was supported by experiments 
with secretory cell preparations and with puri!ed SNAREs. 
These studies demonstrated distinct outcomes for N- versus 
C-terminal disruptions of SNARE complexes (Matos et al., 
2003; Pobbati et al., 2006; Sorensen et al., 2006; Li et al., 
2007). In experiments with reconstituted proteoliposomes and 
living cells, the insertion of "exible linkers between SNARE 
domains and transmembrane anchors diminished fusion, pre-
sumably by allowing trans-complexes to zipper fully without 
bringing the membranes into close apposition. (McNew et al., 
1999; Wang et al., 2001; Kesavan et al., 2007). However, major 
questions about the precise relationship between SNARE zip-
pering and fusion are unanswered.

Trans-SNARE complex assembly and fusion occur spon-
taneously in reconstituted systems, supporting the notion that 
SNAREs represent a minimal membrane fusion machinery 
(Weber et al., 1998; Giraudo et al., 2005). However, in living 
cells, fusion is subject to stringent spatiotemporal regulation by 
Rab GTPases, tethering proteins, SNARE-binding proteins, and 

Soluble N-ethyl-maleimide sensitive fusion protein 
attachment protein receptors (SNAREs) are hypothe-
sized to trigger membrane fusion by complexing 

in trans through their membrane-distal N termini and zip-
pering toward their membrane-embedded C termini, which 
in turn drives the two membranes together. In this study, we 
use a set of truncated SNAREs to trap kinetically stable, 
partially zipped trans-SNARE complexes on intact organ-
elles in the absence of hemifusion and content mixing. We 
show that the C-terminal zippering of SNARE cytoplasmic 
domains controls the onset of lipid mixing but not the sub-

sequent transition from hemifusion to full fusion. Moreover, 
we find that a partially zipped nonfusogenic trans-complex 
is rescued by Sec17, a universal SNARE cochaperone. 
Rescue occurs independently of the Sec17-binding partner 
Sec18, and it exhibits steep cooperativity, indicating that 
Sec17 engages multiple stalled trans-complexes to drive 
fusion. These experiments delineate distinct functions within 
the trans-complex, provide a straightforward method to 
trap and study prefusion complexes on native membranes, 
and reveal that Sec17 can rescue a stalled, partially zipped 
trans-complex.
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In this study, we dissect the zippering of trans-SNARE 
complexes on an intact organelle, the Saccharomyces cerevisiae 
vacuolar lysosome. The cell-free assay of homotypic vacuole 
fusion offers unique advantages. It allows us to measure trans-
SNARE complex assembly, lipid mixing, and content mixing 
in a preparation of intact organelles replete with native fusion-
regulatory factors (Haas, 1995; Merz and Wickner, 2004a; 
Reese and Mayer, 2005; Collins and Wickner, 2007; Jun and 
Wickner, 2007). Vacuolar trans-SNARE complex assembly and 
fusion are stringently controlled by the Rab GTPase Ypt7 and 
its cognate tethering complex, Vps-C–HOPS (homotypic fusion 
and vacuole protein sorting complex; Seals et al., 2000). HOPS 
contains at least six subunits, including the Ypt7 activator Vps39 
and the Ypt7 effector Vps41 (Wurmser et al., 2000; Brett et al., 
2008). HOPS also contains Vps33, a Sec1/Munc-18 family pro-
tein that is thought to catalyze trans-complex assembly or to 
regulate SNARE function (Collins et al., 2005).

In this study, a set of puri!ed, truncated SNAREs provides 
precise control over the extent of C-terminal (membrane proxi-
mal) SNARE complex zippering. These truncated SNAREs are 
added acutely to puri!ed vacuoles, precluding indirect pleio-
tropic effects on membrane traf!c, a bane of conventional genetic 
approaches. We capture a stalled assembly intermediate in which 
kinetically stable trans-SNARE complexes have formed but nei-
ther lipid nor content mixing has initiated. We show that C-terminal 
zippering beyond that needed for trans-complex assembly initi-
ates lipid mixing but that downstream stages of the reaction are 
not directly controlled by C-terminal zippering of the SNARE 

other factors that conspire to control SNARE availability, trans-
SNARE complex assembly, and fusion. A major challenge is to 
discover how these factors guide, regulate, and respond to the 
assembly of prefusion trans-complexes. Under normal condi-
tions, trans-SNARE complexes are evanescent, neither long 
lived nor abundant at steady state. Moreover, it is notoriously 
dif!cult to distinguish prefusion trans-SNARE complexes from 
postfusion cis-SNARE complexes. Consequently, the molecular 
compositions and con!gurations of prefusion complexes (con-
taining trans-complexed SNAREs and the associated accessory 
factors) remain largely unde!ned, as do the biochemical path-
ways leading to assembly of these complexes.

Ca2+-stimulated exocytosis can occur on a submillisecond 
time scale, which is likely faster than trans-complex nucleation 
and assembly. Experiments with exocytic and synaptic model 
systems implied that docked vesicles attach to target membranes 
through “loose” (i.e., partially zipped) trans-SNARE complexes 
(Xu et al., 1998; Hua and Charlton, 1999; Xu et al., 1999; 
Lagow et al., 2007). Thus, at least in these systems, the fusion 
pathway might traverse a metastable, partially zipped inter-
mediate that undergoes a triggered transition from loose (partial)  
to “tight” (complete) zippering. It is unknown whether vesicles 
docked through such a mechanism would have partially com-
pleted the fusion reaction (as in a hemifusion intermediate; 
Schaub et al., 2006; Zampighi et al., 2006; Wong et al., 2007). 
It is also unknown whether the tightening of partially zipped 
SNARE complexes could be suf!cient, or even necessary, to 
trigger fusion.

Figure 1. Strategy to arrest trans-SNARE 
complex zippering. (A) A schematic of ratio-
nale is shown. N- to C-terminal zippering of 
trans-SNARE complexes (purple and green) 
drives membranes into close apposition.  
A C-terminally truncated Qc-SNARE is pre-
dicted to permit only partial zippering. (B) Ex-
perimental constructs are shown. The structure 
of an endosomal SNARE complex (Protein 
Data Bank accession no. 1GL2; Antonin et al.,  
2002) highlights the Qc chain in green.  
In the aligned Vam7 (vacuolar Qc) amino 
acid sequence, core-packing layer residues 
are highlighted in red. The C-terminal residue 
present in each Qc construct is indicated. 
Also shown are locations of truncation after 
BoNT A and E cleavage of the neuronal Qc, 
SNAP-25 (Binz et al., 1994), and the location 
of the Qc truncation in a dominant-negative 
Saccharomyces cerevisiae exocytic SNARE 
mutant (Sec9- 17; Rossi et al., 1997).  
(C) rVam7 (Qc) domain structure and expres-
sion constructs. A two-tag purification strategy 
was used to obtain homogenous prepara-
tions of each Qc protein. The C-terminal  
intein/chitin-binding domain (CBD) affinity 
tag was removed during purification to yield 
the His6-Vam7 (Qc) products used in this study. 
wt, wild type.
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tory function). To distinguish between these mechanisms, we 
assayed the activity of each recombinant Qc protein in competi-
tion with native Qc (Vam7). When fusion reactions are run in 
the presence of ATP, vacuolar cis-SNARE complexes are dis-
assembled by Sec17 and Sec18, liberating native Vam7 ( 15 nM) 
to compete with the added Qc (Ungermann et al., 1998a; 
Boeddinghaus et al., 2002). Qcwt and Qc7 , both of which sup-
port ef!cient fusion in the absence of ATP, did not strongly 

cytoplasmic domains. Finally, we demonstrate that a stalled, par-
tially zipped trans-complex is rendered fusogenic by a universal 
SNARE complex–binding protein, Sec17 (yeast -SNAP).

Results
Experimental perturbation of SNARE  
C-terminal zippering
In all systems studied to date, four SNARE domains, designated 
R, Qa, Qb, and Qc are required for trans-complex assembly and 
fusion catalysis (Sutton et al., 1998; Jahn and Scheller, 2006). 
Freshly isolated yeast vacuoles bear free R, Qa, and Qb (but not 
Qc) SNAREs; they also bear stable cis-complexes that contain 
R, Qa, and Qb along with the Qc Vam7 (Ungermann et al., 1998a; 
Thorngren et al., 2004; Collins et al., 2005). Vam7 is soluble and 
is targeted to the membrane by an N-terminal phox homology 
(PX) domain (Cheever et al., 2001; Boeddinghaus et al., 2002). 
Because the Vam7 on isolated vacuoles is sequestered within 
cis-complexes, it is functionally inert. This native Vam7 cannot 
participate in fusion unless liberated through the ATP-dependent 
priming activity of Sec17 and Sec18 (Boeddinghaus et al., 
2002). Puri!ed Vam7 potently stimulates homotypic vacuole 
fusion, completely bypassing the requirement for ATP, Sec17, 
and Sec18-dependent priming (Merz and Wickner, 2004a,b; 
Thorngren et al., 2004). The priming bypass fusion reaction is 
on pathway, as it requires GTP-bound Ypt7 (the vacuolar Rab), 
the Vps-C–HOPS effector complex, and unpaired Qa, Qb, and  
R SNAREs (Thorngren et al., 2004).

We hypothesized that the removal of C-terminal residues 
from Vam7 should facilitate partial trans-SNARE complex assem-
bly with zippering arrested at the C-terminal core layer residue 
of the truncated protein (Fig. 1 A). We therefore prepared a set 
of C-terminally truncated rVam7 (Qc) mutants (Fig. 1, B and C). 
These proteins are designated QcX , where X denotes the most 
C-terminal (membrane proximal) core-packing layer to which the 
mutant’s Qc-SNARE domain can contribute. We also prepared a 
mutant lacking the entire SNARE domain (Qc SD).

C-terminal SNARE zippering  
controls fusion
In priming bypass fusion assays, puri!ed Qcwt (Qc wild type) 
stimulated robust fusion (content mixing) with a 50% effec-
tive concentration (EC50) of 4 nM (Fig. 2 A and Table I). 
C-terminal truncation had two consequences. First, the mild 
truncation mutants Qc7  and Qc5  were three to seven times 
more potent than Qcwt, eliciting substantial fusion at subnano-
molar concentrations. Thus, the extreme C terminus of Vam7 
negatively regulates fusion. Second, truncation beyond the +7 
core layer resulted in the progressive loss of fusion activity.  
At saturating concentrations, Qc5  stimulated 65% as much 
fusion as Qcwt. In contrast, Qc3  was nearly inactive, eliciting 

5% as much fusion as Qcwt. Qc1  and Qc SD were com-
pletely inactive (Fig. 2 A).

The compromised fusion activity of Qc  truncation mutants 
could result either from reduced recruitment into prefusion 
complexes (loss of function) or from functional defects mani-
festing after Qc  entry into prefusion complexes (gain of inhibi-

Figure 2. Fusion driven by truncated Qc-SNAREs. (A) Homotypic vacuole 
fusion driven by truncated Qc proteins in priming bypass reactions lack-
ing ATP. Solid lines show best-fit sigmoidal dose-response curves. Error 
bars indicate mean ± SEM (n ≥ 4 experiments). (B) Competitive inhibition 
by truncated Qc-SNAREs. Vacuole fusion was driven by ATP, Sec17, and 
Sec18 in the presence of Qc proteins. Solid lines represent best-fit dose-
inhibition curves. The concentration of native Qc (Vam7) in a standard in 
vitro fusion reaction is indicated (Thorngren et al., 2004). Extended dose-
response curves for Qc1  and Qc SD are shown in Fig. S1. Fit parameters 
are presented in Table I. Relative fusion value of 1 equals 3.3 fusion units. 
Error bars span ±1 SEM (n ≥ 4 experiments).
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(Fig. 2 B; Table I; and Fig. S1). Importantly, Qc1  and 
Qc SD inhibited fusion with nearly identical potency, indi-
cating that the partial SNARE domain of Qc1 , unlike that  
of Qc3 , is not itself inhibitory. The remaining inhibitory activ-
ity of these mutants is probably a result of the N-terminal  
PX domain, which by itself inhibits fusion at low micromolar 
concentrations (Fig. S1; Boeddinghaus et al., 2002; Merz 
and Wickner, 2004b). Together, these experiments suggest a 
working model in which entry of the Qc-SNARE into a pre-
fusion complex requires a region of the Qc-SNARE domain 
falling between the N terminus and the +3 core-packing 
layer, whereas fusion catalysis requires zippering beyond 
layer +3.

in"uence ATP-driven fusion. Both Qc5  and Qc3  inhibited 
ATP-driven fusion at concentrations consistent with compe-
tition against native Vam7, suggesting that Qc5  and Qc3   
ef!ciently enter prefusion complexes. Qc5  was a potent but in-
complete fusion inhibitor. This partial competitive inhibition 
together with the !nding that Qc5  is an incomplete fusogen in 
the absence of competitor (Fig. 2 A) de!nes Qc5  as a partial 
agonist of fusion. Qc3  was a potent and nearly complete fusion 
inhibitor. Together, these !ndings indicate that Qc5  and Qc3  
are gain of function mutants that assemble into partially or com-
pletely defective prefusion complexes.

Qc1  and Qc SD also inhibited fusion but did so at 
least an order of magnitude less potently than Qc5  or Qc3  

Figure 3. Truncated Qc proteins nucleate 
trans-SNARE complexes. (A) A schematic of 
the assay is shown. Trans-SNARE complex 
assembly was monitored by assaying physical 
association of Vam3::CBP and Nyv1, which 
were initially present on separate vacuoles. 
Pull-down reactions contained only protease-
deficient vacuoles (equal mixture of vacuoles 
from BJ3505 and BJ3505 VAM3::CBP nyv1  
cells). (B) Vacuolar trans-SNARE complex  
assembly driven by Qc proteins. Priming bypass  
reactions lacked ATP and contained Qc pro-
teins as indicated. Qc proteins were added 
either at the start of in vitro fusion reactions 
(Rx) or to vacuole detergent extracts before 
Vam3::CBP pull-down (Pd). (C) Qc-driven 
trans-SNARE complex assembly requires 
the activated vacuolar Rab, Ypt7. Reactions 
were run in the absence or presence of Rab  
inhibitors 2.4 µM GDI and 16 µM Gyp1-46.  
(D) Qc-driven trans-SNARE complex assembly 
and fusion assayed in parallel. Trans-SNARE 
complex assays are representative of three 
independent experiments. Relative fusion value 
of 1 equals 1.9 fusion units. Error bars for 
fusion span ±1 SEM (n = 3 experiments).
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The most important conclusions obtained with this assay 
are for the Qc3∆ mutant. Qc3  drove ef!cient SNARE com-
plex assembly in the near absence of fusion and, as will be 
shown, in the complete absence of detectable lipid mixing. 
Thus, Qc3 -SNARE complexes are unambiguously captured 
in the trans-con!guration. In contrast, Qcwt, Qc7∆, and Qc5∆ 
all drove fusion. The assay results obtained for these Qc’s 
therefore re"ect the sum of complexes formed in trans- plus 
any cis-complexes that might have formed after fusion. If sub-
stantial numbers of cis-complexes did form after fusion, we 
would expect to retrieve the largest amount of SNARE complex 
with Qcwt and Qc7∆, less with Qc5∆ (which drives less fusion), 
and least of all with Qc3∆ (which does not drive fusion). But 
this is not the result obtained. Instead, we always retrieved as 
much or more SNARE complex with Qc5∆ and Qc3∆ as with 
Qcwt and Qc7∆. In other words, the less opportunity there was 
for postfusion cis-SNARE complexes to form, the more SNARE 
complexes we recovered. Because ATP is not present to drive 
complex disassembly, the obvious inference is that the Qcwt-, 
Qc7∆-, and Qc5∆-SNARE complexes recovered in these assays, 
like the Qc3∆ complexes, were assembled in trans.

Collectively, our fusion experiments (Figs. 2 and 3) and 
biochemical results (Fig. 3) indicate that zippering beyond the 
+1 core-packing layer is necessary for the assembly of stable 
trans-SNARE complexes, whereas ef!cient fusion catalysis 
requires zippering beyond layer +3. Our results further indicate 
that Qc5  and Qc3  inhibit fusion by sequestering unpaired 
Qa-, Qb-, and R-SNAREs within partially (Qc5 ) or com-
pletely (Qc3 ) nonfusogenic trans-complexes. Consistent with 
this interpretation, we frequently observed increased trans-
SNARE complex abundance for Qc3  and Qc5  compared 
with Qcwt and Qc7  (Fig. 3, B–D). This implies that Qc3 - 
and Qc5 -mediated trans-complexes may be even less effi-
cient at catalyzing fusion relative to Qcwt than the raw fusion 
data suggest, and it indicates that trans-SNARE complexes  

Stable trans-complex assembly requires 
zippering beyond layer +1
To evaluate whether the Qc truncation mutants stimulate on-
pathway (i.e., Rab dependent) assembly of kinetically stable 
trans-SNARE complexes, we used a direct biochemical assay of 
trans-complex formation (Collins and Wickner, 2007). In this 
assay, the Qa-SNARE Vam3::CBP (Vam3 bearing an internal 
calmodulin-binding af!nity tag) and the R-SNARE Nyv1 are 
initially present on opposite membranes (Fig. 3 A). After Rab-
mediated vacuole docking, the membranes are dissolved in 
nonionic detergent. Trans-complexes are then identi!ed by 
coprecipitation of Nyv1 (R) with Vam3::CBP (Qa) on calmodulin-
agarose resin. In the absence of fusion, the Qa- and R-SNAREs 
are on different membranes and can complex only in trans. When 
fusion occurs, both prefusion trans-complexes and postfusion 
cis-complexes that originally assembled in trans are detected.  
As described in subsequent sections of the Results, multiple lines 
of evidence indicate that under the assay conditions used in the 
this study, all or nearly all of the complexes recovered formed in 
trans, and few or none formed in cis after fusion.

Using this assay (Fig. 3, B–D), we found that Qcwt, Qc7 , 
Qc5 , and Qc3  potently stimulated trans-SNARE complex 
formation. In contrast, Qc1  and Qc SD were unable to stimu-
late substantial complex formation even when added at 10-fold 
higher concentrations. Qc-stimulated complexes were assembled 
through the physiological docking pathway; Qc proteins did not 
stimulate complex formation when added to postreaction deter-
gent lysates (Fig. 3 B), and complex formation was abolished 
when docking was blocked by Rab GTPase inhibitors (guanine 
nucleotide dissociation inhibitor [GDI] and Gyp1; Fig. 3 C;  
Ungermann et al., 1998b; Collins and Wickner, 2007). The tagged 
R-SNARE–de!cient vacuoles used for the SNARE complex  
assembly assay exhibited fusion responses to the Qc  mutants 
identical to responses obtained using vacuoles bearing wild-type 
SNAREs (Fig. 3 D).

Table I. Curve fit parameters for selected Qc and Sec17 dose-response relationships

Protein Figure Experimental condition EC50 IC50 Hill coefficient r2

nM nM
Qcwt 2 A No ATP (priming bypass) 3.74 ± 0.66 NA 1.04 ± 0.15 0.979
Qc7 2 A No ATP (priming bypass) 0.55 ± 0.07 NA 1.03 ± 0.11 0.982
Qc5 2 A No ATP (priming bypass) 1.05 ± 0.15 NA 0.96 ± 0.11 0.982
Qc3 2 A No ATP (priming bypass) 4.75 ± 0.53 NA 1.34 ± 0.16 0.989
Qc5 2 C +ATP (competition with wt) NA 28.9 ± 7.8 1.10 ± 0.25 0.947
Qc3 2 C +ATP (competition with wt) NA 40.6 ± 3.4 1.30 ± 0.12 0.996
Qc1 2 C and S1 +ATP (competition with wt) NA 656 ± 110 0.70 ± 0.08 0.733
Qc SD 2 C and S1 +ATP (competition with wt) NA 417 ± 45 0.99 ± 0.10 0.841
Qc GST-PX S1 +ATP (competition with wt) NA 2,010 ± 247 0.89 ± 0.09 0.892
Qcwt 6 A No ATP, +94 nM Sec17 34.3 ± 4.8 NA 0.94 ± 0.08 0.997
Qc7 6 A No ATP, +94 nM Sec17 8.6 ± 1.1 NA 1.13 ± 0.16 0.990
Qc5 6 A No ATP, +94 nM Sec17 11.7 ± 1.2 NA 1.33 ± 0.13 0.996
Qc3 6 A No ATP, +94 nM Sec17 19.9 ± 1.6 NA 1.29 ± 0.07 0.999
Sec17 wt 6 C No ATP, +75 nM Qc3 125 ± 3.0 NA 4.97 ± 0.46 0.995
Sec17-LALA 6 C No ATP, +75 nM Qc3 158 ± 5.0 NA 4.30 ± 0.45 0.992
His6-Sec17 S1 No ATP, +75 nM Qc3 41.0 ± 3.6 NA 5.71 ± 2.23 0.933

IC50, 50% inhibitory concentration; NA, not applicable; wt, wild type. Errors indicate ±SEM for fits to three or more independently obtained data sets.

 on April 4, 2011
jcb.rupress.org

D
ow

nloaded from
 

Published May 4, 2009

http://jcb.rupress.org/


JCB • VOLUME 185 • NUMBER 3 • 2009 540

continue to assemble and accumulate between membranes 
when fusion is blocked at a late stage.

Partially zipped complexes exhibit  
late-stage fusion defects
To further examine how incomplete zippering impairs fusion, 
we used stage-speci!c fusion inhibitors (Fig. 4 A). Because 
Qc3  competitively inhibits the standard ATP-driven reaction, 
we examined the kinetics with which standard reactions acquire 
resistance to Qc3 -mediated competitive inhibition. A large-scale 
ATP-driven fusion reaction was initiated. At intervals, 1× reaction 
aliquots were withdrawn and combined with the indicated inhibi-
tor for the remainder of the incubation. GDI (a Rab inhibitor) 
and af!nity-puri!ed Vam3 antibody ( Vam3; an inhibitor of 
the Qa-SNARE) block fusion at the docking stage, during which 
trans-SNARE complexes form. We found that ATP-driven reac-
tions became resistant to inhibition by Qc3  with kinetics indis-
tinguishable from GDI and Vam3 (Fig. 4 B). Qc3  therefore 
must be present during trans-complex assembly to function as a 
competitive inhibitor, again supporting the interpretation that 
Qc3  nucleates unproductive trans-complexes.

We next screened fusion reactions driven by Qcwt, Qc7 , 
or the partial agonist Qc5  for altered dosage sensitivity to 
stage-speci!c fusion inhibitors (Fig. 4 C). Fusion reactions 
driven by each of these Qc proteins exhibited similar dosage 
sensitivities to the Rab and SNARE inhibitors GDI and Vam3. 
This result suggests that decreasing the extent of C-terminal 
SNARE complex zippering does not in"uence the docking 
phase of the reaction. However, a major difference was found 
with two different late-stage bilayer-perturbing inhibitors,  
myristoylated alanine-rich C kinase substrate effector domain 
(MED; Fratti et al., 2004) and LPC-12 (Reese and Mayer, 2005). 
Both MED and LPC-12 (1-lauroyl-2-hydroxy-sn-glycero-3-
phosphocholine) inhibited fusion driven by Qc5  more potently 
than fusion driven by Qcwt or Qc7  (Fig. 4 C). These synthetic 
interactions between Qc5  and late-stage bilayer-perturbing in-
hibitors implicate zippering between layers +3 and +7 in post-
docking lipid-dependent fusion processes.

Zippering controls initiation of outer leaflet 
lipid mixing
SNARE-mediated fusion is hypothesized to involve a hemi-
fusion intermediate (Chernomordik and Kozlov, 2008). In this 
intermediate state, outer (cytoplasmic) lea"et lipids intermix, but 
inner (lumenal) lea"ets and lumenal contents remain unmixed.  
If the hemifusion hypothesis is valid, at least two distinct sub-
reactions must occur: initiation of hemifusion and resolution of the 
hemifused intermediate to yield a fully fused product. In princi-
ple, either or both of these subreactions could be controlled by 
SNARE zippering.

In one model, N-terminal SNARE assembly drives hemi-
fusion, and C-terminal zippering promotes conversion of the 
hemifused intermediate to a fully fused product. If this model is 
correct, C-terminal Qc truncations should cause accumulation of 
hemifused intermediates, and we should observe ef!cient lipid 
mixing with attenuated or absent content mixing. In an alternative 
model, C-terminal zippering controls entry into the hemifused 

state, but other factors (e.g., SNARE transmembrane domains) 
control conversion of the hemifused intermediate to a fully fused 
product. If this alternative model is correct, C-terminal Qc trunca-
tions should not cause accumulation of hemifused intermediates, 
and outer lea"et lipid mixing and content mixing should be atten-
uated to the same extent. To discriminate between these models, 
we monitored lipid and content mixing in parallel.

To assay outer lea"et lipid mixing, we incorporated  
rhodamine-phosphatidylethanolamine (R-PE) into donor vacu-
oles at a self-quenching concentration and then mixed the R-PE–
labeled donor vacuoles with unlabeled acceptors. Lipid mixing 
between donors and acceptors results in R-PE dilution and  
"uorescence dequenching. Because intact vacuoles are labeled 
with R-PE, this assay predominantly measures mixing between 
proximal (cytoplasmic) bilayer lea"ets. As reported previously 
(Reese and Mayer, 2005; Jun and Wickner, 2007), a slow fusion-
independent dequenching signal is observed (Fig. S2), but when 
fusion is allowed to proceed, robust and highly reproducible 
dequenching is observed above this background. This lipid-
mixing signal depends on Rab and SNARE function, and its 
kinetics map between docking and content mixing (Reese and 
Mayer, 2005; Jun and Wickner, 2007). Because the transition 
from lipid mixing (i.e., hemifusion) to content mixing is the 
rate-limiting, postdocking subreaction in vacuole fusion (Merz 
and Wickner, 2004a; Reese and Mayer, 2005; Jun and Wickner, 
2007), any delay in the conversion of hemifused to fully fused 
reaction products should be readily detected when the lipid- and 
content-mixing signals are compared.

Lipid mixing driven by saturating concentrations of each 
Qc was assayed under priming bypass conditions (Fig. 5 A and 
Fig. S2). The results show that zippering past layer +3 up to 
layer +7 is required for the onset of lipid mixing and presum-
ably for hemifusion. This is illustrated by the partial defect in 
lipid mixing exhibited by Qc5  and by the complete defect 
exhibited by Qc3  (Fig. 5 A). When lipid and content mixing 
were compared (Fig. 5, A and B), lipid mixing in each case 
preceded content mixing, and the rates of lipid and content 
mixing were proportional for each Qc. The !nal extents of 
lipid and content mixing were also closely correlated for each 
mutant (Fig. 5 C). Collectively, these results indicate that kineti-
cally stable, partially zipped trans-SNARE complexes can assem-
ble on native membranes in the absence of lipid or content 
mixing. Zippering beyond layer +3 is required to initiate lipid 
mixing with ef!ciency increasing as zippering proceeds to 
layer +7. This conclusion is further buttressed by the !nding 
that Qc3 , in competition with native Vam7, totally suppressed 
SNARE-dependent lipid mixing (Fig. 5 D). The failure of 
Qc5 -driven reactions to disproportionately accumulate hemi-
fused intermediates indicates that once a hemifused inter-
mediate is established, the rate of the transition to full fusion is 
not substantially controlled by the extent of C-terminal zip-
pering of the SNARE cytoplasmic domains.

Sec17-mediated rescue of Qc3   
trans-complexes
To gain additional insight into why partially zipped Qc3 -
 mediated trans-SNARE complexes are fusion de!cient, we 
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Figure 4. C-terminal trans-SNARE complex zipping controls a late, lipid-dependent stage of fusion. (A) Stages of vacuole fusion and stage-specific inhibi-
tors. (B) Staging of Qc3 -mediated competitive inhibition. 10× scale ATP-driven reactions were initiated at t = 0. At the indicated times, 1× reaction aliquots 
were withdrawn and mixed with inhibitor or buffer or transferred to ice. Inhibitors were used at the following final concentrations: GDI, 2.4 µM; Vam3, 
18 nM; Qc3 , 500 nM; MED, 10 µM. (C) Dosage sensitivity of priming bypass fusion driven by Qc proteins (40 nM Qc, no ATP) to stage-specific reaction 
inhibitors. Note that all values in this experiment are normalized to the no inhibitor condition for each Qc-SNARE. (B and C) Relative fusion value of 1 equals 
2.7 fusion units (B), 3.1 fusion units for Qcwt and Qc7  (C), and 2.3 fusion units for Qc5  (C). Error bars span ±1 SEM (n = 3 experiments).
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sought conditions that might rescue the catalytic function of these 
complexes. Fortuitously, we discovered that addition of the univer-
sal SNARE cochaperone Sec17 rescues fusion in Qc3 -driven 
reactions lacking ATP (Fig. 6 A). This was completely un-
expected because the best-characterized function of Sec17 is in 
postfusion cis-SNARE recycling, not fusion catalysis (Mayer 
et al., 1996; Ungermann et al., 1998a; Thorngren et al., 2004). The 
fusion-promoting activity of recombinant Sec17 was observed 
only with Qc3 . Sec17 partially inhibited fusion driven by Qcwt, 
Qc7 , and Qc5  and completely failed to rescue the assembly 
defective mutant Qc1  (Fig. 6 A). Partially zipped trans-SNARE 
complexes are therefore a prerequisite for Sec17-mediated rescue. 
Rescue was sensitive to Rab, SNARE, and bilayer-perturbing 
inhibitors (Fig. 6 B), indicating that Sec17 rescues fusion without 
fundamentally altering the reaction pathway.

Sec17 mediates binding of the AAA ATPase Sec18 (yeast 
NSF) to SNARE complexes, allowing Sec18 to power SNARE 
complex disassembly. Because the rescue reaction lacks ATP, it 
is unlikely that Sec18 is required for Sec17-mediated rescue. 
The absence of a Sec18 requirement was con!rmed by two 
additional experiments. First, Sec18 antibodies, which inhibit the 
standard ATP-driven, Sec18-dependent fusion reaction (Haas 
and Wickner, 1996), did not signi!cantly inhibit the rescue 
reaction (Fig. 6 B). Second, a Sec17 mutant with two residues 
essential for stimulation of Sec18 ATP ase activity (Barnard 
et al., 1996) changed from Leu- to Ala (Sec17-LALA)-rescued 
Qc3  reactions to the same extent as wild-type Sec17 (Table I; 
Fig. 6 C; and Figs. S3 and S4). Thus, Sec17 selectively rescues 
Qc3  trans-complexes without assistance from Sec18.

Mechanism of Sec17-mediated rescue
How does Sec17 rescue Qc3  trans-SNARE complexes? We 
found that dose-response curves for Sec17 in Qc3  rescue reac-
tions were steeply sigmoidal, indicating a cooperative mechanism 
of Sec17 action (Fig. 6 C; Table I; and Fig. S3). In dose-response 
experiments with untagged Sec17, the Hill coef!cient was 5.0 ± 
0.46 (mean ± SEM; 95% con!dence interval 3.9–6.1). Indis-
tinguishable Hill coef!cients (Table I) were obtained inde-
pendently for Sec17-LALA and for hexahistidine-tagged  

the fluorescence at infinite probe dilution (a standard reaction including 
0.33% Triton X-100) and are corrected for background (SNARE indepen-
dent) dequenching by subtracting the fluorescence change measured from 
reactions inhibited by 17.6 nM anti-Vam3. Uncorrected traces are pre-
sented in Fig. S2. Best-fit curves (Gompertz function) are also shown.  
(B) Content mixing (fusion) in priming bypass reactions driven by saturating 
concentrations ( 2 × EC90) of the indicated Qc proteins (Qcwt, 50 nM;  
Qc7 , 10 nM; Qc5 , 21 nM). (C) Correlation of endpoint lipid and 
content-mixing values obtained from fusion reactions driven by the indicated 
Qc proteins. Data for lipid and content mixing were acquired from the 
same reactions, with content-mixing endpoints quantified after collection of 
lipid-mixing data. The total extent of lipid mixing was obtained from the 
Gompertz fit to the aggregate time series for each Qc protein. Individual 
data points and error bars result from reactions driven by each Qc at 
either 16 nM or 64 nM. (D) Lipid mixing in reactions incubated with an 
ATP regenerating system in the absence or presence of 500 nM Qc3 . 
Data for D are normalized and baseline subtracted as for A; uncorrected 
traces are presented in Fig. S2. Relative fusion value of 1 equals 2.0 
fusion units in B and C. Insets shows early time points. Error bars span ±1 
SEM (n = 3 experiments).

Figure 5. C-terminal trans-SNARE complex zippering initiates lipid mixing. 
(A) Lipid mixing in priming bypass reactions driven by saturating concen-
trations ( 2 × EC90) of the indicated Qc proteins (Qcwt, 64 nM; Qc7 , 
16 nM; Qc5 , 16 nM; Qc3 , 64 nM). Plotted values are normalized to 
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Qc proteins, all of which were close to unity (Table I). Bio-
chemical and structural studies from several groups indicate 
that Sec17 binds SNARE core complexes with 3:1 stoichiometry 
(Hohl et al., 1998; Rice and Brunger, 1999; Wimmer et al., 2001; 

Sec17 (note that the extent but not the cooperativity of rescue 
was reduced when an N-terminal His6 tag was present). These 
large Hill coefficients for Sec17-mediated rescue diverged 
dramatically from the coefficients obtained for the various 

Figure 6. Qc3  function is rescued by excess Sec17. (A) Selective rescue of Qc3  by Sec17. Fusion driven by C-terminal Qc truncation mutants in the 
absence of ATP and in the presence of Sec17 (94 nM). (B) Sec17-mediated rescue occurs through the normal fusion pathway and does not involve Sec18. 
Sensitivity of Qc3  + Sec17-driven fusion to docking and fusion inhibitors. Reagents were included at the following final concentrations: Qc3 , 75 nM; 
Sec17, 94 nM; Sec18, 2.0 µM (total IgG); GDI, 2.4 µM; Vam3, 17.6 nM; MED, 10 µM; LPC-12, 500 µM. (C) Rescue of Qc3  by a Sec17 mutant 
that cannot interact with Sec18. Priming bypass reactions lacked ATP and contained Qc3  (75 nM) along with the indicated concentrations of Sec17 or 
Sec17-LALA. Sec17 used in A was purified as a His6-tagged protein and included at 94 nM (Fig. S3); both forms of Sec17 used in B and C were untagged.  
Fit parameters for A and C are presented in Table I. Relative fusion value of 1 equals 3.5 fusion units for the +ATP condition and 1.6 fusion units for Sec17 
rescue condition (B, bottom). Error bars indicate ±1 SEM (n = 3 experiments).
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Marz et al., 2003). Moreover, the Qc3  trans-complex, when 
zipped to its full potential, should present a complete Sec17-
binding surface (Fig. S5; Marz et al., 2003). The most straight-
forward interpretation of these !ndings (see Discussion) is that 
a minimum of four to six Sec17 molecules sequentially en-
gages a minimum of two Qc3  trans-SNARE complexes to res-
cue fusion.

Sec17 binding to Qc3  trans-complexes might stimulate 
fusion by stabilizing preformed, partially zipped complexes in 
a fusion-competent conformation. Alternatively, Sec17 addi-
tion might increase the number of trans-complexes spanning 
docked membranes, allowing a larger number of weaker, par-
tially zipped complexes to overcome the same energy barrier 
as a smaller number of wild-type complexes. To evaluate these 
models, we measured the amount of Qc3  trans-SNARE com-
plex formed in the absence or presence of added Sec17. There 
was no change in the steady-state quantity of Qc3 -stimulated 
trans-complex (Fig. 7 A), indicating that Sec17 rescues fusion 
by augmenting the function of existing Qc3  trans-complexes, 
not by increasing the total number of Qc3  trans-complexes. 
Note that this experiment also provides further evidence that 
our biochemical assay of trans-SNARE pairing does not recover 
cis-complexes that form after fusion. If such complexes 
formed, we would expect to retrieve more SNARE complexes 
with Qc3  and Sec17 addition (where there is substantial  
fusion) than with Qc3  alone (where there is very little). But 
in each case, we retrieve similar numbers of complexes, indi-
cating that our assay retrieves few or no complexes assembled 
in cis after fusion has occurred.

To further characterize the rescue reaction, we monitored 
outer lea"et lipid mixing and content mixing in parallel in reac-
tions driven by Qc3  and Sec17 (Fig. 7, B and C). Under condi-
tions of maximum rescue, we found that lipid- and content-mixing 
signals were correlated just as in reactions containing Qcwt, 
Qc7 , and Qc5 . Thus, by several criteria, Sec17 binding aug-
ments the function of Qc3  trans-complexes, rescuing fusion 
through an overall pathway that closely resembles the normal 
zippering-mediated fusion mechanism.

Discussion
It is clear that SNARE proteins are core components of the 
fusion machinery and that trans-SNARE complex assembly is 
a pivotal step in the fusion pathway. However, surprisingly little 
is understood about the molecular mechanisms governing trans-
SNARE zippering and the mechanistic role of zippering in 
driving fusion. This is due in part to technical challenges. 
Chemically de!ned systems provide crucial information about 
the capabilities of the components in the system, but proteo-
liposomes at best approximate biological membranes, and in any 
case, observations with synthetic systems must be validated 
with biological preparations. Genetic approaches permit us to 
study physiology in situ but are often complicated by off-
pathway pleiotropic effects. Progress has also been impeded by 
the dif!culty of discriminating between cis- and trans-complexes 
and by a paucity of methods for kinetic trapping and accumula-
tion of on-pathway fusion complex assembly intermediates.  

Figure 7. Sec17 rescues Qc3  by interacting with preassembled, par-
tially zipped trans-complexes and driving outer leaflet lipid mixing.  
(A) Trans-SNARE complex assembly and fusion stimulated by the indicated 
Qc proteins were monitored in parallel, as in Fig. 3 D, in the absence 
or presence of Sec17. Priming bypass reactions included 50 nM of the 
indicated Qc protein and 94 nM His6-Sec17. The blot is representative of 
three independent experiments. (B) Lipid mixing in priming bypass reac-
tions driven by Qcwt (64 nM) or Qc3  (75 nM) with 0, 125, or 250 nM 
Sec17. Plotted values are normalized to the fluorescence at infinite probe 
dilution (a standard reaction including 0.33% Triton X-100) and are cor-
rected for background (SNARE independent) dequenching by subtracting 
the fluorescence change measured from reactions lacking a fusion stimulus. 
Best-fit curves (Gompertz) are also shown. (C) Correlation of endpoint lipid 
and content-mixing values obtained from fusion reactions driven by the  
indicated Qc proteins. Data for lipid and content mixing were acquired 
from the same reactions, with content-mixing endpoints quantified after collec-
tion of lipid-mixing data. The final extent of lipid mixing was obtained from 
the Gompertz fit to the aggregate time series for each condition. Relative 
fusion value of 1 equals 1.9 fusion units for A and 5.5 fusion units for C. 
Error bars span ±1 SEM (n = 3 experiments).
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To sidestep these limitations, we combined a well-characterized 
in vitro docking and fusion system with acute administration of 
engineered recombinant SNARE proteins. The major results of 
our experiments are summarized in Fig. 8. Arresting zippering 
at layer +3 traps an on-pathway, trans-paired prefusion inter-
mediate with little or no fusion; assembly beyond layer +3 up to 
layer +7 controls the onset of lipid mixing but does not appear 
to control the ef!ciency or kinetics of the subsequent transition 
from hemifusion to content mixing. Moreover, the SNARE 
cochaperone Sec17 rescues an arrested, partially zipped trans-
SNARE complex, raising anew the possibility that at least in 
certain contexts Sec17 functions before as well as after fusion.

Generality of zippering in  
SNARE-mediated fusion
There are strong parallels between SNARE zippering during 
exocytosis at the metazoan neuronal synapse, exocytosis in 
yeast, and homotypic fusion of the yeast vacuolar lysosome. 
Botulinum neurotoxins (BoNTs) E and A are site-selective pro-
teases that cleave SNAP-25, a mammalian exocytic SNARE 
(Montecucco et al., 2005; Sakaba et al., 2005). BoNT E cleavage 
of SNAP-25 after layer +1 blocks SNARE complex formation 
altogether, whereas on the yeast vacuole, we !nd that a Qc1  
mutant is unable to support trans-SNARE complex assembly. 
BoNT A cleaves after layer +6 of the SNAP-25 Qc-SNARE 
domain (Fig. 1 B) and raises the Ca2+ threshold for exocytosis, a 
result consistent with our !nding that the Qc5  mutant exhibits a 
partial defect in fusion manifesting after trans-complex assembly. 
No neurotoxin is known to cleave a Qc-SNARE at layer +3,  
but truncation of the yeast SNAP-25 paralogue Sec9 after 
layer +3 (Fig. 1 B) resulted in a protein that could assemble 
into cis-SNARE complexes in vitro and conferred a dominant 

lethal phenotype attributed to defective exocytosis (Rossi et al., 
1997). These !ndings are consistent with our results for the 
Qc3  mutant. It appears that not only the structures of SNARE 
core complexes but also the zippering requirements for trans-
complex assembly and fusion will be broadly conserved across 
phyla and between different transport pathways.

Zippering, hemifusion, and content mixing
Theoretical considerations and accreting experimental evidence 
suggest that passage through a hemifused intermediate state 
should be an obligate step in many membrane fusion reactions 
(Chernomordik and Kozlov, 2008; Jackson and Chapman, 2008). 
However, the relationship between SNARE zippering and lipid 
and content mixing has not been thoroughly analyzed, and in 
native biological membrane systems is almost completely un-
explored. Insertion of linkers between the R-SNARE domain and 
the transmembrane anchor of an exocytic SNARE indicated that 
the stability of fusion pores and the dynamics of pore opening 
are perturbed as SNARE zippering and membrane proximity 
are progressively uncoupled (Kesavan et al., 2007), but lipid 
mixing was not examined in these experiments. In experiments 
with synthetic liposomes, linker insertion inhibited lipid mix-
ing, but content mixing was not monitored in this study (McNew 
et al., 1999). Electron tomography, "uorescence studies, and 
experiments with liposomes suggest that docked secretory vesi-
cles, which might attach through partially zipped SNARE com-
plexes, exist in a hemifused state (Schaub et al., 2006; Zampighi 
et al., 2006; Wong et al., 2007).

Our experiments show that partial zippering of a native 
trans-SNARE complex does not necessarily trigger hemi-
fusion. Yeast vacuoles tether in a Rab-dependent reaction before 
trans-SNARE complex assembly (Ungermann et al., 1998b). 

Figure 8. Working model of trans-SNARE zippering in vacuolar docking and fusion. The time constants for posttethering trans-SNARE assembly, lipid 
mixing, and content mixing are derived from previous studies (Merz and Wickner, 2004a; Jun and Wickner, 2007). (inset) The crystal structure of the 
endosomal SNARE complex (Protein Data Bank accession no. 1GL2; Antonin et al., 2002) is shaded as in Fig. 1 B. Horizontal bars indicate the region of 
the SNARE complex implicated in each function. See Discussion for further details.
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idea (Chapman, 2008; Rizo and Rosenmund, 2008). Synapto-
tagmin and Sec17/ -SNAP bind to overlapping sites on the 
SNARE core complex, but Sec17/ -SNAP does not strongly 
interact with membranes, and yeast cells lack both synapto-
tagmin and complexin paralogues. Our discovery that Sec17 
rescues partially zipped Qc3  trans-complexes provides syn-
aptotagmin- and complexin-independent evidence that an ex-
trinsic binding factor can render a partially zipped, nonfusogenic 
trans-SNARE complex fusogenic. This presumably occurs 
through Sec17-mediated stabilization of unzipped, unstruc-
tured, or partially structured C-terminal portions of the trans-
SNARE complex.

Sec17/ -SNAP and Sec18/NSF were originally hypothe-
sized to act during fusion as part of the core fusion machinery 
(Sollner et al., 1993). Subsequent studies demonstrated that the 
major function of Sec17 and Sec18 is to disassemble postfusion 
cis-SNARE complexes (Mayer et al., 1996; Hanson et al., 
1997b). However, Ungermann et al. (1998b) suggested that 
Sec17 and Sec18 bind and disassemble trans- as well as cis-
complexes, although this idea has been controversial (Weber 
et al., 2000). This study provides new evidence that Sec17 can 
functionally interact with trans-SNARE complexes.

These effects are quite selective: Sec17 rescues fusion 
mediated by Qc3  but inhibits fusion driven by Qcwt and Qc7  
(Fig. 6 A). Moreover, Sec17 decreases the potency of the partial 
agonist Qc5  but has little effect on the overall ef!ciency of 
Qc5 -mediated fusion. Sec17 rescues Qc3  complexes in the 
absence of Sec18 activity (Fig. 6, B and C). We speculate that, 
more generally, Sec17 binding might rescue a subset of defec-
tive, partially zipped trans-complexes and that Sec18 then 
engages in kinetic proofreading to disassemble any remaining 
stalled prefusion complexes. Experimental tests of this hypothe-
sis are under way in our laboratory.

Sec17-mediated rescue of vacuolar Qc3  complexes, 
like evoked exocytosis, displays strong biochemical coopera-
tivity. Ca2+-evoked fusion requires binding of at least four  
to !ve Ca2+ ions (Dodge and Rahamimoff, 1967; Lando and 
Zucker, 1994) and is proposed to require at least three SNARE 
complexes (Hua and Scheller, 2001). Our experiments show 
that Sec17 rescue of Qc3 -mediated fusion is also highly  
cooperative, with a Hill coef!cient of 5.0 ± 1.1 (95% con!-
dence interval) for the Sec17 dose-response curve. This indi-
cates that rescue requires the concerted action of at least four 
to six Sec17 molecules. As three molecules of Sec17 bind to 
each SNARE complex, rescue involves binding of Sec17 to a 
minimum of two trans-SNARE complexes. It is important to 
note that each of these cooperativity coef!cients may be inter-
preted as lower-bound estimates of the minimum number of 
complexes required to mediate a single fusion event. However, 
cooperativity coef!cients tend to systematically underestimate 
the number of sites or complexes involved in a biochemical 
process (Weiss, 1997). Consequently, a !rm upper-bound esti-
mate of the minimum number of SNARE complexes needed 
for fusion (i.e., the number of complexes suf!cient for fusion) 
is not yet available (Montecucco et al., 2005). We are now 
exploiting the extraordinary sensitivity of Qc7 -mediated  
fusion (ED50 < 600 pM) to address this question.

Upon Qc addition to predocked vacuoles, trans-SNARE com-
plex assembly and lipid mixing occur within seconds (Fig. 8,  
[time constant] < 50 s). Content mixing occurs more slowly  
(Fig. 8,  > 500 s), indicating that egress from the trans-
SNARE paired, hemifused intermediate is rate limiting (Merz 
and Wickner, 2004a; Reese and Mayer, 2005; Jun and Wickner, 
2007). This study shows that stable on-pathway, partially 
zipped (to layer +3) trans-SNARE complexes can form between 
docked vacuoles without lipid mixing and thus in the absence 
of hemifusion.

Zippering beyond layer +3 triggers lipid and content 
mixing with increasing and correlated ef!ciency up to layer +7 
(Fig. 5). The involvement of core layers +5 to +7 in initiation of 
lipid rearrangements is underscored by experiments with two 
inhibitors, MED and LPC-12 (Fig. 4). These late-stage inhibitors 
perturb bilayer structure and allow at least some trans-complex 
assembly to occur but inhibit lipid mixing (Reese and Mayer, 
2005; Melia et al., 2006; Collins and Wickner, 2007). We found 
that fusion reactions driven by the partial agonist Qc5  are  
hypersensitive to MED and LPC-12. This synthetic defect 
strengthens the interpretation that layer +5 to +7 zippering,  
although not essential for fusion, increases the ef!ciency of the 
initial lipid-mixing step or prolongs the lifetime of a reversibly 
hemifused intermediate. In contrast, the subsequent conversion of 
the putatively hemifused intermediate to a content-mixed !nal 
fusion product does not appear to depend on complete C-terminal 
SNARE zippering (Fig. 5).

If SNARE domain zippering does not control the resolu-
tion of hemifusion, what does? Pioneering experiments with 
hemagglutinin, the in"uenza fusogen, indicated that the trans-
membrane anchor has a crucial role in egress from a hemi-
fused intermediate (Kemble et al., 1994; Melikyan et al., 1995; 
Armstrong et al., 2000). Similarly, experiments with proteo-
liposomes and mutational analyses suggest that SNARE trans-
membrane anchors have important functions in late steps of 
fusion (McNew et al., 2000; Langosch et al., 2001; Han et al., 
2004; Xu et al., 2005; Roy et al., 2006; Lu et al., 2008).  
Nevertheless, the possibility remains that SNAREs do not act 
alone in the !nal subreactions of fusion and that other proteins 
play supporting roles.

Sec17-mediated rescue of arrested trans-
complexes: implications for triggered fusion
Rapid Ca2+-evoked fusion events have been hypothesized to 
involve triggering of metastable, partially zipped SNARE com-
plexes (Xu et al., 1998; Hua and Charlton, 1999; Xu et al., 1999; 
Lagow et al., 2007). Synaptotagmins are major Ca2+ sensors 
thought to synchronize or trigger exocytosis in neurons and 
secretory cells, but the mechanisms of synaptotagmin function 
are complex (Chapman, 2008; Rizo and Rosenmund, 2008). 
Synaptotagmins bind acidic phospholipids, SNARE complexes, 
and other proteins in a Ca2+-dependent manner. In addition,  
synaptotagmins functionally interact with the SNARE-binding 
complexin proteins. It has been proposed that synaptotagmin 
binding stabilizes partially zipped trans-SNARE complexes to 
trigger fusion, but it has been challenging to disentangle the 
various functions of the synaptotagmins to rigorously test this 
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125 mM KCl, 5 mM MgCl2, 10 uM coenzyme A (Sigma-Aldrich), 3.2 µg/ml 
Pbi2 (IB2), and 10 mg/ml BSA (Thermo Fisher Scientific; Thorngren et al., 
2004). Where indicated, an ATP regenerating system of 1 mM ATP, 1 mg/ml 
creatine kinase, and 29 mM creatine phosphate was included (all compo-
nents obtained from Roche). Reactions were incubated at 27°C for 70 min 
and were assayed for alkaline phosphatase activity (Merz and Wickner, 
2004a). Raw values were corrected by subtracting the background signal 
(measured value of an ATP- or Qcwt-driven reaction held on ice; typically 
≤0.05 of the standard condition value) and normalized to a background-
corrected standard condition. The standard condition was either a stan-
dard +ATP reaction or the Qcwt bypass reaction within the experiment. 
Absolute fusion values for the standard conditions in each figure were cal-
culated as previously described (Merz and Wickner, 2004a).

Lipid-mixing assay
Lipid-mixing assays were conducted as described previously (Reese and 
Mayer, 2005; Jun and Wickner, 2007) with the following modifications: 6× 
scale reactions contained 4 µg BY4742 pep4  vacuoles labeled with R-PE 
(Invitrogen), 14 µg unlabeled BY4742 pep4  vacuoles, and 18 µg BY4742 
pho8  vacuoles. BSA was omitted from all lipid-mixing reactions; in its place, 
1 mg/ml creatine kinase was included in bypass reactions to serve as a car-
rier for Vam7. Fluorescence was monitored in a microplate reader (Victor3; 
PerkinElmer) using black conical bottom microplates. After measurement of 
lipid mixing, 1× reaction aliquots were withdrawn from each well and 
assayed for content mixing by the alkaline phosphatase activity assay.

Trans-SNARE complex assay
Trans-SNARE complex assays were conducted as described previously 
(Collins and Wickner, 2007; Jun and Wickner, 2007) with the following 
modifications: pull-downs were conducted from 15× scale reactions con-
taining 45 µg vacuoles from each of BJ3505 and BJ3505 VAM3::CBP 
nyv1  cells. Content mixing was measured from parallel 1× scale reac-
tions containing vacuoles from DKY6281 and one of the two protease-
deficient strains. 15× scale pull-down reactions were incubated at 27°C 
for 45 min before vacuole solubilization, and parallel content-mixing reac-
tions were developed after 70 min at 27°C. The solubilization buffer was 
modified to 20 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1 mM MgCl2, 0.5% 
NP-40, 10% glycerol, and 1× protease inhibitor cocktail (0.46 µg/ml leu-
peptin, 3.5 µg/ml pepstatin, and 1 mM PMSF). Samples were brought to 
2 mM CaCl2 before incubation with CaM-agarose resin (Agilent Technolo-
gies). Vacuole extracts were incubated with resin for 1 h at 4°C, washed 
five times with 1 ml of solubilization buffer containing 2 mM CaCl2, and 
eluted as described previously (Collins and Wickner, 2007).

Data analysis
Prism software (version 4.03; GraphPad Software, Inc.) was used for sta-
tistical analyses and to prepare graphs. Dose-response curves were 
obtained by nonlinear least squares fitting of the sigmoidal Hill equation to 
experimental log-transformed dosages and mean fusion values normalized 
as specified in Figs. 2, 6, S1, and S3. Lipid-mixing curves were obtained 
by nonlinear least squares fitting of the Gompertz equation, which is par-
ticularly well suited for description of irreversible, time-dependent ensemble 
processes. Immunoblot images were globally adjusted for brightness and 
contrast using ImageJ (version 1.36b; National Institutes of Health). Figures 
were prepared in Prism and Illustrator (CS3; Adobe).

Online supplemental material
Fig. S1 shows the complete dose-inhibition curves for Qc1 , Qc SD, and 
GST-PX. Fig. S2 shows the lipid-mixing data from Fig. 5 before subtrac-
tion of the background (SNARE independent) signal. Fig. S3 shows 
the dose-response relationship for rescue of Qc3 -mediated fusion by 
His-tagged Sec17. Fig. S4 shows the dose-inhibition curves for inhibi-
tion of ATP-driven reactions by untagged Sec17-wt and Sec17-LALA. 
Fig. S5 depicts the putative -SNAP (mammalian Sec17)–binding sur-
face on the synaptic SNARE complex as determined by Marz et al. 
(2003). Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200811082/DC1.
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Materials and methods
Yeast strains
BY4742 pho8  (MAT  ura3  leu2  his3  lys2  pho8 ::neo) and 
BY4742 pep4  (PHO8 pep4 ::neo) were used for all experiments except 
the trans-SNARE complex assays (Collins and Wickner, 2007). In those 
experiments, DKY6281 (MAT  pho8::TRP1 leu2–3 leu 2–112 ura3–52 
his3–200 trp1–901 lys2–801 suc2–9), BJ3505 (MAT  pep4::HIS3  
prb1-1.6R his3–200 lys2–801 trp1101 [gal3] ura3–52 gal2 can1), and the 
VAM3::CBP nyv1  derivative of BJ3505 (vam3::kanMX6-pVAM3-2-CaMBP- 
VAM3 nyv1 ::natMX6) were used.

Plasmid construction
Vam7 (Qc) expression constructs. DNA encoding the multiple cloning site 
and intein/chitin-binding domain tag from the vector pTYB3 (New England 
Biolabs, Inc.) were isolated by digestion with XbaI and PstI and ligated 
into the pET41(a) (Invitrogen) backbone. A secondary (nonmultiple clon-
ing site) SapI restriction site in the resultant vector was then removed by 
site-directed mutagenesis. DNA encoding a His6 affinity tag and a tobacco 
etch virus protease recognition sequence was isolated from the vector 
p-His-Parallel1 by digestion with XbaI and EcoRI and ligated into the 
pET41(a)-derived fusion vector, resulting in pMS101. The VAM7 coding 
sequence (lacking appropriate portions of the 3  sequence in the case  
of truncation mutants) was amplified from BY4741 genomic DNA with 
primer-introduced 5 -NcoI and 3 -SapI restriction sites, which were used to 
clone the VAM7 DNA into pMS101.

Sec17 expression constructs. The SEC17 coding sequence was am-
plified from pQE3-Sec17 DNA (Haas and Wickner, 1996) with primer-
introduced 5 -NdeI and 3 -XhoI restriction sites, which were used to clone 
the SEC17 DNA into the vector pTYB12 (New England Biolabs, Inc.). To gen-
erate Sec17-LALA, mutations were embedded in the reverse primer.

Vam7 (Qc) expression and purification
BL21(DE3) pRP Escherichia coli were grown in terrific broth to OD600 = 
1.0–2.0, and protein expression was induced with 350 µM IPTG at 30°C 
for 4 h. Cells were disrupted by sonication on ice in buffer A (20 mM  
Tris-Cl, pH 7.9, 500 mM KCl, 1 mM EDTA, and 10% glycerol) supplemented 
with protease inhibitors (PMSF, pepstatin, and leupeptin) and DNase I. 
Purification by chitin-affinity chromatography was conducted as described 
by the manufacturer (New England Biolabs, Inc.) with the addition of a 
high salt wash (buffer A with 1.5 M KCl) before on-column cleavage. 
Intein-mediated cleavage (Fig. 1 C) was performed in buffer A supple-
mented with 50 mM DTT at 22°C overnight. Cleaved eluate protein was 
exchanged into buffer B (20 mM NaPO4, pH 7.4, 500 mM KCl, 20 mM 
imidazole, and 10% glycerol, pH 7.4) by repeated dilution and concentra-
tion in a centrifugal concentrator. Proteins in the cleaved eluate bearing an 
intact N terminus were selected by nickel nitrilotriacetic acid affinity chro-
matography on Ni-Sepharose 6 resin (GE Healthcare) and exchanged into 
storage buffer (20 mM NaPO4, 250 mM KCl, and 10% glycerol, pH 7.4) 
by repeated dilution and concentration in a centrifugal concentrator. Single-
use aliquots of purified Qc at 5–50 µM were frozen over liquid nitrogen 
and stored at 80°C. Protein concentrations were determined by Coomassie 
plus assay (Thermo Fisher Scientific) against BSA standards.

Sec17 expression and purification
BL21(DE3) pRP E. coli were grown in terrific broth to OD600 = 1.0–2.0, 
and protein expression was induced with 350 µM IPTG at 18°C for 16 h. 
The proteins were purified by chitin-affinity chromatography following 
the same general procedure as for Vam7, but glycerol was omitted from 
all buffers, and the high salt column wash was omitted. Proteins were 
exchanged into PS buffer (20 mM Pipes-KOH, pH 6.8, and 200 mM sorbi-
tol) with 125 mM KCl by dialysis, and aliquots were frozen over liquid 
nitrogen and stored at 80°C.

Fusion inhibitors
His6-Sec17, His6-Gyp1-46, affinity-purified Vam3 (rabbit polyclonal), and 
MED were prepared as described by Fratti et al. (2004). GDI was pre-
pared as described by Starai et al. (2007), and LPC-12 (Avanti Polar Lipids, 
Inc.) was prepared as described by Reese and Mayer (2005).

Content-mixing assay
Vacuoles were purified, and standard fusion reactions were assembled  
as described previously (Merz and Wickner, 2004a,b; Brett and Merz, 
2008). 1× reactions (30 µl) contained 6 µg vacuoles (3 µg each from 
BY4742 pep4  and pho8  or DKY6281 and either BJ3505 or BJ3505 
VAM3::CBP nyv1 ) in 20 mM Pipes-KOH, pH 6.8, 200 mM sorbitol, 
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Figure S1. Complete dose-inhibition curves for Qc1 , Qc SD, and isolated PX domain. Vacuole fusion was driven by ATP, Sec17, and 
Sec18 in the presence of the indicated proteins. Solid lines represent best-fit sigmoidal dose-inhibition curves. For Qc1  and Qc SD, this graph shows the 
same data and best-fit curves as shown in Fig. 2 B. The axis is extended so the complete datasets and best-fit curves are depicted. Note that the Qc proteins 
are His tagged, whereas the purified PX domain is GST tagged, which may contribute to the slight difference in dose-inhibition properties between the Qc 
proteins and GST-PX. Fit parameters are presented in Table I. Relative fusion value of 1 equals 3.3 fusion units. Error bars span  1 SEM (n  4 
experiments). 
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Figure S2. Lipid-mixing data without baseline correction. The lipid-mixing data presented in Fig. 5 were baseline subtracted to remove the 
SNARE-independent dequenching signal. The same data are shown here without baseline correction. The top corresponds to Fig. 5 A, and the bottom 
corresponds to Fig. 5 D. The top also shows traces for Qc1  and Qc SD. Note that the traces for anti-Vam3 (antibody against the Qa-SNARE) are super-
imposable with the Qc3  traces in both datasets. Error bars span  1 SEM (n = 3 experiments).
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Figure S3. Rescue of Qc3  function by His6-Sec17. Priming bypass fusion was assayed in the presence of 75 nM Qc3  and His6-Sec17. The solid 
line represents the best-fit sigmoidal dose-response curve. Fit parameters are given in Table I. Relative fusion value of 1 equals 4.1 fusion units. Error bars 
span  1 SEM (n = 3 experiments).

Figure S4. Inhibition of ATP-driven fusion by Sec17 and Sec17-LALA. The standard ATP-driven vacuole fusion reaction is inhibited by Sec17, 
which accelerates a side reaction that results in cis-SNARE complex recapture (Wang, L., C. Ungermann, and W. Wickner. 2000. J. Biol. Chem. 
275:22862–22867). Because vacuole-associated Sec18 is active under these reaction conditions, we would expect that a Sec17 mutant unable to stimu-
late Sec18 function (Sec17-LALA; Barnard, R.J., A. Morgan, and R.D. Burgoyne. 1996. Mol. Biol. Cell. 7:693–701) should recapture cis-complexes but 
not allow recycling of these complexes to occur efficiently. As a consequence, under these conditions, we would predict that Sec17-LALA should inhibit 
fusion more potently than wild-type Sec17 (Sec17-wt). This is the result obtained. Relative fusion value of 1 equals 3.7 fusion units. Error bars span  1 
SEM (n = 3 experiments).
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Figure S5. The putative Sec17-binding site is intact on a fully zippered Qc3  complex. Crystal structure of the synaptic SNARE core com-
plex (Protein Data Bank accession no. <PDB>1N7S</PDB>; Sutton, R.B., D. Fasshauer, R. Jahn, and A.T. Brunger. 1998. Nature. 395:347–353). The Qc 
chain is highlighted in green from the N terminus to the +3 core layer, and the 0 layer is highlighted in yellow. Residues marked in red define a putative 
-SNAP (Sec17)–binding surface (Marz, K.E., J.M. Lauer, and P.I. Hanson. 2003. J. Biol. Chem. 278:27000–27008). The sequence of each synaptic 

SNARE domain is shown in alignment with its vacuolar homologue. Syb, synaptobrevin; Syx, syntaxin; SNN, SNAP-25 N-terminal SNARE domain; SNC, 
SNAP-25 C-terminal SNARE domain.
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