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Local search services allow a user to search for businesses that satisfy a given

geographical constraint. In contrast to traditional web search engines, current

local search services rely heavily on static, structured data. Although this yields

very accurate systems, it also implies a limited coverage, and limited support for

using landmarks and neighborhood names in queries. To overcome these

limitations, we propose to augment the structured information available to a

local search service, based on the vast amount of unstructured and semi-

structured data available on the web. This requires a computational framework

to represent vague natural language information about the nearness of places, as

well as the spatial extent of vague neighborhoods. In this paper, we propose such

a framework based on fuzzy set theory, and show how natural language

information can be translated into this framework. We provide experimental

results that show the effectiveness of the proposed techniques, and demonstrate

that local search based on natural language hints about the location of places

with an unknown address, is feasible.

Keywords: Geographical information retrieval; Web intelligence; Fuzzy set

theory; Local search

1. Introduction

Local search services, such as Google Maps1, Yahoo! local2 and MSN search local3,

allow users to search for a particular business within a certain geographic context. A

user may, for example, be interested in restaurants, hotels, grocery stores, dentists,

etc., which are located close to some user-specified address. Currently, such queries

are evaluated against a fixed list of businesses. This allows local search services to

display a high degree of accuracy, and to interact with users through a very

convenient interface: query results are presented in an intuitive way, including maps

that show the locations of the retrieved businesses, driving directions, user reviews,
etc. Hence, it should come as no surprise that local search services have become

increasingly popular.

However, local search services work in a way that is very different from

traditional search engines, which use crawlers that continuously search the web for

new information. The sole use of a static, structured knowledge base gives rise to a

*Corresponding author. Email: Steven.Schockaert@UGent.be
1 http://local.google.com/
2 http://local.yahoo.com
3 http://search.msn.com/local/
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number of important limitations. First of all, it restricts the coverage of the system,

as many businesses will not be contained in the knowledge base, even if there are

websites that contain useful information about their location. Moreover, it limits the

information covered to the kind traditionally contained in the well-known yellow

pages, while it is exactly the inclusion of more dynamic, ephemeral information that

would bring local search services to their full potential (Himmelstein 2005).

Consider, for example, a system that would also be able to deal with queries such as

give me information about concerts in Seattle during the next few weeks, which also

involves a temporal constraint.

A second limitation is related to the use of landmarks in queries. Rather than

asking for restaurants near 219 4th Ave N, Seattle, a user might want to know about

restaurants near Space Needle. Although the locations of important landmarks are

generally available in gazetteers, many place names are not supported in current

systems, e.g. because the gazetteers used do not contain any information about the

place, or because the place is known by different names, not all of which are

contained in the gazetteers. A related problem is the support for neighborhood

names. As the boundaries of neighborhoods are usually vague, gazetteers tend to

contain either no information at all about neighborhoods, or only a centroid, i.e. a

location considered to be the center of the neighborhood. Consequently, local search

services provide no, or very limited, support for queries such as restaurants in

Seattle’s Belltown neighborhood.

A promising solution to the aforementioned problems is to augment the available

structured information with information extracted from the web. On one hand, this

could be information extracted from semi-structured data. Many lists of hotels,

restaurants, attractions, etc. are available on the web. Usually, it is quite easy to

extract from such lists the relevant names and corresponding addresses, either by

writing a wrapper manually, or by using automated wrapper induction techniques

(Eikvil 1999, Kushmerick 2000). However, most information on the web is still in

unstructured form, i.e. free natural language text. Because it may be very hard to

find the address of a particular business or landmark in (unstructured) web pages,

we can sometimes only rely on hints in natural language sentences about their

location. We may know, for example, that some hotel is located in Belltown, within

walking distance from Pike Place Market, and a few blocks away from Space

Needle. While we cannot derive the exact location of the hotel from this, we may be

able to approximate its location accurately enough to estimate the relevance w.r.t. a

given query. To obtain such an approximation, we need a computational framework

in which the spatial extent of a neighborhood like Belltown, and nearness

information such as within walking distance from x, and a few blocks away from y,

can be represented.

The aim of this paper is to show that local search using natural language hints

about the location of places, is feasible. In particular, we show how nearness

information in natural language, and information about the surrounding neighbor-

hood of a place, can be translated into fuzzy restrictions, and how such fuzzy

restrictions can be used to estimate the location of a place with an unknown address.

In the next section, we present an overview of existing work related to the

interpretation of nearness and the automatic construction of footprints. Section 3

deals with the construction of a knowledge base containing relevant geographical

information, which will be used for experiments throughout the paper. Next, in

Section 4, we show how nearness information in natural language can be translated

316 S. Schockaert et al.
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into fuzzy restrictions, and how fuzzy footprints describing the (vague) spatial extent

of city neighborhoods can be obtained. In Section 5, we will apply the techniques

from Section 4 to estimate the location of a place. Section 6 discusses a number of

experiments in which the effectiveness of the proposed techniques is demonstrated.

Finally, in Section 7 some conclusions and directions for future work are presented.

2. Related work

The importance of a thorough understanding of the meaning of nearness has long

been realized. Early work has mainly focused on cognitive aspects of nearness

(Lundberg and Eckman 1973, Sadalla et al. 1980), showing, among others, that

nearness is context-dependent and that cognitive distortions can occur because of

the existence of landmarks. More recently, several computational models for

nearness have been suggested, to some extent based on results from cognitive

geography. For example, Worboys (2001) discusses three possible approaches to

represent nearness: a three-valued approach, a four-valued approach, and a fuzzy

approach. In the three-valued approach, the nearness of two places can either be

true, false, or undecided. By analyzing the results of a questionnaire, the authors

conclude that nearness is neither symmetric nor transitive, although some weakened

asymmetry and transitivity properties seem to hold. An analysis based on a four-

valued logic aims at finding out whether situations in which the nearness of two

places is undecided result from too much information (e.g. a is both near and not

near to b; truth glut hypothesis) or too little (e.g. a is neither near b nor not near b;

truth gap hypothesis). The results from the questionnaire provide some evidence

towards the truth gap hypothesis. Finally, the fuzzy approach allows differentiating

between degrees of nearness. The degree of nearness of two places is based on the

percentage of the participants that considered these places to be near.

Most other computational models of nearness are based on a fuzzy approach as

well, but use a membership function that defines how the (e.g. Euclidean) distance of

two places is related to the degree of nearness (Dutta 1991, Gahegan 1995, Guesgen

and Albrecht 2000). Usually, this membership function is given as such, providing

very little justification. For example, the degree of nearness of two places is either

defined as the reciprocal of their Euclidean distance or assumed to be known in

advance, i.e. a complete enumeration of the nearness of every pair of places is

specified (Guesgen and Albrecht 2000). Also scale factors are taken into account

(Gahegan 1995). Other context dependencies are discussed, but not implemented

into the model; in particular, the attractiveness of objects (e.g. 1 km from a shop

may be far, but 1 km from a toxic waste dump very near) and reachability. The task

of finding the fuzzy restrictions on the possible positions of a set of objects, induced

by an initial set of fuzzy restrictions, is discussed (Dutta 1991). The reasoning

scheme proposed is based on the compositional rule of inference, a well-known

technique from fuzzy logic. Robinson (2000) deals with the construction of fuzzy

sets for concepts such as near and far, by asking a user a series of questions of the

form Do you consider x to be far from y, which have to be answered by either yes or

no (x and y are cities, and users are given a map to answer the questions). The goal is

to allow for flexible querying in geographical information systems (GIS), by using

membership definitions of vague nearness relations that correspond to the

interpretation of these concepts by the user.

As most authors have been focusing on GIS systems, which are based on

structured information, existing work generally deals with the concept of nearness as

Location approximation for local search services 317
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such. To our knowledge, the automatic construction of a computational

representation for natural language nearness relations such as within walking

distance, has not yet been addressed. However, Yao and Thill (2005) addresses the

inverse problem of predicting which natural language nearness relation is most

appropriate (e.g. very near, near, normal, etc.), given the exact distance and context

variables. The context variables allow the statistical model to deal with factors such

as scale, the type of activity, etc. While the results seem promising, the proposed

technique can only be applied to this inverse problem, and not to find the (fuzzy)

range of possible distances, given a natural language nearness relation.

Despite the wide interest in the concept of nearness, its application in

geographical information retrieval has, until now, been rather limited. Techniques

to extract the names of cognitively significant landmarks from the web are

introduced in Tezuka and Tanaka (2005). One advantage of the suggested

techniques is that they allow determining the significance of a landmark in a

quantitative way. Alternatively, a data mining technique for finding significant place

names is proposed (Duckham and Worboys 2001), also with the aim of bridging the

gap between computational and cognitive approaches to nearness. It is proposed to

limit the range of places near a certain landmark, based on the popularity of the

landmark (Tezuka et al. 2001). In particular, the paper claims that the more popular

a particular landmark is, the larger the area considered to be near that landmark will

be. The use of nearness relations in natural language to improve geographical

information retrieval was also addressed in Delboni et al. (2007). The aim of their

work is to improve the geographical awareness of traditional search engines, by

using information about landmarks and nearness relations for query expansion. The

working hypothesis is that nearness relations such as near, close, in front of, etc., all

have a similar meaning. Hence, a user interested in hotels near Space Needle is also

interested in hotels close to Space Needle. Using this technique, they show a

significant improvement in terms of precision and recall of geographically relevant

web pages, compared to traditional search engines (Google was used in their

experiments). The main advantages of their approach are that no gazetteers are

needed, and that the proposed query expansion strategy can be applied to any

traditional keyword-based search engine with minimal effort.

Another line of research relevant to our work is the automated construction of

fuzzy footprints, i.e. representations of the spatial extent of vague regions or

neighborhoods. The need to deal with fuzzy footprints when representing certain

regions has been pointed by various authors (Goodchild et al. 1998, Hill et al. 1999,

Harada and Sadahiro, 2005, Schockaert et al. 2005). Although the focus is generally

on large-scale regions such as Western Europe, or the Alpes, the same

considerations apply to city neighborhoods. An experiment is discussed in which

users were asked to show on a map what they understood as downtown Santa

Barbara (Montello et al. 2003). Based on the results of this experiment, the authors

suggest that it would be feasible to construct fuzzy footprints through interaction

with the users of a system. Several automatic methods to construct representations

of vague regions have already been proposed. For example, techniques to find a

crisp boundary for vague regions were proposed by Reinbacher et al. (2005), while

Harada and Sadahiro (2005) presented a statistical solution to the problem. We

proposed an approach based on fuzzy set theory (Schockaert et al. 2005), using

natural language constraints found in web documents such as x is located in the

north of R.

318 S. Schockaert et al.
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3. Obtaining data

As our focus is not on the extraction of spatial knowledge from the web, we have

primarily used data extracted from semi-structured documents to construct a

knowledge base of spatial information. One example is Hotel-Rates.com4, which

contains a list of hotels for most reasonably large cities in the world. We extracted

the information in these lists by manually defining rules based on the structure of the

corresponding html-documents, a technique known as screen scraping. Although

this technique is very useful for the kind of experiments described in this paper, more

advanced techniques would be required to implement a fully fledged local search

service. One possibility is to use automated wrapper induction techniques, which try

to discover the rules that would be used for screen scraping automatically [see

(Eikvil 1999) for an overview].

Furthermore, for each hotel in the lists, a pointer to a document about the hotel is

provided. These documents contain a natural language description of the hotel, as

well as semi-structured information about the surrounding neighborhood and

nearby attractions. To analyze the natural language description, we first parsed all

relevant sentences using the Stanford Parser5. Then we extracted spatial relations

using patterns such as

located within walking distance of <NP>

located in the heart of <NP>

For example, in a sentence such as the hotel is located within walking distance of the

University of Washington campus, and …, the parser would correctly identify the

University of Washington campus as a noun phrase (NP). Because this sentence

therefore matches the pattern, we assume that the nearness relation within walking

distance holds between the hotel described on the web page, and the University of

Washington campus. We used a large set of patterns, covering 20 named nearness

relations (e.g. across the street, in the heart of, etc.), as well as phrases expressing a

number of kilometers, miles, blocks, meters, and yards. From the semi-structured

information, additional nearness relations are extracted, as well as the surrounding

neighborhood (when available). On average, this process resulted in 11.27 natural

language hints per hotel. In a similar way, we have extracted spatial information

from channels.nl6 and from openlist7. From openlist, we also extracted lists of

restaurants and lists of touristic attractions, as well as some useful nearness relations

available in semi-structured form. In particular, for most hotels, a list of nearby

restaurants and attractions is provided, as well as a number of alternative (close)

hotels that could be considered. Furthermore, openlist also contains lists of places

located in a particular neighborhood of the city. We used these lists to add

information about the surrounding neighborhood of places to our knowledge base.

In total we extracted information about 56 US cities. The process outlined above

gave us a list of over 60,000 place names (7,819 hotels, 47,152 restaurants, and 8,504

touristic attractions) with corresponding addresses, as well as spatial relations

between some of the hotels and some of the attractions and restaurants. We used the

4 http://www.hotel-rates.com/
5 http://nlp.stanford.edu/downloads/lex-parser.shtml
6 http://www.channels.nl/
7 http://www.openlist.com/
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geocoding service of the Google Maps API8 to translate the addresses to

geographical coordinates.

To represent the spatial extent of neighborhoods, we need a list of places assumed

to lie in each neighborhood of interest. Apart from the information that is already in

our knowledge base, we use information coming from two sources for this: Yahoo!

local, and restaurants.com9. To extract relevant places from Yahoo! local, we

submit a query with the name of the neighborhood as a keyword, and the name of

the city as the geographical restriction. From the list of places returned, we keep the

places whose name contains the name of the neighborhood (e.g. Belltown pizza is

probably located in Belltown), as well as places from whose description we can find

out that they are located in the neighborhood, using a pattern-based approach. The

information on restaurants.com is semi-structured; we use screen scraping to extract

the names and addresses of restaurants located in a particular neighborhood, as well

as a list of neighborhood names for the city under consideration.

4. Representing vague geographical information

4.1 Fuzzy restrictions

A lot of useful geographical information in natural language takes the form of

vague assertions about the nearness of two places. A question which naturally

arises from this is: what can we say about the possible locations of an unknown

place x, knowing only the location of a and the fact that a is, e.g. at walking

distance from x? Our knowledge about the location of x is clearly vague, i.e. there

exists a set of locations that are definitely compatible with this knowledge, there

exists a set of locations that are definitely not compatible, and there exists a third

set, consisting of borderline cases, which are neither fully compatible, nor fully

incompatible.

We will use fuzzy sets and fuzzy relations to represent the vague geographical

knowledge at our disposal. A fuzzy set in a universe X is formally defined as a

mapping A from X to the unit interval [0, 1] (Zadeh 1965). For x in X, A(x) is

called the membership degree of x in A, and reflects the extent to which x has the

(vague) property that A is modeling. A fuzzy set in the universe X6Y is also

called a fuzzy relation from X to Y; a fuzzy relation from X to X is also called a

fuzzy relation in X. Fuzzy relations are particularly useful to represent nearness

relations.

Let a, b, c, d be non-negative real numbers such that a(b(c(d. The fuzzy

relation R(a,b,c,d) in the universe of locations is defined for locations x and y as

R a, b, c, dð Þ x, yð Þ~

d x, yð Þ{a

b{a
if a < d x, yð Þ < b

1 if bƒd x, yð Þƒc

d{d x, yð Þ
d{c

if c < d x, yð Þ < d

0 otherwise

8
>>>>>>>>><

>>>>>>>>>:

ð1Þ

8 http://www.google.com/apis/maps/
9 http://www.restaurants.com
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where d is the straight-line distance10. By representing a natural language nearness

relation such as within walking distance as a fuzzy relation R(a,b,c,d), we specify a

fuzzy lower bound and fuzzy upper bound on the possible distances between places

said to be within walking distance from each other. This is illustrated in figure 1a. If

only an upper bound is required, we can choose a5b50, as shown in figure 1b.

Figure 1c and d illustrate that also crisp restrictions, such as between 2 and 4 km and

exactly 1.5 km, can be represented within this framework.

The use of trapezoidally shaped fuzzy sets to define nearness relations, in the

context of this paper, offers many advantages. First of all, processing trapezoidally

shaped fuzzy sets is computationally much more efficient than processing arbitrary

fuzzy sets or relations. For example, sometimes we know that a place a is close to a

place b, which is within walking distance from a place c. To derive useful information

about the nearness of a and c from this, we need to compose a fuzzy relation

representing close to with a fuzzy relation representing within walking distance. If

trapezoidally shaped fuzzy sets are used, efficient characterizations of such

compositions can be used (Schockaert et al. 2006). Furthermore, trapezoidally

shaped fuzzy sets are defined using only four parameters, which have an intuitive

meaning. Finally, the use of fuzzy sets with a relatively simple shape is important for

the robustness of the approach. Since we use the web to obtain input data, we usually

have a large amount of data available to construct an appropriate representation of a

particular nearness relation. However, using the web also implies that individual

samples of our input data may not be very reliable. Using trapezoidally shaped fuzzy

sets allows us to sufficiently abstract away from individual input samples.

Figure 1. Nearness relation is represented as a fuzzy restriction on the distance between
the two places x and y it applies to. (a) Fuzzy distance restriction; (b) Fuzzy upper bound;
(c) Crisp distance restriction; (d) Exact distance.

10 One can think of this straight-line distance as the Euclidean distance. However, in practice usually the circle distance

(i.e., the length of the shortest path between two points on the surface of a sphere) would be used instead, since

locations are typically expressed as longitude and latitude coordinates.

Location approximation for local search services 321
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This stands in contrast to approaches (such as Robinson 2000), in which

interpretations of nearness relations are constructed by directly asking questions to

human users. In such approaches, relatively little data are usually available, which
is, however, very reliable. Therefore, it may be useful to use fuzzy sets with a more

complex shape, which fit the actual input data more accurately, and to use prior

knowledge about the human users to make decisions in the case of inconsistencies

between different users.

4.2 Representing named nearness relations

A lot of information about the nearness of places is expressed in texts using named

natural language relations such as within walking distance. To represent such

information within the framework outlined above, we need to find appropriate

values of the parameters a, b, c, and d, for each frequently occurring named nearness

relation. To find these values, we start with a set S5{(p1, q1), (p2, q2), …, (pn, qn)} of

pairs of places said to be within walking distance of each other, and for which we
know the exact distance. In particular, let di be the (straight-line) distance between pi

and qi. Without loss of generality, we can assume that d1(d2(…(dn. Figure 2

shows how often the distance between places from our knowledge base said to be

within walking distance of each other is between 0 and 1 km, between 1 and 2 km,

etc. As can be seen from this figure, the set S contains outliers, e.g. places that are

more than 10 km away from each other, but are still said to be within walking

distance. This can, for example, be due to errors in the phase of extracting

information from web pages, the use of ambiguous place names, or incorrect
geocoding of the corresponding addresses. To define the interpretation of

within walking distance, we have to specify an interval [b, c] of distances that are

fully compatible, as well as values for b–a and d–c which specify the degree of

vagueness of the lower and upper bound, i.e. how flexible these bounds should be.

Because of the existence of outliers, we cannot choose [b, c]5[d1, dn]. Rather,

we choose 4 representative distances dn1
, dn2

, dn3
, dn4

, where 1(n1,n2,n3,n4(n

(with n>4). The idea is that the distances in d1, d2, . . . , dn1{1f g and in

dn4z1, dn4z2, . . . , dnf g might be outliers. Furthermore, we assume that dn2
{dn1

Figure 2. Frequency of distances between places said to be within walking distance of each
other.

322 S. Schockaert et al.
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(resp. dn4
{dn3

) gives a good indication of the vagueness of the lower (resp. upper)

bound. We define the parameters a, b, c, and d, i.e. the interpretation of within

walking distance as

a~dn1
{a1 dn2

{dn1
ð Þ ð2Þ

b~dn1
{a2 dn2

{dn1
ð Þ ð3Þ

c~dn4
za3 dn4

{dn3
ð Þ ð4Þ

d~dn4
za4 dn4

{dn3
ð Þ ð5Þ

where a1>a2>0 and a4>a3>0. Large values of the parameters ai correspond to a

tolerant interpretation of the nearness relation, while small values of ai correspond

to a strict interpretation. For example, choosing a25a350 means that only the

distances in dn1
, dn4

½ � are considered to be fully compatible with the nearness relation

under consideration. Such an interpretation would probably be too strict for many

applications. On the other hand, if these parameter values would be chosen too

large, the resulting fuzzy relations would be too tolerant, and would therefore

convey too little information. Optimal values of a1, a2, a3, and a4 depend on the kind

of data used. We used a25a351 and a15a453, as initial experiments revealed that

these values provided an appropriate trade-off between flexibility and informativity

for the kind of data discussed in this paper. Also the optimal value of the parameters

n1, n2, n3, n4 might depend on the kind of data that is used; we used

n1~
n
5

, n2~
2n
5

, n3~
3n
5

and n4~
4n
5

(assuming n is a multiple of 5, for simplicity).

This choice of parameters leads to the interpretations in table 1. For example,

knowing that x is within walking distance of y, all distances between 54 m and

2.55 km are equally possible candidates for the straight-line distance. Moreover, all

distances between 0 and 4.094 km are all possible to some extent. Note that when

a(0 and b(0, no lower bound on the possible distances is imposed. As could be

expected, nearness relations such as near and close convey less information than

within walking distance or across the street. However, the upper bound of adjacent

is somewhat surprising, as one could expect that the meaning of adjacent would be

quite similar to the meaning of across the street. A closer look at the data reveals

that adjacent is often used w.r.t. places whose spatial extent is not negligible (e.g.

parks or famous streets). However, like in most gazetteers, we have represented the

location of, for example, a park, as a point, and used the distance to this point rather

than to the boundary of the park. Solutions to this problem are far from obvious,

since the boundaries of parks are usually not available, and automated methods to

extract footprints from the web are not suitable for places such as parks.

Nearness relations cannot only be found in texts, we can also extract information

about nearness from semi-structured information sources. In particular, from

openlist we extracted for each hotel a list of nearby attractions and restaurants, and

a list of alternative hotels that could be considered. We treated this information in

the same way as natural language nearness relations; the results are also shown in

table 1. Although these relations are clearly much more general than, for example,

within walking distance, they can still be very useful, as we have a very high number

of such relations at our disposal.

In the previous discussion, we have neglected the fact that the meaning of

nearness relations can be dependent on the context in which they are used. Mostly

this is justified because all relations actually occur in more or less the same context.

Location approximation for local search services 323
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Table 1. Interpretations for some frequently occurring named nearness relations (distances in km)

Nearness
relation Frequency dn1

dn2
dn3

dn4
a b c d

Within walking distance 114 0.380 0.706 1.005 1.777 20.598 0.054 2.550 4.094
Across the street 36 0.092 0.215 0.296 0.540 20.277 20.031 0.784 1.273
Near 39 0.456 1.205 2.077 9.210 21.789 20.292 16.342 30.607
Close 24 0.871 2.445 3.578 9.546 23.849 20.702 15.513 27.448
Adjacent 52 0.183 0.325 0.796 3.687 20.244 0.040 6.579 12.361

Nearby (openlist.com) 12,419 0.966 1.660 2.441 3.369 21.115 0.272 4.297 6.153
Alternates (openlist.com) 4151 1.133 2.735 5.745 11.595 23.674 20.469 17.444 29.143
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For example, scale factors should not be taken into account because the scale is

always similar, i.e. that of a large US city. Another issue is the asymmetry of

nearness relations. For example, if we would extract a list of nearby hotels from the

web page of a famous touristic attraction, we would have to interpret this in a

different way than if we would extract a list of nearby attractions from the web page

of a hotel. Again, this is not a problem when using the relations from our knowledge

base, since they always express nearness from the point of view of the hotel. One

factor that may be relevant, however, is the influence of the popularity of touristic

attractions. As pointed out by Tezuka and Tanaka (2005), the interpretation of

near a famous place may be less specific than near a rather unknown place, because,

for example, hotel owners want to suggest that their hotel is close to famous places.

To assess whether this claim holds for the kind of information in our knowledge

base, we refined the interpretations from table 1 to those in table 2. The idea is that

we calculate two sets of parameters for each nearness relation: one using only

popular places, and the other using only unpopular places, where a place is defined

as popular if it occurs at least 5 times as the object of a nearness relation in our

knowledge base. Table 2 clearly shows that within walking distance, across the street,

and the alternatives given by openlist.com, are in accordance with this claim by

Tezuka and Tanaka (2005). However, the other relations display the exact opposite

behavior, i.e. the interpretation of nearness seems to be narrower for popular places.

One possible explanation for this could be that famous places tend to be in the city

center, where hotels, restaurants, and touristic attractions are more close to each

other than in the outskirts. In some experiments, we will use these refined

interpretations, except for close, because there are too few occurrences of this

relation in our knowledge base to find reliable parameters.

4.3 Representing quantified nearness relations

While there is already an abundance of nearness information on web pages that uses

named relations, there may be even more information that expresses nearness in

terms of a specific number of kilometers, miles, blocks, etc. Although a statement

such as the hotel is located at 3 kilometers from Space Needle might seem to convey

an exact distance at first glance, the intended distance restriction is vague. First of

all, at 3 km should probably be understood as at approximately 3 km, since

overspecific information, such as at 3.124 km, is generally avoided in texts. Next, it

may happen that the writer of this information does not know the exact distance,

and simply writes 3 km as an approximation of the real distance. Finally, it is not

clear whether the 3 km restriction applies to the straight-line distance, or to the

actual traveling distance. This is further complicated by the fact that we have no

information about the actual traveling distance. Even using a route planner would

not solve all problems, since, for example, the walking distance may differ from the

traveling distance by car (e.g. due to one way streets).

Rather, we will rely on the assumption that the actual traveling distance differs

from the straight-line distance by at most a factor
ffiffiffi
2
p

. To justify this, consider a city

block street layout as in figure 3a. The length of the shortest path from place a to

place b is
ffiffiffi
2
p

d a, bð Þ km, where d(a, b) is the straight-line distance in kilometers. The

situation in figure 3a reflects the worst possible street layout (i.e. the street layout

that results in the longest distance) which still has the property that there is a path

for which the distance to b is decreased in every step. Especially when the straight-

line distance between a and b is very small, a situation like in figure 3b can occur,
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Table 2. Refined interpretations for some frequently occurring named nearness relations (distances in km). Popular places are defined as places that occur at
least 5 times as the object of a nearness relation in our knowledge base.

Nearness relation Frequency dn1
dn2

dn3
dn4

a0 b0 c0 d0

Within walking distance not popular 27 0.271 0.350 0.732 1.439 0.034 0.192 2.145 3.558
popular 87 0.507 0.816 1.025 1.777 20.421 0.198 2.529 4.034

Across the street not popular 11 0.084 0.151 0.288 0.361 20.119 0.016 0.433 0.578
popular 25 0.176 0.225 0.303 0.569 0.030 0.128 0.835 1.366

Near not popular 15 0.731 1.694 2.325 12.276 22.155 20.230 22.226 42.128
popular 24 0.375 0.877 2.004 7.867 21.132 20.127 13.730 25.457

Close not popular 4 0 0.175 3.579 11.202 20.175 20.525 18.825 34.071
popular 20 1.419 3.317 3.950 9.546 24.275 20.479 15.142 26.334

Adjacent not popular 20 0.103 0.442 0.796 9.396 20.913 20.235 17.996 35.196
popular 32 0.189 0.282 0.989 3.687 20.089 0.097 6.385 11.781

Nearby (openlist.com) not popular 554 1.885 2.850 3.714 4.627 21.010 0.920 5.541 7.369
popular 11865 0.942 1.618 2.389 3.271 21.083 0.268 4.154 5.920

Alternates (openlist.com) not popular 481 0.543 1.342 3.190 6.760 21.854 20.256 10.330 17.481
popular 3670 1.252 2.973 6.287 12.248 23.912 20.470 18.209 30.131

3
2

6
S

.
S

ch
o

ck
a

ert
et

a
l.



D
ow

nl
oa

de
d 

B
y:

 [S
ch

oc
ka

er
t, 

S
.] 

A
t: 

17
:4

3 
18

 M
ar

ch
 2

00
8 

where all paths to b pass at some point c where the straight-line distance to b is

greater than from a. To cope with this, we will treat small distances in a different

way, as is explained below.

To find appropriate values of the parameters a, b, c, and d for a nearness relation

such as 3 km from we assume that a53a0, b53b0, c53c0, d53d0, where the

parameters a0, b0, c0, and d0 are the same for all nearness relations of the form r km

from (r g ]0, + ‘[). To determine the values of a0, b0, c0, and d0, we proceed as in

Section 4.2, using the distances d1, d2, …, dn obtained by dividing the straight-line

distance of every two places said to be at r km from each other, by r. In other words,

rather than modeling r km from, we model 1 km from, and multiply the parameters

obtained by r. The resulting parameters, modeling in fact 1 km from, 1 mile from,

and 1 block from, are shown in table 3. Note that the ranges of possible distances

entail those that could be expected from the argument above, i.e. 1ffiffi
2
p , 1
h i

~ 0:707, 1½ �
for kilometer, and 1:6093ffiffi

2
p , 1:6093

h i
~ 1:138, 1:6093½ � for mile. Also, the ranges are

quite vague, resulting from the fact that the distances mentioned in texts are often

approximations and the fact that, for example, hotel owners are not always fully

honest about the true location of their hotel. Furthermore, note that the range of

possible distances for 1 block from is vaguer than those for 1 km from or 1 mile from.

This is due to the fact that a block is an inherently vague unit, unlike a kilometer or

a mile.

Another reason for the deviation from the ranges [0.707, 1] and [1.138, 1.6093] are

the simplifications we made w.r.t. reachability, i.e. the difference between the

straight-line distance and the actual traveling distance. As argued above, we can

Figure 3. We assume that the actual travelling distance from a to b differs from the straight-
line distance d(a, b) by at most a factor

ffiffiffi
2
p

.

Table 3. Interpretations for some frequently occurring quantified nearness relations
(distances in km, r g ]0, + ‘[, k g N\{0}).

Nearness
relation Frequency dn1

dn2
dn3

dn4
a0 b0 c0 d0

r kilometer(s) 785 0.647 0.816 0.967 1.202 0.138 0.477 1.437 1.908
r mile(s) 3,063 1.003 1.248 1.478 1.806 0.270 0.759 2.135 2.792
k block(s) 672 0.102 0.142 0.224 0.811 20.020 0.061 1.397 2.571
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expect this to be particularly true for small distances. Our proposed solution is to

use different sets of parameters for small distances. The results of this are shown in

table 4, which confirm our idea that small distances behave in a different way. For
example, all distances in the range [0.15, 1.45] are fully compatible with the nearness

relation 0.1 km from, while the distances in [0.70, 2.79] and [4.84, 11.67] are fully

compatible with the nearness relations 1 km from and 10 km from respectively.

4.4 Representing neighborhoods

Semi-structured and unstructured information usually contains a lot of information

about the neighborhood in which a particular place is located. Like information

about the nearness to other places, information about the surrounding neighbor-

hood of a place could be very useful to find an approximation of its location.

However, this requires a representation of the spatial extent, i.e. a footprint, of city

neighborhoods. As the boundaries of such neighborhoods are typically vague,
gazetteers either contain no information at all about neighborhoods, or provide only

a centroid (i.e. the coordinates of a single place considered to be the center of the

neighborhood). To be able to use neighborhood information, we will therefore try to

find information about the boundaries of neighborhoods automatically.

Recall from Section 3 that our knowledge base contains, for each neighborhood

of interest, a set L5{l1, l2, …, lm} of places assumed to lie in the neighborhood. We

will use this information to construct a fuzzy footprint, i.e. a fuzzy set F in the

universe of locations, such that F(x) expresses the degree to which a location x is

contained in the neighborhood. Let l* be the medoid of the set L, i.e. the place of L

for which the sum of the distances to the other places is minimal

l�~ argmin
l1 [L

X

l2 [L\ l1f g
d l1, l2ð Þ ð6Þ

Without loss of generality, we can assume that d(l*, l1)(d(l*, l2)(…(d(l*, lm). Our

main idea to find a fuzzy footprint is very similar to the way we constructed the

interpretations for the nearness relations. In particular, we assume that at most 40%

of the locations in L are noisy (i.e. incorrectly classified as lying in the

neighborhood), and that the difference d l�, l3m
5

� �
{d l�, l2m

5

� �
gives a good indication

of the vagueness of the boundaries of the neighborhood (where we assume that m is

a multiple of 5, for simplicity). For locations l in L, we define F as

F lð Þ~

1 if d l�, lð Þƒl

0 if d l�, lð Þ§r

r{d l�, lð Þ
r{l

otherwise

8
>>>><

>>>>:

ð7Þ

where

l~d l�, l3m
5

� �
ð8Þ

r~d l�, l3m
5

� �
z4 d l�, l3m

5

� �
{d l�, l2m

5

� �� �
ð9Þ

Note that (at least) 60% of the locations in L is assumed to lie in the neighborhood

to degree 1. The definition of F for locations l that are not contained in L is based on

328 S. Schockaert et al.
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Table 4. Refined interpretations for some frequently occurring quantified nearness relations (distances in km).

Nearness relation Frequency dn1
dn2

dn3
dn4

a0 b0 c0 d0

r kilometer(s) r g ]0, 0.5] 26 2.133 2.740 4.730 9.614 0.314 1.527 14.498 24.268
r g ]0.5, 1] 54 0.888 1.075 1.390 2.089 0.326 0.701 2.789 4.189
r g ]1, 5] 269 0.619 0.784 0.987 1.220 0.124 0.454 1.453 1.919
r g ]5, + ‘[ 436 0.637 0.790 0.920 1.043 0.177 0.484 1.167 1.412

r mile(s) r g ]0, 0.5] 260 1.470 1.864 2.862 6.463 0.288 1.076 10.063 17.265
r g ]0.5, 1] 476 1.076 1.378 1.647 2.091 0.169 0.773 2.535 3.423
r g ]1, 5] 1030 1.006 1.213 1.470 1.782 0.384 0.798 2.094 2.717
r g ]5, + ‘[ 1297 0.896 1.177 1.361 1.560 0.054 0.615 1.760 2.158

k block(s) k51 97 0.171 0.299 1.019 5.100 20.212 0.043 9.181 17.343
k52 113 0.128 0.210 0.306 1.745 20.118 0.046 3.184 6.063
k53 95 0.112 0.153 0.230 1.532 20.010 0.071 2.836 5.441
k.3 367 0.092 0.117 0.164 0.328 0.015 0.066 0.492 0.820
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the convex hull of particular subsets of L. For k g ]0, 1], we define the set Mk of

locations as the convex hull of the locations l of L for which F(l)>k. Finally, for an

arbitrary location l (i.e. l not necessarily in L), we define F as

F lð Þ~sup k k[�0, 1�j and l[Mkf g ð10Þ

For example, assume that L5{l1,l2,l3,l4,l5,l6}, l15l*, and that F(l1)5F(l2)5F(l3)51,

F(l4)50.9, F(l5)50.8, and F(l6)50.7. The resulting definitions of the sets M1, M0.8,

and M0.7 are shown in figure 4. For any location l, F(l)51 provided l g M1, while

F(l)50.9 iff l g M0.9\M1, F(l)50.8 iff l g M0.8\M0.9, F(l)50.7 iff l g M0.7\M0.8, and

F(l)50 otherwise.

Schockaert et al. (2005) propose a number of techniques to refine the fuzzy

footprint of a large-scale region R are proposed, based on natural language

information such as x is located in the north of R. We did not apply these techniques

here because this kind of natural language information is less abundant for

neighborhoods than it is for large-scale regions, and because the number of

places available for each neighborhood (i.e. the cardinality of L) is sufficiently high

to allow for simpler techniques.

5. Location approximation

In Section 4, we explained how natural language hints such as x is located within

walking distance from a, and x is located in N could be interpreted. If a is a place with

a known location, and N a neighborhood with a known fuzzy footprint, these hints

can be translated to fuzzy sets, defining which places are compatible with them, and

to what extent. In this section, we will show how the location of x can be estimated,

using only natural language hints that relate x to places with a known location or

fuzzy footprint.

Because we cannot assume that all information about x is consistent, we will first

identify the locations that are consistent with as much of our information as

possible. Let A1, A2, …, An be the fuzzy sets of locations obtained by interpreting all

natural language hints about the location of x. For information about the

surrounding neighborhood such as x is located in N, this is the fuzzy footprint of the

region N defined in Section 4.4. For nearness information such as x is located within

walking distance from a, this is the fuzzy set Ai defined for all locations l by

Ai(l )5R(a,b,c,d)(l, a), where the parameters (a, b, c, d) are those that correspond to

our interpretation of within walking distance. We define the score of a location l as

score lð Þ~
Xn

i~1

Ai lð Þ ð11Þ

Figure 4. Definition of the sets (a) M1, (b) M0.8 and (c) M0.7

330 S. Schockaert et al.



D
ow

nl
oa

de
d 

B
y:

 [S
ch

oc
ka

er
t, 

S
.] 

A
t: 

17
:4

3 
18

 M
ar

ch
 2

00
8 

This score reflects how compatible the location is with the available knowledge.

Note how the use of fuzzy sets provides the flexibility needed when combining

different constraints. Assume for example that there are only two fuzzy sets A1 and

A2. If there exist locations l such that A1(l )51 and A2(l )51, we will prefer such

locations. In this case our information about x is maximally consistent. When such
locations do not exist, we will prefer locations that maximize A1(l ) + A2(l ). Using

crisp sets, we would either not have found any location that is consistent with both

A1 and A2 in the second case (i.e. all locations in the crisp sets A1 and A2 would have

a maximal score), or not have been able to differentiate between optimal and sub-

optimal locations in the first case.

Let S be the set of locations l whose score is maximal (i.e. such that there are no

locations with a higher score). This set of locations identifies a region in the real

plane, which is usually not convex, and may consist of several disconnected pieces.
As the estimation l0 of the location of x, we will choose a central location from the

set S. In particular, we consider a set of, e.g. 100 points that are uniformly chosen in

the region identified by S. We define l0 as the medoid of this set, as defined in

equation (9).

In the following, we will use four different techniques to estimate the location of a

place, three based on the procedure outlined above, and one baseline:

(i) fuzzy-1: we use the aforementioned procedure, where neither named nearness

relations nor quantified nearness relations are interpreted using the refined

interpretations, i.e. nearness relations are interpreted like in tables 1 and 3;

(ii) fuzzy-2: same as fuzzy-1, but the refined interpretations are used for

quantified nearness relations, i.e. nearness relations are interpreted like in

tables 1 and 4;

(iii) fuzzy-3: same as fuzzy-2, but the refined interpretations are also used for
named nearness relations, i.e. nearness relations are interpreted like in

tables 2 and 4.

As a baseline technique, we estimate the location of x without interpreting the
nearness relations, and without using fuzzy footprints for neighborhoods. The idea

is that every natural language hint is mapped to a single location. Information such

as x is located within walking distance of y is mapped to the location of y, and

information such as x is located in R is mapped to a central location of the region R.

Let Y5{y1, y2, …, yn} be the set of locations obtained in this way. As an estimation

of the location of x, the baseline system will choose the center of gravity l0 of Y, i.e.

l0~
1

n

X

y [Y

y ð12Þ

where locations are assumed to be represented as vectors of coordinates. The

purpose of using this baseline system is to evaluate how much the performance of

the systems fuzzy-1, fuzzy-2, and fuzzy-3 is affected by the actual interpretation of

the nearness relations and the representation of neighborhoods.

6. Experimental results

6.1 Location approximation

As a first evaluation of the four systems, we tried to estimate the location of hotels

and touristic attractions in a number of cities, using natural language hints and the
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locations of the other places. In other words, to estimate the location of a hotel or an

attraction, we assume that the locations of all other hotels and attractions, as well as

the restaurants in our knowledge base, are known. To obtain a fair evaluation, the

parameters used for the interpretation of the nearness relations were determined

without using the locations in Seattle for the experiments involving Seattle locations,

and similar for the other cities. Thus a different set of parameters was used for each

city.

Table 5 displays the median of the straight-line distance between the estimated

location of hotels and touristic attractions, and the actual location. We used the

median instead of the average, because the average is too much influenced by

outliers to be useful here. A first observation is that the baseline system actually

performs quite well. Nonetheless, the results in table 5 clearly show that a significant

improvement over the baseline was achieved by the systems fuzzy-1, fuzzy-2, and

fuzzy-3, which was also confirmed by a Wilcoxon signed ranks test (p,0.001). This

suggests that the increased complexity due to the interpretation of nearness

relations, and the use of fuzzy footprints is justified for the task of location

approximation. However, refining the interpretations of the nearness relations does

not seem to improve the performance, i.e. the overall performance of fuzzy-1 is not

worse – even slightly better – than the performance of fuzzy-2 and fuzzy-3

(Wilcoxon signed ranks, p,0.001).

6.2 Local search

In a local search setting, the system has to provide a ranking of, for example, hotels,

which are near a given landmark. Ideally, the hotels in such a ranking are ordered by

increasing distance from the landmark, i.e. the first hotel in the list returned by the

local search service is the hotel closest to the landmark, the second hotel is the

second closest hotel, etc. To assess how well our system performs at the task of

finding such a ranking, we used the Spearman rank coefficient, which is well-suited

to measure the correlation between different rankings of search results (Bar-Ilan

2005). The rankings we used in this experiment were obtained using the estimated

locations of the hotels, and the exact locations of the touristic attractions. For each

attraction a in each of the cities, we considered a query hotels near a, and calculated

Table 5. Median of the straight-line distance (in km) between the actual locations of hotels
and touristic attractions, and the approximated location.

Hotels Attractions

Baseline Fuzzy-1 Fuzzy-2 Fuzzy-3 Baseline Fuzzy-1 Fuzzy-2 Fuzzy-3

Atlanta 3.34 1.89 1.97 1.97 4.34 1.74 1.74 1.73
Boston 1.33 1.01 0.97 0.97 1.51 0.91 1.39 1.50
Chicago 1.98 0.67 0.72 0.69 2.19 0.83 1.24 1.42
Las Vegas 2.21 1.35 1.62 1.44 2.94 1.42 1.74 1.89
Los Angeles 2.16 1.53 1.54 1.55 2.47 1.75 1.79 1.81
Miami 2.10 1.51 1.46 1.57 4.06 3.10 3.73 3.28
Minneapolis 3.84 1.55 1.53 1.52 2.02 1.98 1.98 2.51
New York 1.36 0.74 0.75 0.73 1.04 0.85 0.73 0.73
Philadelphia 1.51 1.34 1.43 1.40 2.32 1.19 1.18 1.33
Sacramento 3.44 2.34 2.07 2.50 2.59 1.23 1.35 1.73
San Francisco 1.02 0.46 0.48 0.45 1.47 0.64 0.75 0.58
Seattle 2.08 0.98 1.07 1.08 2.27 1.27 1.45 1.53
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the Spearman rank coefficient between the ranking obtained with the estimated

hotel locations, and the optimal ranking, i.e. the ranking obtained using the exact

locations. Note that only the rankings are evaluated, and not the position at which

to cut off the list of businesses returned. Therefore, the results are independent of the

particular nearness relation used in the query. The results are shown in table 6. The

Spearman rank coefficient is always between 21 and 1, where 1 means a perfect

correlation (i.e. the rankings are identical), 0 means no correlation at all, and 21

means a perfect negative correlation. The conclusions are similar as for table 5: the

behavior of fuzzy-1, fuzzy-2, and fuzzy-3 are very similar, and outperform the

baseline system.

One disadvantage of using the Spearman rank coefficient is that the meaning of

the results is not very intuitive: how useful is a ranking whose correlation coefficient

w.r.t. the optimal ranking is 0.75? A more intuitive way of evaluating the rankings is

in terms of the well-known precision and recall measures. However, this requires

that we know which hotels are relevant to a query such as hotels near a. In the

experiments, we assumed that a hotel is relevant to the query iff its location is within

a fixed radius of a. Figure 5 shows the precision–recall curves for 4 different

radiuses. The queries we considered were again hotels near a for each touristic

attraction a in each of the cities. The values shown in figure 5 are averaged over all

these queries. For example, when a 3 km radius is used, the precision at a recall level

of 0.5 is about 0.75 for fuzzy-1, fuzzy-2, and fuzzy-3. This means that if a user would

go through the list of returned hotels until she has seen half of the relevant hotels,

25% of the hotels she looked at would not have been relevant. Again, fuzzy-1, fuzzy-

2, and fuzzy-3 display a similar behavior, which is significantly better than the

baseline system.

7. Concluding remarks

We have discussed techniques to represent natural language nearness relations such

as within walking distance (named nearness relations), and 3 km from (quantified

nearness relations), as well as a technique to obtain fuzzy footprints of city

neighborhoods. Although these problems have, to some extent, been studied before

in the context of GIS, we have focused specifically on the problem of approximating

the location of a place, using data from the web. This could be very useful to

Table 6. Average Spearman rank correlation between the hotel rankings obtained using the
estimated locations, and using the exact locations.

Baseline Fuzzy-1 Fuzzy-2 Fuzzy-3

Atlanta 0.53 0.73 0.73 0.74
Boston 0.57 0.63 0.63 0.63
Chicago 0.34 0.75 0.76 0.75
Las Vegas 0.44 0.60 0.58 0.59
Los Angeles 0.76 0.87 0.87 0.86
Miami 0.62 0.71 0.70 0.70
Minneapolis 0.50 0.73 0.73 0.70
New York 0.57 0.72 0.73 0.73
Philadelphia 0.56 0.68 0.66 0.65
Sacramento 0.51 0.69 0.67 0.66
San Francisco 0.26 0.59 0.61 0.62
Seattle 0.59 0.83 0.81 0.80
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improve the performance of local search services, both in terms of increased

coverage, and more flexible querying, using landmarks and neighborhood names to

express desired constraints. It turns out that the nature of this task is rather different

from earlier work on the interpretation of nearness relations in the context of GIS,

which mainly focuses on the concept of nearness as such, and not on the actual

meaning of natural language expressions to describe nearness. Also, the use of web

data requires robust techniques, as the input data may be rather noisy. The model

we proposed is based on trapezoidally shaped fuzzy sets, which are computationally

more interesting than arbitrary fuzzy sets. Another advantage of trapezoidally

shaped fuzzy sets is that they can be defined using only 4 real-valued parameters

with a very intuitive meaning.

Experimental results show that local search using natural language hints, when

precise locations are missing, is indeed feasible, and that the interpretations of these

hints proposed in this paper are meaningful. We also looked at two techniques to

refine our initial model: differentiating between small and large distances for

quantified nearness relations, and between popular and unpopular places for named

nearness relations. The resulting interpretations correspond closely to our intuition

in the case of the quantified nearness relations. However, the presumed dependency

of the named nearness relations on the popularity of the landmark involved seems

to hold only for some of the named nearness relations. Moreover, the experimental

results revealed no improvement, for neither of the two kinds of refinements.

Figure 5. Precision–recall curves for a query like hotels near a, where hotels are considered
relevant to the query iff they are located at most (a) 0.25 km, (b) 0.5 km, (c) 1 km, or (d) 3 km
away from a.
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To obtain a fully fledged local search service, more work on extracting spatial

information from the web is needed, both to increase the coverage and to improve

the accuracy of the location approximation. Furthermore, as natural language

nearness relations can have different meanings in different contexts, multiple fuzzy

relations may be associated with each nearness relation. Therefore, explicit

representations of the contexts corresponding to each of these fuzzy relations are

required, as well as heuristics to determine the context in which a particular

occurrence of a nearness relation is used. Another important direction for future

work is spatial reasoning. Reasoning with nearness relations could be useful to

deduce extra information about the location of places. Apart from nearness

relations, directional and topological information could also be used. Directional

information can either refer to the relative positioning of two places, e.g. x is located

north of y, or to the positioning of a place within a neighborhood, e.g. x is located in

the north of R. Topological information usually refers to relations between regions,

e.g. R1 is bordering on R2. Although reasoning with nearness, directional and

topological information is well-studied, more work is needed on combining this in

one framework.
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