Predicting Survival in Patients from Inhospital Resuscitation: Machine Learning VS Logistic Regression

> Tsung-Chien (Jonathan) Lu, MD, MS UW BHI PhD Student Attending Physician, Dept of Emerg Med National Taiwan University Hospital

In-Hospital Cardiac Arrest (IHCA)

Background: IHCA

- Survival rates were poor in patients following in-Hospital Cardiac Arrest (IHCA) (7-24%, Taiwan 18%)
- The classification patterns of recovery can help health care providers and other decision makers (patients and their families), select treatment strategies that take into account costs and potential benefits.
- Need for investigation of prognostic factors from IHCA: Utstein Style definitions for reporting templates and guidelines.

George AL, et al. Am J Med 1989; 87:28-34. Shih CL & Lu TC. Resuscitation 2007;72:394-403.

Utstein Abbey

- Utstein is synonymous with reporting guidelines for resuscitation.
- The first conference held at Utstein Abbey in 1990, and resulted in guidelines for uniform reporting data from out-of-hospital cardiac arrest (OHCA).
- The first In-Hospital "Utstein Style" were published in 1997 and updated in 2004.

Resuscitation 2005;64:5-6

Background of WRSIR

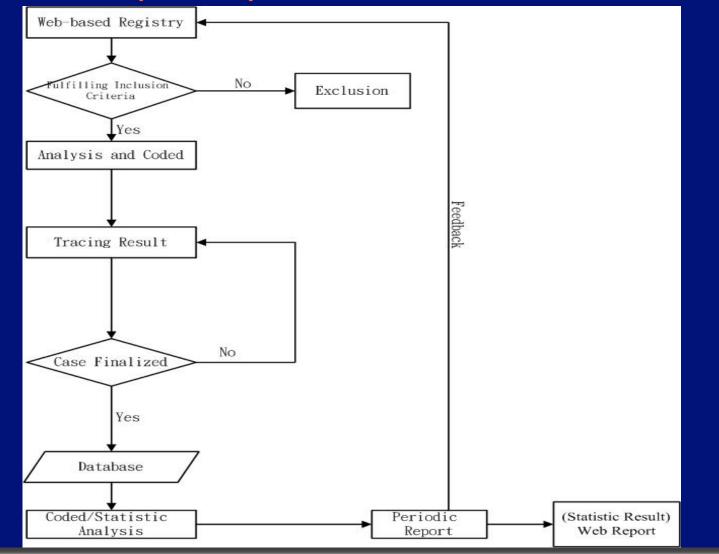
Since 2003, National Taiwan University Hospital (NTUH) and the other hospitals around the country, has promoted a pilot study of Web-Based Registry System on In-hospital Resuscitation (WRSIR).

- A prospective, web-based, multi-site, and Utstein-based reporting system sponsored by the Department of Health Taiwan.
- Allowing each participating hospital to report each event and outcome of IHCA
- An in-hospital resuscitation task force committee was established and tracks each event to ensure the completeness of registry data every week.

Resuscitation (2007) 72, 394-403

RESUSCITATION

www.elsevier.com/locate/resuscitation


A web-based Utstein style registry system of in-hospital cardiopulmonary resuscitation in Taiwan^{*}

Chung-Liang Shih^a, Tsung-Chien Lu^a, Jih-Shuin Jerng^b, Chung-Chin Lin^c, Yueh-Ping Liu^a, Wen-Jone Chen^a, Fang-Yue Lin^{d,*}

^a Department of Emergency Medicine, National Taiwan University Hospital, Taiwan
 ^b Department of Internal Medicine, National Taiwan University Hospital, Taiwan
 ^c Department of Computer Science and Information Engineering, Chang Gung University, Taiwan
 ^d Division of Cardiac Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan

Received 28 January 2006; received in revised form 19 July 2006; accepted 20 July 2006

Dataflow of Web-Based Registry System On In-Hospital Resuscitation (WRSIR)

WELCOME TO CPR REPORT SYSTEM !!

2004@Copyright. All right reserved. 版權所有・翻印必究

Applet announceit started

🛃 開始 🚽 🧭 🔄 🞯 👋 🛃 歡迎光臨台灣醫院.

網際網路

🖮 🔇 🌆 🔣 🖏 🔧 💐 🗐 🏚 🧶 上午 01.06

Study Purpose

To compare performances of machine learning and logistic regression in survival prediction from in-hospital resuscitation

To assess prognostic determinants selected from different strategies.

Study Methods -Hospital Setting

- NTUH is a 2,400-bed university-affiliated tertiary medical center serving approximately 2,000 inpatients, 7,000 outpatients, and 300 emergency visits daily. The center has a 227-bed intensive care unit (ICU) and approximately 40 emergency department (ED) observatory units.
- The cardiac arrest team (CAT) consists of a senior medical resident (the team leader), several junior residents, a respiratory therapist, a head nurse, and several registered nurses from the ICU.

Study Methods -Data collection

A specially trained staff of the task force logged on the website and entered information into the database. The information was gathered from a standardized data sheet recorded by the leader of CAT.

Five major defined categories of variables are (1) facility data, (2) patient demographic data, (3) event data, (4) intervention data, and (5) outcome data.

Study Methods -Case inclusion and exclusion criteria

- A prospective observational study from 1 Jan 2005 to 31 Dec 2007.
- All adult (≥ 18 years of age) patients, visitors, employees, and staff within NTUH (including areas of out-patients clinic and emergency department) who experienced a resuscitation effort after cardiac arrest were eligible for inclusion.
- Patients who presented as out of hospital cardiac arrest (OHCA) or those who not resuscitated were excluded from the study.
- Those experienced two or more CPR during each admission were considered as one CPR events.

Study Methods -Statistical and Machine learning approaches

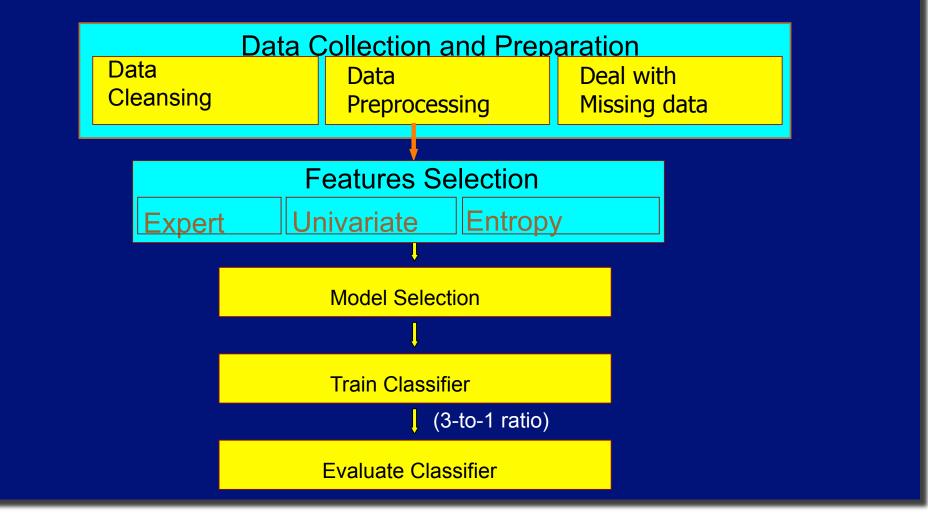
Logistic Regression
 Machine learning methods

 Decision Tree
 k Nearest Neighbors (kNN)
 Artificial Neural Networks (ANN)

Preliminary Results -Patient Characteristics and Outcome measures

1048 adults included. (age 65.5 ± 16.5 years)
-797 arrests (76.0%) in hospitalized patients (ward or ICU).
-243 (23%) in emergency department.
-7 arrest from the out-patient clinic, one from visitor
Immediate Outcome

- Returned of spontaneous circulation (ROSC): 688 pts (65.6%)
- Final Outcome
 - Survival to hospital discharge: 174 pts (16.6%)


Table 5. Time	e interva	l characte	ristics and comparison stat	istics between cases

with ROSC and survival to hospital discharge

		ROSC (N=1048)		Survival to discharge (N=1048)		
	YES (n=688)	No (n=360)	— P-value	YES (N=174)	No (N=874)	- P-value
Time interval CPR tea	am arrival (minut	tes) (N=147)				
	(n=100)	(n=47)		(n=29)	(n=118)	
mean (SD)	4 (2)	6(9)	-	4(7)	5(7)	-
median (IQR)	2(1-5)	3(1-7)	0.177	2(1-4)	2(1-5)	0.197
Time interval CPR in	itiate (minutes)					
mean (SD)	0.51(5)	0.45(4)	-	0.24(1)	0.54(5)	-
median (IQR)	0(0-0)	0(0-0)	0.463	0(0-0)	0(0-0)	0.571
Time interval monitor	red arrest (minute	es)				
mean (SD)	0.57(5)	0.49(4)	-	0.31(1)	0.59(5)	-
median (IQR)	0(0-0)	0(0-0)	0.563	0(0-0)	0(0-0)	0.714
Time interval defibril	lation attempt (m	inutes) (N=34	41)			
	(n=235)	(n=106)		(n=77)	(n=264)	
mean (SD)	8.10(18)	12.07(17)	-	2.77(6)	11.25(19)	-
median (IQR)	2(0-9)	6(0-19)	0.008	0(0-3)	4(0-14)	< 0.001*
Time interval when C	PR stopped/death	(CPR durat	ion) (min	utes)		
mean (SD)	20.09(22)	45.29(29)	-	12.18(14)	32.20(28)	-
median (IQR)	10(4-26)	37(26-59)	<0.001*	6(2-14)	25(10-44)	< 0.001*
Time interval when R	· /	V=683) [#]				
	(n=683)			(n=165)	(n=518)	
mean (SD)	20(43)	-	-	15(58)	21(38)	-
median (IQR)	10(5-25)	-	-	6(3-15)	13(6-28)	< 0.001*

Time Stati

The Design Cycle in Machine Learning (& Logistic regression)

Features Selection

Expert Opinions: Utstein style variables Univariate method: -Two outcome measures: ROSC and survival to discharge -Supervised feature selection based on comparisons of mean and variances (SPSS V.15) -Student's t test for numeric data -Mann-Whitney U-test for time variables -Chi-square or Fisher's exact test for categorical data Entropy measures for ranking feature: -Supervised feature selection based on information gain theory (Weka 3.4)

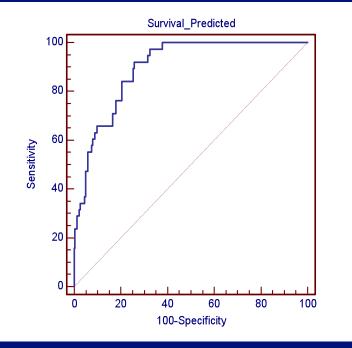
		Outcome	Univa	riate
	ROSC	Survival		
Patient characteristics			Selec	tion
Age	0.022*	0.684		
Patient type	0.032*	0.379		
Comorbidity-Diabetes	0.004*	0.069		
Comorbidity-Cancer	0.170	0.001*		
Comorbidity-Hepatic	0.02*	Treatment characteristics		
Comorbidity-Renal	0.006*		0.011*	0.001*
Comorbidity-Cardiac	0.088	Airway management before intubation	0.011*	0.001*
Event characteristics		Ambu-bagging before intubation	0.894	0.017*
Arrest location	0.035*	Defibrillation attempt	0.223	0.002*
Discovery status	< 0.001	Intubation attempt	< 0.001*	< 0.001*
Immediate cause-Arrhythmia	0.019*	Drugs given	0.039*	0.005*
Immediate cause-Hypotension	< 0.001	Massage attempt	0.002*	< 0.001*
Immediate cause-Respiratory failure	0.048*	Other treatments-ECMO	0.012*	0.612
First monitored rhythm	0.002*	Any ROSC	-	< 0.001*
Anticipated event-Doctor	0.076	Time interval characteristics		-0.001
Anticipated event-Family	0.009*		-0.001*	<0.001±
Causes of arrest-Cardiac	0.643	CPR duration	<0.001*	<0.001*
Causes of arrest-Cancer	0.094	Abbreviations: ROSC, return of spontaneous cir	rculation; CPR, cardi	opulmonary resuscitation;
Causes of arrest-Sepsis	0.878	ECMO, Extra-Corporeal Membrane Oxygenatio	on.	
Estimated preventable rate	0.014*	* P value <0.05		

Features Selection & Performances Evaluation in two models

Logistic regression (LR): SPSS V.15

- -28 selected features were the union of significant features with respect to ROSC (19 features) or survival (another 19 features) from univariate methods
- -Feed 28 features to training set by backward stepwise methods to construct the model (<u>11</u> independent predictors were therefore selected)
- -Feed those 11 independent prognostic factors to testing set by all possible regression method

Machine Learning: Statistica V.7


- -Feed all (28) selected features (from univariate) to both training and testing set, and removing features one by one from those with less entropy measures.
- -Select those models with highest AUC performances on the testing set.

Logistic Regression (LR)

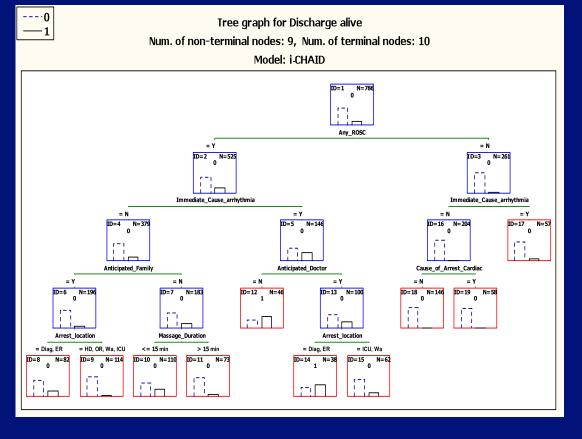
Backward Stepwise: Variables selection from Training Set

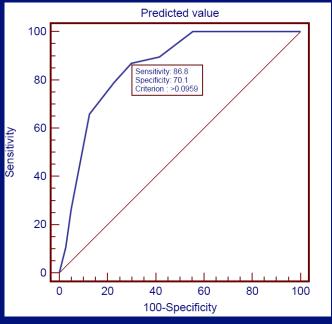
Table 12. Factors associated with survival to hospital discharge by logistic regression following in-hospital resuscitation.							
FeaturesP valueOdds ratio95.0% C.I.							
Age	0.010	0.98	0.967-0.995				
Comorbidity -cancer	0.014	2.13	1.166-3.891				
Comorbidit-cardiac	0.023	0.57	0.345-0.924				
Immediate cause arrhythmia	0.000	0.30	0.185-0.492				
Anticipated event doctor	0.001	2.25	1.393-3.636				
Ambu-bagging before intubation	0.022	3.61	1.201-10.877				
Cause of arrest sepsis	0.006	2.56	1.311-4.997				
Other treatment ECMO	0.042	0.42	0.184-0.967				
Intubation attempt	< 0.000	0.31	0.172-0.569				
CPR duration	< 0.000	0.96	0.943-0.975				
Any ROSC	< 0.000	0.18	0.076-0.445				

LR Result (Survival Prediction) Testing dataset

Classification Table(a)

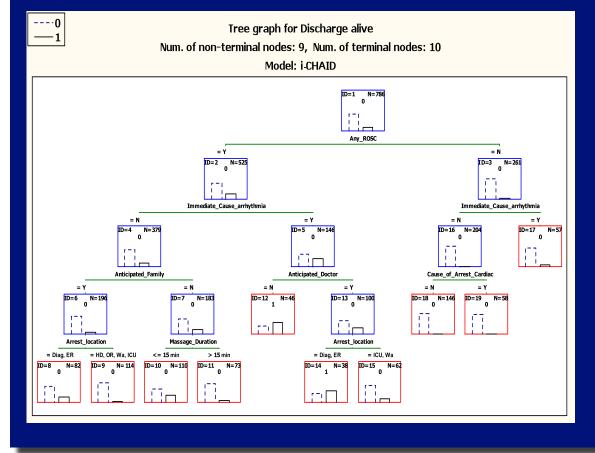
	Observed			Predicted	
			Dischar	ge_alive	Percentage Correct
			0	1	0
Step 1	Discharge_alive	0	217	7	96.9
		1	25	13	34.2
	Overall Percentage				87.8

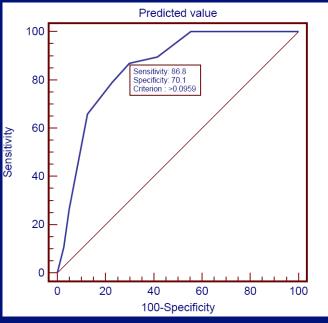

Area under the ROC curve (AUC)	0.896
Standard error	0.0346
95% Confidence interval	0.853 to 0.930
z statistic	11.438
Significance level P (Area=0.5)	0.0001


Machine Learning Methods Prediction of Survival to discharge

Decision Trees (CHAID Model)
k-NN (ten fold cross validation for selection of k)
ANN

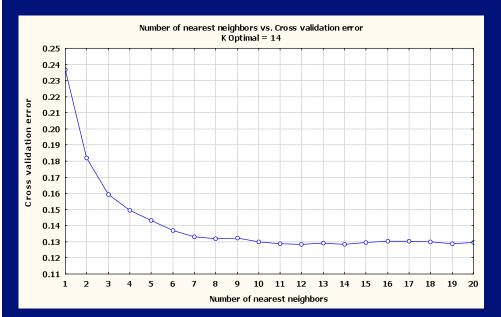
Decision Tree (CHAID Model)

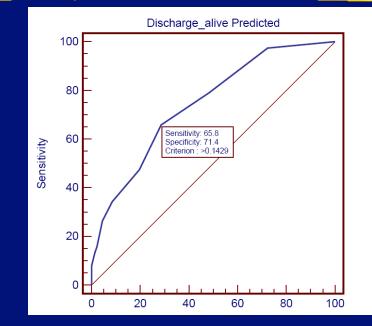

Decision Tree (28 variables)



Area under the ROC curve (AUC)	0.854
Standard error	0.0399
95% Confidence interval	0.805 to 0.894
z statistic	8.875
Significance level P (Area=0.5)	0.0001

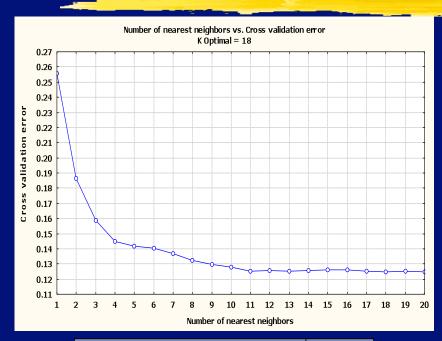
Decision Tree (7 variables)



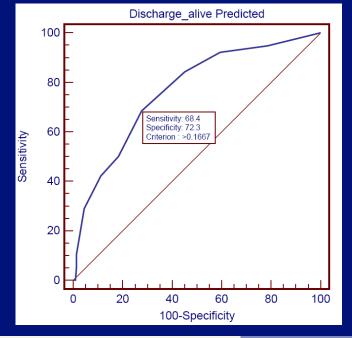

Area under the ROC curve (AUC)	0.854
Standard error	0.0399
95% Confidence interval	0.805 to 0.894
z statistic	8.875
Significance level P (Area=0.5)	0.0001

K Nearest Neighbors (k-NN)

k-NN (28 variables)

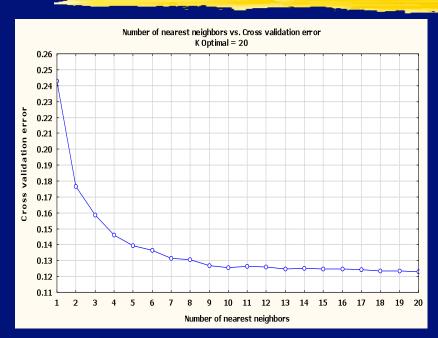


	Value
Number of independents	28
Number of dependent variables	1
Number of nearest neighbors	14
Input standardization	on
Averaging	uniform

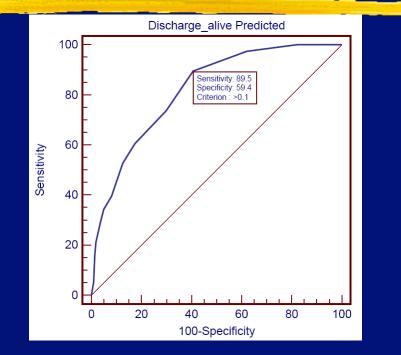


Area under the ROC curve (AUC)	0.743
Standard error	0.0482
95% Confidence interval	0.686 to 0.795
z statistic	5.051
Significance level P (Area=0.5)	0.0001

k-NN (19 variables)

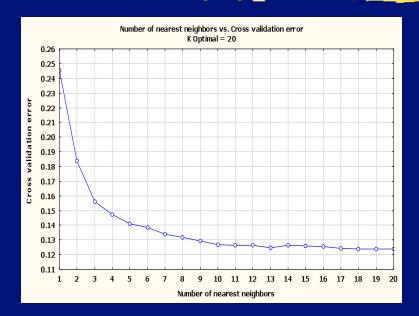


	Value
Number of independents	19
Number of dependent variables	1
Number of nearest neighbors	18
Input standardization	on
Averaging	uniform

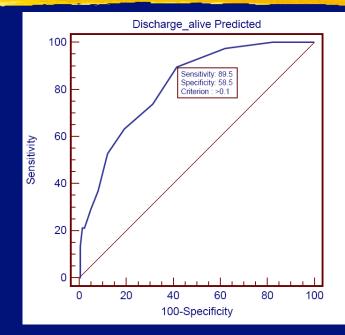


Area under the ROC curve (AUC)	0.765
Standard error	0.047
95% Confidence interval	0.709 to 0.815
z statistic	5.643
Significance level P (Area=0.5)	0.0001

k-NN (13 variables)

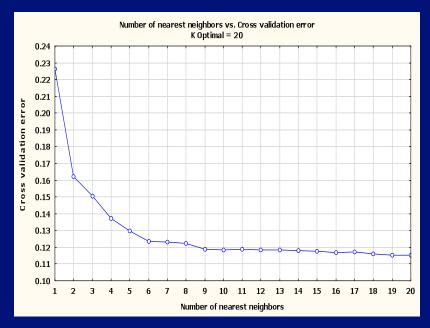


	Value
Number of independents	13
Number of dependent variables	1
Number of nearest neighbors	20
Input standardization	on
Averaging	uniform

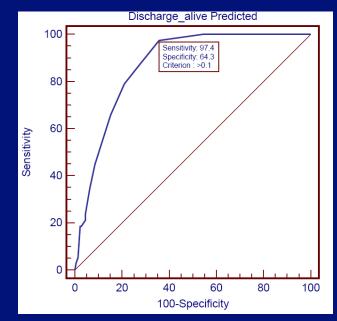


Area under the ROC curve (AUC)	0.818
Standard error	0.0432
95% Confidence interval	0.766 to 0.863
z statistic	7.364
Significance level P (Area=0.5)	0.0001

k-NN (12 variables)



	Value
Number of independents	12
Number of dependent variables	1
Number of nearest neighbors	20
Input standardization	on
Averaging	uniform

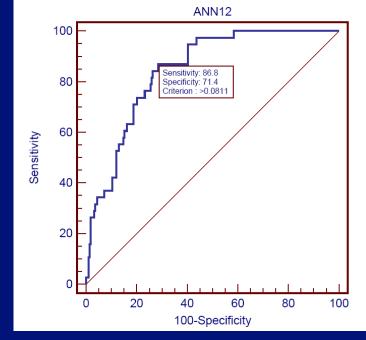


Area under the ROC curve (AUC)	0.815
Standard error	0.0435
95% Confidence interval	0.762 to 0.860
z statistic	7.224
Significance level P (Area=0.5)	0.0001

k-NN (13 variables) with CPR duration Dichotomized

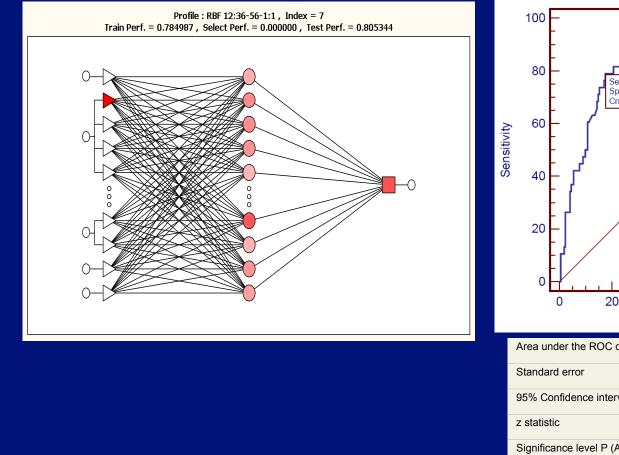
	Value
Number of independents	13
Number of dependent variables	1
Number of nearest neighbors	20
Input standardization	off
Averaging	uniform

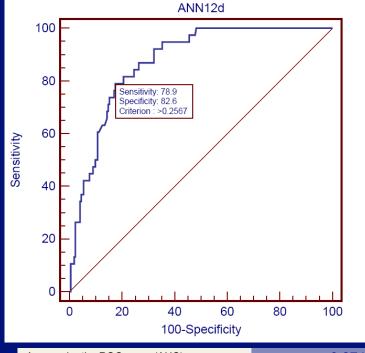
Area under the ROC curve (AUC)	0.869
Standard error	0.0382
95% Confidence interval	0.822 to 0.907
z statistic	9.673
Significance level P (Area=0.5)	0.0001


Artificial Neural Networks (ANN)

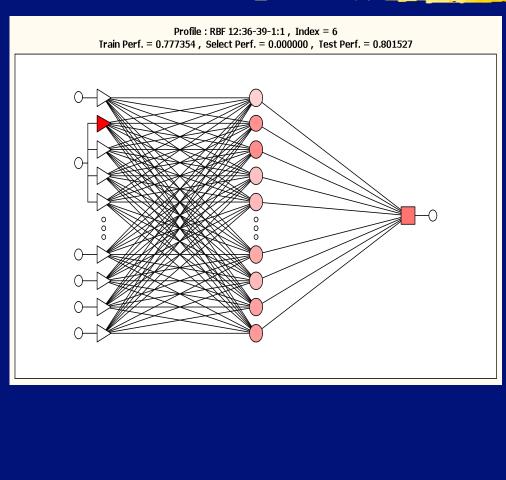
ANN (12 Variables)

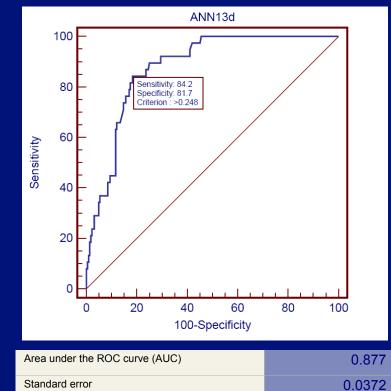
Train Perf. = 0.900763 , Select Perf. = 0.000000 , Test Perf. = 0.793893


00


Profile : MLP 12:36-11-1:1 , Index = 4

Area under the ROC curve (AUC)	0.846
Standard error	0.0407
95% Confidence interval	0.796 to 0.887
z statistic	8.483
Significance level P (Area=0.5)	0.0001


ANN (12 variables) with CPR duration Dichotomized

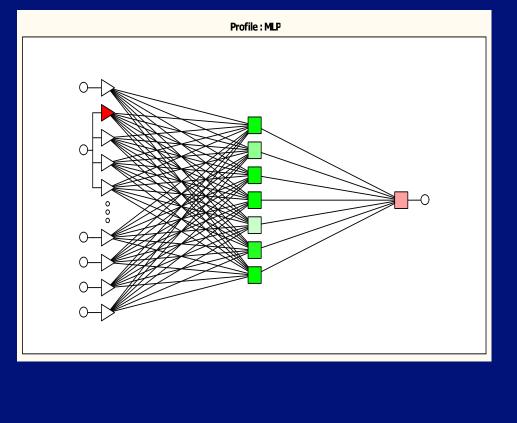


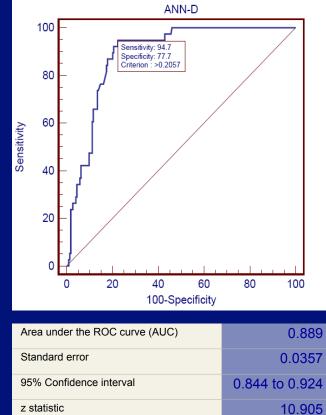
Area under the ROC curve (AUC)	0.874
Standard error	0.0376
95% Confidence interval	0.827 to 0.911
z statistic	9.936
Significance level P (Area=0.5)	0.0001

ANN (13 variables) with CPR duration Dichotomized

0.831 to 0.914

10.153

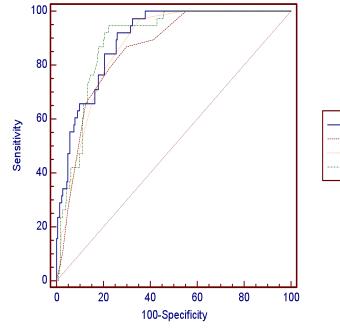

0.0001


95% Confidence interval

Significance level P (Area=0.5)

z statistic

ANN (14 variables) with CPR duration Dichotomized



z statistic Significance level P (Area=0.5)

0.0001

Performance Evaluation

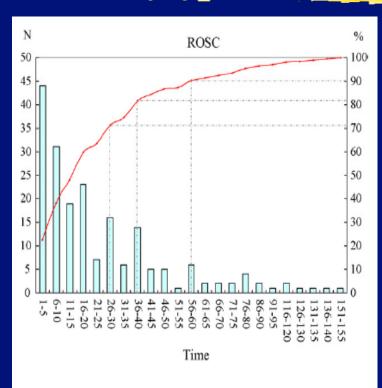
ROC curves Comparison

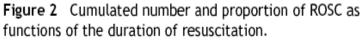
---- LR Tree kNN-D ANN-D

Table 14. Performance of the various methods on the testset of 262 cases.

Methods	AUC	SE	95% CI
Logistic regression	0.896	0.0346	0.853 to 0.930
Decision Tree	0.854	0.0399	0.805 to 0.894
kNN-D	0.869	0.0382	0.822 to 0.907
ANN-D	0.889	0.0357	0.844 to 0.924

Comparison of Selected Features


- Logistic regression: age, cancer cormobidity, immediate cause by arrhythmias, anticipated by doctor, ambu-bagging before intubation, cause of arrest by sepsis, ECMO, intubation attempt, CPR duration, and any ROSC.
- Machine learning identified eight more factors: arrest location, immediate cause arrhythmias, first monitored rhythm, causes of arrest cardiac diseases, airway before intubation, immediate cause hypotension, massage attempt, and anticipated by family
 AUCs improve when CPR duration is dichotomized by time point of 15 minutes


CPR duration dichotomization

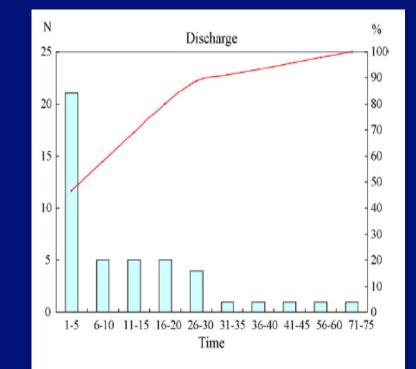

			CPR duration		Total
			$\leq 15 \text{ mins}$	> 15 mins	
Discharge	alive	Count	135	39	174
		% within CPR duration	28.8%	6.7%	16.6%
	death	Count	333	541	874
		% within CPR duration	71.2%	93.3%	83.4%
Total		Count	468	580	1048
		% within CPR duration	100.0%	100.0%	100.0%
Chi-Square Test				P<0.001	

Table 13. Survival to discharge status v.s. CPR duration Crosstabulation

CPR Duration and Outcome From Previous Report

Figure 3 Cumulated number and proportion of survival to discharge as functions of duration of resuscitation.

Shih CL & Lu TC. Resuscitation 2007;72:394-403.

Disposition and Neurologic Outcome in Survivors

_	Disposition							
Frequency Percent Valid Percent Cumulative								
Valid	Home	127	73.0	73.0	73.0			
	Nursing_home	4	2.3	2.3	75.3			
	Other_hospital	6	3.4	3.4	78.7			
	RCW	23	13.2	13.2	92.0			
	Unknown	14	S.O	S .O	100.0			
	Total	174	100.0	100.0				

Neurologic_Outcome

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	2	1.1	1.1	1.1
	2	128	73.6	73.6	74.7
	3	2	1.1	1.1	75.9
	4	2	1.1	1.1	77.0
	Unknown	40	23.0	23.0	100.0
	Total	174	100.0	100.0	

Length of stay (day)	Overall	Survived	Expired	P value
Mean (SD)	16 (33)	35 (39)	10 (28)	-
Median (IQR)	4 (0-20)	24 (13-40)	1 (0-10)	<0.001*

Cerebral Performance Categories Scale

CPC Scale

Note: If patient is anesthetized, paralyzed, or intubated, use "as is" clinical condition to calculate scores.

CPC 1. Good cerebral performance: conscious, alert, able to work, might have mild neurologic or psychologic deficit.

CPC 2. Moderate cerebral disability: conscious, sufficient cerebral function for independent activities of daily life. Able to work in sheltered environment.

CPC 3. Severe cerebral disability: conscious, dependent on others for daily support because of impaired brain function. Ranges from ambulatory state to severe dementia or paralysis.

CPC 4. Coma or vegetative state: any degree of coma without the presence of all brain death criteria. Unawareness, even if appears awake (vegetative state) without interaction with environment; may have spontaneous eye opening and sleep/awake cycles. Cerebral unresponsiveness.

CPC 5. Brain death: apnea, areflexia, EEG silence, etc.

Safar P. Resuscitation after Brain Ischemia, in Grenvik A and Safar P Eds: Brain Failure and Resuscitation, Churchill Livingstone, New York, 1981; 155-184.

Conclusions

Machine learning methods can provide comparable performance as LR in predicting who can survive to hospital discharge following in-hospital resuscitation.

More predictive determinants can be found from different approaches

The optimal CPR duration with cut-off point of 15 minutes can be used as poor prognostic factor to help end-of-life decision making.

Limitations

- Selection bias exists in that we examined only the dataset at one tertiary teaching hospital.
- Feature selection: drawbacks exist both on univariate and entropy methods, especially when correlated and irrelevant features exist.

we deselected those variables that are not present in all samples. There may be solution to this problem if robust missing data handling strategies are to be applied.

