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Abstract
Automatically segmenting and classifying clinical free text into sections is an important first step to automatic information retrieval,
information extraction and data mining tasks, as it helps to ground the significance of the text within. In this work we describe our
approach to automatic section segmentation of clinical records such as hospital discharge summaries and radiology reports, along with
section classification into pre-defined section categories. We apply machine learning to the problems of section segmentation and section
classification, comparing a joint (one-step) and a pipeline (two-step) approach. We demonstrate that our systems perform well when
tested on three data sets, two for hospital discharge summaries and one for radiology reports. We then show the usefulness of section
information by incorporating it in the task of extracting comorbidities from discharge summaries.

Keywords: Document segmentation, Clinical NLP, Text classification

1. Introduction

Accessibility to the details of patient data available in clini-
cal records is critical to improve the health care process and
to advance clinical research (Friedman and Johnson, 2005;
Friedman, 2005). Although clinical records are free text,
they are often structured in terms of sections. As health
care providers create their reports, they typically use some
conceptual or electronic templates to divide their narratives
into general sections. There are many report types, which
are created for different purposes. For example, admit notes
describe the state of a patient at the time of hospital admis-
sion, and discharge summaries summarize the overall hos-
pital course and the state of the patient at the time of hos-
pital discharge. These report types have different charac-
teristics in terms of section headings and content (e.g., dis-
charge summaries often include a medications at discharge
section, which is absent from admit notes). Furthermore,
physicians can freely modify the sections defined in a tem-
plate; as a result, reports of the same report type may have
different sections or section headers, and such differences
are more prominent for reports coming from different hos-
pital divisions or different hospitals.

Accurate identification of section boundaries and section
types in clinical reports can help various automated tasks
such as named-entity recognition and sense disambiguation
of the identified entities. As an example, the acronym BS
has the following three senses (1) bowel sounds if found in
the abdominal exam section, (2) breath sounds if found in
the chest exam section, and (3) blood sugar if found in the
laboratory test section.

In this paper, we describe our work towards building a
statistical section segmenter for clinical documents. We re-
port performance results on three datasets and two clinical
report types. Finally, as an example application, we demon-
strate the usefulness of the sections assigned by our proce-
dure for extracting comorbidity information from discharge
summaries.

2. Related Work

The problem of section segmentation for scientific litera-
ture is related to our task and has been studied fairly exten-
sively. The basic idea behind this work is to identify and
mark the underlying structure of scientific papers and ab-
stracts in order to improve tasks such as information extrac-
tion and automatic summarization. In practice this tends to
involve training a classifier to determine a section category
label for each sentence of a document.

One major research track focuses on recovering section
header labels from MedLINE abstracts. The goal of this
work is to classify sentences in abstracts into sections such
as Introduction, Method, Result, and Conclusion (McK-
night and Srinivasan, 2003; Lin et al., 2006; Hirohata et
al., 2008). A sampling of methods that have been tried
for this problem include a non-sequential classifier based
on SVM (McKnight and Srinivasan, 2003), and sequen-
tial classifiers based on HMM (Lin et al., 2006) as well
as CRF (Hirohata et al., 2008). Performance on this task
has hovered around 90% per-sentence accuracy, with Hiro-
hata et al. (2008) topping performance at 94.3%. Hirohata’s
approach was notable, demonstrating clear benefits from
using sequential classification (CRF) over non-sequential
classification (SVM) and from augmenting sequence (sec-
tion) tags with B- and I- prefixes.

A second major track called Argumentative Zoning is
focused on uncovering basic discourse structure in scien-
tific documents (Teufel, 1999). Under this framework,
each sentence from a scientific paper is classified under
seven rhetorical categories such as background, other (re-
searcher’s work), and own (work). Sequential tagging ap-
proaches have dominated this domain, such as the Naı̈ve
Bayes (NB) approach of Teufel and Moens (2002) and
the Maximum Entropy (MaxEnt) approach of Merity et al
(2009). Merity’s MaxEnt approach topped out at 96.88%
F-score, which substantially outperformed previous work.
This approach showed the benefits of using a discrimina-
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Dataset Report Type Report
Count

Section
Count

Avg. Sections /
Report

Avg. Words /
Report

Annotators

#1 Discharge Summary 191 2527 13.2 958.8 2 w/ med. training
#2 Discharge Summary 183 2067 11.3 775.2 1 w/o med. training
#3 Radiology Report 100 594 5.9 271.5 1 w/o med. training

Table 1: Statistics of the three datasets used in our study.

tive classifier with simple n-gram features over Teufel and
Moens’s NB approach with a more complex feature set.

2.1. Section Segmentation in the Clinical Domain
Section segmentation (i.e., identification of section bound-
aries) in the clinical domain is less well studied, and past
approaches have focused mainly on section classification
(i.e., labeling a section with a pre-defined section category),
while relying on hand-coded heuristics for detecting sec-
tion boundaries. Section classification in clinical records is
a difficult problem, as clinicians do not follow strict section
naming conventions. While it is common practice to de-
fine auto-populated templates for report types in Electronic
Medical Record (EMR) systems, clinicians have the flexi-
bility to modify those defined templates or create their own
depending on their needs at the time.

Denny et. al (2008, 2009) trained an NB classifier on a
set of clinical notes that were annotated based on a manu-
ally created hierarchical section terminology. Using 10,767
clinical notes for development and 540 for test, Denny et
al. (2009) reported per-section performance at 99.0% re-
call and 95.6% precision. Li et al. (2010) defined section
classification as a sequence-labeling problem and used Hid-
den Markov Model (HMM) to classify sections in medi-
cal records by finding an optimal sequence of section cate-
gories. Section headers were mapped to 15 manually se-
lected general section categories (e.g., chief complaint).
With a dataset of 9697 clinical notes (78% used for training,
22% used for testing), the classifier achieves a per-section
accuracy of 0.93 and a per-note accuracy of 0.70.

While both of the above-mentioned approaches have
achieved good results, their main limitation is that they rely
on hand-coded heuristics for section segmentation (bound-
ary detection), which may be difficult to replicate or extend.
These heuristics are based on conventions like the capital-
ization of headers and the presence of blank lines between
sections (Li et al., 2010). While Denny et al. (2009) use
a larger set of targeted heuristics, they mention that for-
matting and style differences may vary across clinical set-
tings, which is a weakness of their approach. In this study,
we propose a heuristics-free machine learning approach for
both section segmentation and classification. This approach
can be adapted to a new clinical setting simply by annotat-
ing new training data, rather than having to commit devel-
oper time and resources to extend the hand-coded heuris-
tics.

3. Our Datasets
We used three datasets composed of discharge summaries
and radiology reports to develop our statistical section seg-
menter and test its performance. A detailed summary of

the datasets is presented in Table 1. In this section, we will
describe each of the three datasets, present the ontology
created for annotation, and provide information about the
annotation effort.

3.1. Dataset 1 – UW Discharge Summary Corpus
This corpus consists of 430 discharge summaries of 402 pa-
tients who had a surgery at UW’s medical center in 20101.
The retrospective review of those reports was approved by
the UW Human Subjects Committee of Institutional Re-
view Board, who waived the need for informed consent.
We used 191 randomly selected discharge summaries from
this corpus to build the section category ontology and to
create the gold standard for the statistical section segmenta-
tion task. The whole dataset was then used for an extrinsic
evaluation consisting of comorbidity extraction from dis-
charge summaries, to demonstrate the performance of the
segmenter in a real-world application.

3.2. Dataset 2 – i2b2 Discharge Summary Corpus
This corpus was created for the 2010 i2b2 natural language
processing challenge on medical concept, assertion, and re-
lation extraction (Uzuner et al., 2011). The corpus consists
of 835 discharge summaries from three institutions (Part-
ners HealthCare, Beth Israel Deaconess Medical Center,
and University of Pittsburgh Medical Center). We used 183
randomly selected discharge summaries from this corpus to
test the generalizability of the proposed approach on dis-
charge summaries created by different institutions.

3.3. Dataset 3 – UW Radiology Report Corpus
This corpus consists of 100 radiology reports extracted
from the UW Radiology Information System. The reports
contain a mixture of imaging modalities including radio-
graphs, CT scans, ultrasounds, and magnetic resonance
imaging (MRI). The retrospective review of those reports
was approved by the UW Human Subjects Committee of
Institutional Review Board, who waived the need for in-
formed consent.

3.4. Section Category Ontology
We constructed an ontology of 33 section categories for
discharge summaries (see Table 2) and an ontology of 11
section categories for radiology reports (see Table 3). The
ontologies have been designed to cover typical discharge
summary sections (across two datasets) and radiology re-
port sections, as advised by a clinical expert.

124 patients had at least two reports generated for them under
the report type discharge summary (one detailed discharge sum-
mary and additional notes from other attending clinicians).
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Section Categories Freq (Percentage)
Dataset 1 Dataset 2

GENERAL PATIENT INFO
Admit Date 180 (7.1%) 170 (8.2%)
Discharge Date 181 (7.0%) 182 (8.8%)
Service 10 (0.4%) 33 (1.6%)
PROVIDER INFO
Attending 66 (2.6%) 103 (5.0%)
Admit Physician 4 (0.2%) 1 (0.1%)
Discharge Physician 2 (0.1%) 0 (0.0%)
CONDITION BEFORE ADMISSION
Admission Diagnoses 98 (3.9%) 56 (2.7%)
History 81 (3.2%) 81 (3.9%)
Medications 53 (2.1%) 53 (2.1%)
Reason for Admission 9 (0.4%) 29 (1.4%)
CONDITION AT DISCHARGE
Condition 75 (3.0%) 64 (3.1%)
Disposition 103 (4.1%) 53 (2.5%)
Discharge Diagnoses 156 (6.2%) 148 (7.2%)
Other Diagnoses 5 (0.2%) 62 (3.0%)
Physical Exam on Disch. 39 (1.5%) 0 (0.0%)
MEDICAL HISTORY
Allergies 56 (2.2%) 64 (3.1%)
Family History 31 (1.2%) 26 (1.3%)
Gynecological History 0 (0.0%) 3 (0.2%)
Past Medical History 73 (2.9%) 66 (3.2%)
Past Surgical History 69 (2.7%) 14 (0.7%)
Social History 44 (1.7%) 49 (2.4%)
HOSPITAL COURSE
Consultation 148 (5.9%) 17 (0.8%)
Hospital Course 115 (4.6%) 140 (6.8%)
Physical 15 (0.6%) 75 (3.6%)
Procedures 182 (7.2%) 98 (4.7%)
Studies 0 (0.0%) 76 (3.7%)
DISCHARGE INSTRUCTIONS
Follow up 180 (7.1%) 61 (3.0%)
Diagnostic Studies Rec’d 24 (1.0%) 0 (0.0%)
Discharge Instructions 146 (5.8%) 104 (5.0%)
Discharge Medications 179 (7.1%) 124 (6.0%)
ADDENDA
Attending Statement 7 (0.3%) 0 (0.0%)
Note 0 (0.0%) 0 (0.0%)
OTHER
Catchall 42 (1.7%) 19 (0.9%)
Combined 127 (5.0%) 37 (1.8%)
Total 2527 (100%) 2067 (100%)

Table 2: Section category ontology for discharge sum-
maries and category frequencies in Datasets 1 and 2.

To build each ontology, we first created a list of sections
by sampling a small subset of twenty discharge summaries
from Dataset 1 and ten radiology reports from Dataset 3.
Then, with the help of an expert, we (a) grouped similar
sections together under general categories, and (b) put rare
or atypical sections under a catch-all category. For exam-
ple, when building the ontology for discharge summaries,
we grouped Procedures, Surgical Procedures, and Oper-
ations under the section category Procedures. When we

Section Categories Freq (Percentage)
Dataset 3

CLINICAL INFORMATION
Clinical History 99 (16.7%)
EXAM DETAILS
Exam 8 (1.4%)
Comparison 89 (15.0%)
Contrast 22 (3.7%)
Procedure 70 (11.8%)
FINDINGS
Findings 100 (16.8%)
IMPRESSION
Impression 77 (13.0%)
Attending Statement 14 (2.4%)
OTHER
Document Header 104 (17.5%)
Catchall 6 (1.0%)
Combined 5 (0.8%)
Total 594 (100%)

Table 3: Section category ontology for radiology reports
and category frequencies in Dataset 3.

came across Impression, we put it under the catch-all cate-
gory, as it is not typical in a discharge summary (in fact, it
is usually found in a radiology report).

3.5. Annotation Task
There were three annotation tasks conducted as part of this
study. Our annotators were instructed to mark the section
header and select an appropriate category from the ontol-
ogy. For combined sections (e.g., History and Physical)
annotators were instructed to annotate the header multiple
times (e.g., once with History as the section category and
again with Physical Exam). Dataset 1 had the most com-
bined sections at 5% (see Table 2), whereas Dataset 3 had
the fewest, at 0.8% (see Table 3).

For the first annotation task, two annotators annotated a
total of 191 discharge summaries from Dataset 1, of which
24 summaries were double annotated. One of the annota-
tors is a clinical expert who is a medical doctor with 7 years
clinical experience. The other annotator is an experienced
medical records specialist. Together they annotated 2527
sections in 191 discharge summaries, averaging 13.2 sec-
tions per document.

The inter-annotator agreement f-measure was 0.91 when
matching section-header boundaries and section category,
and 0.95 when matching header boundaries alone. One
main source of disagreement was that annotators some-
times overlooked a few headers in a given report. When
the annotators agreed on the location of a header, agree-
ment on the section category was high, at 0.97 observed
agreement. For the second annotation task, there was a sin-
gle annotator who annotated 2067 sections in 183 discharge
summaries from Dataset 2, averaging 11.3 sections per doc-
ument. In the third annotation task, we had single annotator
who annotated 594 sections in 100 radiology reports from
Dataset 3, averaging 5.9 sections per document. For both
the second and third annotation tasks, the annotators did not
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Figure 1: Training and testing stage in the one-step and two-step approach.

Two-Step ApproachOne-Step Approach

Section-level 
representation

Section text features
Section tag features

Clinical 
Documents

(Train)

BIO Line-level 
representation

BIO text features
BIO tag features

MaxEnt 
Classifier-Learner

MaxEnt 
Classifier-Learner

Unlabeled BIO 
Classifier

Labeled BIO 
Classifier

Section 
Classifier

Section 
Classifier

Unlabeled BIO 
Classifier

Clinical 
Documents

(Test)

Labeled BIO 
Classifier

Section Output

TestTrain

have any clinical background.

4. Methods
Our basic methodology for section segmentation is to clas-
sify each line in a document to indicate its membership to a
section. Our classifier operates at the line-level rather than
the sentence-level, as content of clinical records tends to
be fragmentary and list-based. Similar to Hirohata et al.
(2008), we relied on BIO tags to differentiate the begin-
nings of sections (which tend to consist of headers) from
the remaining lines.

Under this methodology we tried two approaches: a joint
(one-step) approach and a pipeline (two-step) approach.
Both approaches are described below.

4.1. One-step approach
This approach uses a section segmentation model that has
been enriched with section category labels such that it seg-
ments and classifies sections in one step. To be more spe-
cific, we have extended the BIO tags with category labels
X; that is, B-X and I-X indicate that the current line begins
(B) or lies inside (I) a section with category X; O means the
current line is not in any section (e.g., a blank line at the
beginning of a document).

4.2. Two-step approach
This approach relies on separate models for section seg-
mentation and classification. First, the section boundaries
are identified by labeling each line with a B, I, or O tag.
Then, the unlabeled sections from the first step are passed
to the second step, where a separate classifier is called upon
to label each section with the appropriate section category.

4.3. Modeling
For both approaches, we used Maximum Entropy (Max-
Ent) models for classification (Berger et al. 1996), and
used beam search to find a good tag sequence. We used the

MALLET toolkit v2.07 (McCallum, 2002) with L-BFGS
parameter estimation and Gaussian prior smoothing. The
Gaussian prior variance was left at its default value (=1).

4.4. Features
There were two types of tagger developed for these experi-
ments: one type labels each line in a document; it is used for
the one-step approach as well as the 1st step of the two-step
approach. The other type labels each section in a document,
and it is used for the 2nd step of the two-step approach. The
feature sets for each type are described below.

Features for line labeling
Table 4 shows features used in the one-step approach and
step 1 of the two-step approach. The text features look at
the shape (e.g., capital letters, numbers, blank lines) and
content (e.g., first token in a line, any unigram) of current
and neighboring lines; the tag features look at the tags of
previous lines and how many lines have the same tag (a.k.a.
tagChainLength).

Type Features

Text features

isAllCaps, isTitleCaps,
containsNumber,
beginsWithNumber, numTokens,
numPreBlanklines,
numPostBlanklines, firstToken,
secondToken, unigram

Tag features prevTag, prevTwoTag,
tagChainLength

Table 4: Features for line labeling.

Features for section labeling
Table 5 shows features used in Step 2 of the two-step ap-
proach. Header features are the same as text features in
Table 4, and they are extracted only from the first line of a
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Dataset 1 Dataset 2 Dataset 3
Exp# Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
1 91.3/90.7/91.0 87.1/86.5/86.8 90.8/82.5/86.4 85.9/78.1/81.8 93.8/88.8/91.2 91.5/86.5/88.9
2 93.4/94.7/94.1 88.2/89.4/88.8 93.2/92.9/93.1 87.6/87.3/87.5 91.8/89.7/90.7 89.3/87.2/88.2
3 93.4/94.7/94.1 88.5/89.7/89.1 93.2/92.9/93.1 82.7/86.9/87.0 91.8/89.7/90.7 88.9/86.8/87.8
4 93.4/94.7/94.1 87.9/89.1/88.5 93.2/92.9/93.1 86.7/86.4/86.5 91.8/89.7/90.7 88.9/86.8/87.8

(a) Section mapping performance.

Dataset 1 Dataset 2 Dataset 3
Exp# Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
Unlabeled

Prec/Rec/F1
Labeled

Prec/Rec/F1
1 96.3/95.7/96.0 91.5/90.9/91.2 97.8/88.9/93.1 92.2/83.8/87.8 97.5/92.2/94.7 94.7/89.5/92.0
2 96.6/97.9/97.3 91.2/92.4/91.8 97.0/96.7/96.8 91.1/90.8/91.0 96.8/94.6/95.6 94.1/91.9/92.9
3 96.6/97.9/97.3 91.5/92.7/92.1 97.0/96.7/96.8 90.7/90.4/90.5 96.8/94.6/95.6 93.6/91.5/92.5
4 96.6/97.9/97.3 91.1/92.4/91.8 97.0/96.7/96.8 90.0/89.7/89.8 96.8/94.6/95.6 93.2/91.1/92.1

(b) Header mapping performance.

Table 6: System performance on all three datasets. All the results based on 5-fold cross validation over each of the three datasets.
For each dataset, we ran four experiments: Experiment 1 is the one-step approach with features in Table 4. Experiments 2, 3, and 4
are the two-step approach which use the features in Table 4 for the first step, and different features from Table 5 for the second step.
Experiment 2 uses header features only; Experiment 3 uses header and tag features; Experiment 4 uses all three features types in Table 5.

Type Features

Header features Same as text features for line
labeling, but only the header
line is used

Body features
avgLineLength, numLines,
docPosition, containsList,
unigram

Tag features prevTag, tagHistUnigram,
tagChainLength

Table 5: Features for section labeling.

section. Body features look at the shape (e.g., containsList,
avgLineLength) and content (e.g., unigram) of the whole
section and relative position of the section in the docu-
ment by quintiles (docPosition). Tag features look at tags of
previous sections, capturing regularities in section ordering
(for example, Discharge Date typically follows Admit Date
in the discharge summaries in Dataset 1).

5. Experiments
For evaluation, we ran 5-fold cross evaluations on each
dataset and reported the micro-average of the five runs.

5.1. Evaluation measures
For evaluation, we calculated precision, recall, and f-score
of header matching and section matching. For header
matching, there is a match when a line is marked as the first
line of a section by both the gold standard and the system
output. For section matching, there is a match when a se-
quence of lines is marked as a section by both the gold stan-
dard and the system output. Section matching is a stricter
measure than header matching, as one wrongly identified
section header is one error in header matching, but could
result in incorrect boundaries for two sections. For both
types of matching, an unlabeled match checks only the lo-

cation of a header or the boundary of a section, whereas a
labeled match checks location/boundary as well as the cat-
egory of the section.

5.2. Results
One-step vs two-step approach
Tables 6(a) and 6(b) show the performance of each system,
measured by section and header matching, respectively. For
the one-step approach and Step 1 of the two-step approach,
we used the features in Table 4 (Experiment 1). For Step
2 of the two-step approach, we ran three experiments (Ex-
periments 2, 3, 4) with different combinations of features
in Table 5. For decoding in all experiments, we ran a beam-
search with the beam size set to 100.

For Datasets 1 and 2, the performance results show that
the two-step approach (Experiments 2, 3, and 4) outper-
forms the one-step approach (Experiment 1). This is likely
because the joint model used by the one-step approach has
sparse features, as they must be calculated over 67 cat-
egories, while the two-step approach has a segmentation
model with just three categories, so it is better trained.

Several recent studies (e.g., Zhang and Clark (2010),
which combines word segmentation and POS tagging) have
shown that joint models outperform the pipeline approach
when the benefits of allowing the two tasks to provide
constraints and feedback to each other outweigh potential
drawbacks due to multiplication of the two tag sets. This
condition does not seem to hold for the current task, and
as a result, the two-step, pipeline approach outperforms the
one-step, joint approach. For Dataset 3, the two-step ap-
proach slightly decreased the performance; however, the
differences are too small to draw strong conclusions. One
contributing factor may be that the section category on-
tology for Dataset 3 is comparably much smaller than for
the other two Datasets. This means the tagset used in the
one-step approach is much smaller, and thus the one-step
segmentation model can be better trained on a comparably
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small dataset.
For Step 2 of the two-step approach, adding tag features

to header features helped a little bit for Dataset 1, but not for
Datasets 2 or 3. Meanwhile, using all three types of features
decreased the performance slightly for all datasets, which is
the result of overtraining on somewhat noisy annotations.

Error analysis on Datasets 1 and 2 reveals that broad cat-
egories that cover a diverse array of sections perform the
worst. The catch-all category had the worst performance.
The Studies category also performed quite poorly. It was
used for any section describing test or lab results (e.g., Lab-
oratory Data on Admission, Radiology, Radiology / Imag-
ing). Many sections in Datasets 1 and 2 that should have
received these broad categories were not observed in the
training data. This is not surprising as the catch-all category
was designated for rare and atypical sections, and the Stud-
ies category encompassed a long tail of rare sections for the
myriad of labs and studies that are performed in a clinical
setting. In both datasets, there were also many errors with
combined categories because frequently the needed com-
bination at test time had not been observed in the training
data.2

Performance differences across section categories
Table 7 includes f-scores for each section category. The
scores are from the best performing systems on Dataset 1
and Dataset 2, respectively.

Although both Dataset 1 and Dataset 2 include discharge
summaries, there are major performance differences for
some categories. The f-scores for Admission Diagnoses are
96.0 for Dataset 1 and 63.0 for Dataset 2. Error analysis
revealed that Admission Diagnoses was a particularly noisy
category for Dataset 2, but not for Dataset 1. Dataset 2 is
currently undergoing annotation revisions which may im-
prove performance on this category. Another large per-
formance difference occurs with the aggregate category
Combined, which includes all cases where a section be-
longs to multiple categories. Here the f-scores are 84.1
for Dataset 1 and 47.1 for Dataset 2. This is likely the re-
sult of sparse training data for Dataset 2, as Dataset 2 has
only 37 instances of combined sections, compared to 127
for Dataset 1.

Domain adaptability across datasets
Table 8(a) and 8(b) reveal that the system performance de-
grades significantly when the training and test data do not
come from the same dataset, despite both sets being dis-
charge summaries.

Upon a closer look, it becomes apparent that the two
datasets have different characteristics. Clinical language
and report style vary across different institutions. Stylis-
tically, Dataset 2 has more header variation. For example,
headers can be split between two lines and contain punc-
tuation, while in Dataset 1 this does not occur. Content

2Combined categories exist because some sections fall into
multiple categories (e.g., History, Physical). These categories are
concatenated to form single categories during training (e.g., His-
tory & Physical). This way, the algorithm only needs to assign
one category per section. The downside is this greatly increases
the label set, and combined categories are frequently undertrained
(or unseen).

Section Categories F-score
Dataset 1 Dataset 2

GENERAL PATIENT INFO
Admit Date 97.5 98.3
Discharge Date 97.8 98.4
Service 84.2 95.8
PROVIDER INFO
Attending 93.3 93.3
Admit Physician 28.6 0.0
Discharge Physician 0.0 –
CONDITION BEFORE ADMISSION
Admission Diagnoses 96.0 63.0
History 95.7 92.4
Medications 95.2 86.5
Reason for Admission 76.9 82.5
CONDITION AT DISCHARGE
Condition 90.4 96.7
Disposition 96.6 92.5
Discharge Diagnoses 90.9 87.2
Other Diagnoses 76.9 97.6
Physical Exam on Discharge 74.4 –
MEDICAL HISTORY
Allergies 99.1 97.6
Family History 93.5 100
Gynecological History – 66.7
Past Medical History 93.2 96.3
Past Surgical History 97.8 96.6
Social History 93.2 97.0
HOSPITAL COURSE
Consultation 97.1 87.5
Hospital Course 97.4 95.5
Physical 61.5 97.4
Procedures 96.5 95.3
Studies – 64.3
DISCHARGE INSTRUCTIONS
Follow-up 92.6 95.1
Diagnostic Studies Rec’d 93.9 –
Discharge Instructions 74.9 85.7
Discharge Medications 96.2 92.4
ADDENDA
Attending Statement – –
Note – –
OTHER
Catchall 29.7 27.3
Combined 84.1 47.1
Total 92.1 90.8

Table 7: F1-scores by section category on Datasets 1 and
2. These results are from Experiment 3 for Dataset 1 and
Experiment 2 for Dataset 2.

wise, one difference is that Dataset 2 has been anonymized
while Dataset 1 has not. Also, these sets contain different
variations for header labels. For example PMH is a com-
mon way of writing Past Medical History in Dataset 1, but
not in Dataset 2. Finally, the frequency and distribution of
combined sections can make a difference as well. Dataset 1
has many more combined sections than Dataset 2, as can
be seen on Table 8. Thus, when training on Dataset 1 and
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Unlabeled
Prec/Rec/F1

Labeled
Prec/Rec/F1

Train: Dset 1
Test: Dset 2 58.2/73.9/65.1 48.6/61.8/54.4

Train: Dset 2
Test: Dset 1 77.9/52.0/62.4 65.6/43.8/52.5

(a) Section mapping performance.

Unlabeled
Prec/Rec/F1

Labeled
Prec/Rec/F1

Train: Dset 1
Test: Dset 2 67.4/85.7/75.5 55.6/70.6/62.2

Train: Dset 2
Test: Dset 1 89.8/60.0/71.9 75.6/50.5/60.5

(b) Header mapping performance.

Table 8: Experiments to measure domain adaptability
across datasets. Experiment settings are equivalent to Ex-
periment 2: two-step approach with header features.

testing on 2, many combined headers will not be identified
at test time.

6. Application – Comorbidity Extraction
from Discharge Summaries

For an extrinsic measure, the section segmenter was ap-
plied to the problem of comorbidity extraction from clin-
ical records. In medicine, comorbidity is defined as the
presence of one or more disorders or diseases in addition
to a primary disease or disorder (Valderas et al., 2009).
For instance, a patient accepted for cancer treatment may
also have other disorders such as diabetes and hyperten-
sion, which are called comorbidities for this parent. As
part of a quality improvement (QI) project, annotators affili-
ated with UW manually abstracted each of the 402 patients
in Dataset 1 for a long list of data elements including the
presence or absence of the following four types of comor-
bidities; sleep apnea, diabetes, asthma, and hypertension3.
The annotators had access to the complete set of clinical
notes generated during the patients hospital stays (e.g., ad-
mit notes, discharge summaries, operative notes). Because
the section segmenter was trained only on discharge sum-
maries, this extraction study was on a subset of Dataset 1
consisting of 435 discharge summaries.

The baseline comorbidity extraction system has two
main steps. The first step identifies medical concepts in dis-
charge summaries with MetaMap (Aronson, 2001; Aronson
and Lang, 2010) and the second step checks the presence of
the comorbidities in the list of identified medical concepts.
The results are shown as “baseline” in Table 9. The error
analysis indicates that many of the false positives were due
to appearance of those comorbidities in sections that are
not about the patient (e.g., father with diabetes in the family
history section).

3The annotations created as part of the QI project were only
used to automatically evaluate the performance of the proposed
comorbidity extraction approach. The authors did not have access
to annotations.

We extended the baseline approach by introducing sec-
tion information from the section segmenter. This involved
manually identifying 14 section categories that were most
likely to contain comorbidity information related to the pa-
tient (e.g., admission diagnoses, past medical history) and
excluding the rest. Thus comorbidities were only identified
in the list of medical concepts found under those 14 section
types, and sections such as Family History were excluded.

The performance is listed in the “system with section”
rows in Table 9. As can be seen from the table, with section
information, precision increased for diabetes and hyperten-
sion and did not change for sleep apnea and asthma. Recall
remained the same except for a slight decrease. Overall, in-
troducing section information increased the micro averaged
performance both in terms of precision and f-score.

Comorbidity System Prec/Rec/F1

Diabetes Baseline 87.0/35.1/50.0
System with section 87.0/35.1/50.0

Asthma Baseline 82.8/84.1/83.5
System with section 89.5/81.0/85.0

Hypertension Baseline 82.1/60.5/69.7
System with section 82.1/60.5/69.7

Diabetes Baseline 88.8/75.8/81.8
System with section 92.2/75.8/83.2

Microaverage Baseline 85.9/65.8/74.5
System with section 89.4/65.0/75.3

Table 9: Performance results for comorbidity extraction.
The results were collected for 402 patients.

7. Discussion
Our experiments show that the system works well when ap-
plied to three different datasets. Compared to previous re-
search, which relies on heuristic based rules, the approach
described here requires only a small annotated dataset. The
experiments in Section 6 demonstrate that running this sys-
tem (two-step approach) as a preprocessing step improves
the performance of comorbidity extraction.

The experiments also reveal some challenges to the task.
First, the ontology depends on report types. Only one of the
discharge summary section categories listed in Table 1 ap-
plies to radiology reports. Second, even for the same report
types, the distribution of the labels and the characteristics
of the reports can vary a lot (Table 2). As an example, 5.9%
of the sections in Dataset 1 are Consultation sections. This
value drops to 0.8% in Dataset 2. As a result, system per-
formance degrades significantly when the training and test
data come from different datasets.

8. Conclusion
In this paper we proposed a fully statistical system for
section segmentation and classification. The system has
achieved good performance on three different datasets. We
have also shown that automatic section segmentation and
classification will lead to improvements in extraction tasks,
such as comorbidity identification.

As future work, we plan to expand the current work in
several directions. First, we will study whether domain
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adaptation methods might improve the system performance
where there is no labeled data for the test domain. Second,
we will extend the section category ontology for other re-
port types. Third, in addition to comorbidity extraction, we
will use this system for other applications including sense
disambiguation of medical concepts and abbreviations, and
phenotype extraction from clinical records.
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Özlem Uzuner, Brett R. South, Shuying Shen, and Scott L.
Duvall. 2011. 2010 i2b2/VA challenge on concepts, as-
sertions, and relations in clinical text. Journal of the
American Medical Informatics Association, 18:552–556.

Jose M. Valderas, Barbara Starfield, Bonnie Sibbald, Chris
Salisbury, and Martin Roland. 2009. Defining comor-
bidity: implications for understanding health and health
services. Annals of Family Medicine, 7(4):357–363.

Yue Zhang and Stephen Clark. 2010. A fast decoder for
joint word segmentation and POS-tagging using a single
discriminative model. In Proceedings of the Conference
on Emperical Methods in Natural Language Processing,
pages 843–852.

2008


